Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Role of the C1858T polymorphism of protein tyrosine phosphatase non-receptor type 22 (PTPN22) in children and adolescents with type 1 diabetes

Abstract

In recent years, increasing interest has been devoted to the susceptibility gene polymorphisms in type 1 diabetes (T1D) as well as in other autoimmune diseases. Among these, a nucleotide polymorphism of the gene encoding for the protein tyrosine phosphatase non-receptor type 22 (PTPN22) has been associated with T1D in several studies. The aim of this study is to define the frequency of the C1858T polymorphism in the PTPN22 gene in a cohort of 113 Caucasian patients (58 males and 55 females) with T1D, and to assess a possible correlation with a group of clinically relevant variables: age at onset, gender, diabetes-related autoantibodies, residual β-cell function and daily insulin requirement (IR) 6 months after diagnosis. Using a PCR-RFLP approach, we evidenced a 17.7% frequency of the PTPN22 C1858T polymorphism in diabetic patients, higher than the frequency showed in the general population. A statistically significant correlation between this polymorphism and higher levels of C-peptide at diagnosis and lower IR at 6 months from diagnosis was observed (P=0.001 and P=0.04). Moreover, 1858T variant carriers were more frequently positive for glutamic acid decarboxylase (GAD) autoantibodies at diagnosis than wild-type subjects (P=0.19). On the other hand, no significant difference regarding age at onset, gender distribution, insulinoma-associated 2 molecule (IA2) and islet cell antibodies (ICA) positivity was found. These findings, if adequately confirmed in the future and extended to larger samples, may characterize a subset of T1D patients with a defined genetic pattern, who may be eligible for trials aimed to preserve residual β-cell function in the coming years.

This is a preview of subscription content, access via your institution

Access options

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Notkins AL, Lernmark A . Autoimmune type 1 diabetes: resolved and unresolved issues. J Clin Invest 2001; 108: 1247–1252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Atkinson MA, Eisenbarth GS . Type 1 diabetes: new perspectives on disease pathogenesis and treatment. Lancet 2001; 358: 221–229.

    Article  CAS  PubMed  Google Scholar 

  3. Effects of age, duration and treatment of insulin-dependent diabetes mellitus on residual beta-cell function: observations during eligibility testing for the Diabetes Control and Complications Trial (DCCT). The DCCT Research Group. J Clin Endocrinol Metab 1987; 65: 30–36.

  4. Schölin A, Björklund L, Borg H, Arnqvist H, Björk E, Blohmé G et al. Islet antibodies and remaining beta-cell function 8 years after diagnosis of diabetes in young adults: a prospective follow-up of the nationwide Diabetes Incidence Study in Sweden. J Intern Med 2004; 255: 384–391.

    Article  PubMed  Google Scholar 

  5. Bottini N, Musumeci L, Alonso A, Rahmouni S, Nika K, Rostamkhani M et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 2004; 36: 337–338.

    Article  CAS  PubMed  Google Scholar 

  6. Wang S, Dong H, Han J, Ho WT, Fu X, Zhao ZJ . Identification of a variant form of tyrosine phosphatase LYP. BMC Mol Biol 2010; 11: 78.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gjörloff-Wingren A, Saxena M, Williams S, Hammi D, Mustelin T . Characterization of TCR-induced receptor-proximal signaling events negatively regulated by the protein tyrosine phosphatase PEP. Eur J Immunol 1999; 29: 3845–3854.

    Article  PubMed  Google Scholar 

  8. Hill RJ, Zozulya S, Lu Y-L, Ward K, Gishizky M, Jallal B . The lymphoid protein tyrosine phosphatase Lyp interacts with the adaptor molecule Grb2 and functions as a negative regulator of T-cell activation. Exp Hematol 2002; 30: 237–244.

    Article  CAS  PubMed  Google Scholar 

  9. Burn GL, Svensson L, Sanchez-Blanco C, Saini M, Cope AP . Why is PTPN22 a good candidate susceptibility gene for autoimmune disease? FEBS Lett 2011; 585: 3689–3698.

    Article  CAS  PubMed  Google Scholar 

  10. Rieck M, Arechiga A, Onengut-Gumuscu S, Greenbaum C, Concannon P, Buckner JH . Genetic variation in PTPN22 corresponds to altered function of T and B lymphocytes. J Immunol 2007; 179: 4704–4710.

    Article  CAS  PubMed  Google Scholar 

  11. Begovich AB, Carlton VEH, Honigberg LA, Schrodi SJ, Chokkalingam AP, Alexander HC et al. A missense single-nucleotide polymorphism in a gene encoding a protein tyrosine phosphatase (PTPN22) is associated with rheumatoid arthritis. Am J Hum Genet 2004; 75: 330–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lea WW, Lee YH . The association between the PTPN22 C1858T polymorphism and systemic lupus erythematosus: a meta-analysis update. Lupus 2011; 20: 51–57.

    Article  CAS  PubMed  Google Scholar 

  13. Velaga MR, Wilson V, Jennings CE, Owen CJ, Herington S, Donaldson PT et al. The codon 620 tryptophan allele of the lymphoid tyrosine phosphatase (LYP) gene is a major determinant of Graves’ disease. J Clin Endocrinol Metab 2004; 89: 5862–5865.

    Article  CAS  PubMed  Google Scholar 

  14. Skórka A, Bednarczuk T, Bar-Andziak E, Nauman J, Ploski R . Lymphoid tyrosine phosphatase (PTPN22/LYP) variant and Graves’ disease in a Polish population: association and gene dose-dependent correlation with age of onset. Clin Endocrinol (Oxf) 2005; 62: 679–682.

    Article  Google Scholar 

  15. Criswell LA, Pfeiffer KA, Lum RF, Gonzales B, Novitzke J, Kern M et al. Analysis of families in the multiple autoimmune disease genetics consortium (MADGC) collection: the PTPN22 620W allele associates with multiple autoimmune phenotypes. Am J Hum Genet 2005; 76: 561–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Steck AK, Liu S-Y, McFann K, Barriga KJ, Babu SR, Eisenbarth GS et al. Association of the PTPN22/LYP gene with type 1 diabetes. Pediatr Diabetes 2006; 7: 274–278.

    Article  PubMed  Google Scholar 

  17. Ladner MB, Bottini N, Valdes AM, Noble JA . Association of the single nucleotide polymorphism C1858T of the PTPN22 gene with type 1 diabetes. Hum Immunol 2005; 66: 60–64.

    Article  CAS  PubMed  Google Scholar 

  18. Kahles H, Ramos-Lopez E, Lange B, Zwermann O, Reincke M, Badenhoop K . Sex-specific association of PTPN22 1858T with type 1 diabetes but not with Hashimoto’s thyroiditis or Addison's disease in the German population. Eur J Endocrinol 2005; 153: 895–899.

    Article  CAS  PubMed  Google Scholar 

  19. Zhernakova A, Eerligh P, Wijmenga C, Barrera P, Roep BO, Koeleman BPC . Differential association of the PTPN22 coding variant with autoimmune diseases in a Dutch population. Genes Immun 2005; 6: 459–461.

    Article  CAS  PubMed  Google Scholar 

  20. Smyth D, Cooper JD, Collins JE, Heward JM, Franklyn JA, Howson JMM et al. Replication of an association between the lymphoid tyrosine phosphatase locus (LYP/PTPN22) with type 1 diabetes, and evidence for its role as a general autoimmunity locus. Diabetes 2004; 53: 3020–3023.

    Article  CAS  PubMed  Google Scholar 

  21. Hermann R, Lipponen K, Kiviniemi M, Kakko T, Veijola R, Simell O et al. Lymphoid tyrosine phosphatase (LYP/PTPN22) Arg620Trp variant regulates insulin autoimmunity and progression to type 1 diabetes. Diabetologia 2006; 49: 1198–1208.

    Article  CAS  PubMed  Google Scholar 

  22. Nielsen C, Hansen D, Husby S, Lillevang ST . Sex-specific association of the human PTPN22 1858T-allele with type 1 diabetes. Int J Immunogenet 2007; 34: 469–473.

    Article  CAS  PubMed  Google Scholar 

  23. Santiago JL, Martínez A, de la Calle H, Fernández-Arquero M, Figueredo MA, de la Concha EG et al. Susceptibility to type 1 diabetes conferred by the PTPN22 C1858T polymorphism in the Spanish population. BMC Med Genet 2007; 8: 54.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Saccucci P, Del Duca E, Rapini N, Verrotti A, Piccinini S, Maccari et al. Association between PTPN22 C1858T and type 1 diabetes: a replication in continental Italy. Tissue Antigens 2008; 71: 234–237.

    Article  CAS  PubMed  Google Scholar 

  25. Gloria-Bottini F, Saccucci P, Manca-Bitti ML, Rapini N, Verrotti A, Neri et al. Type 1 diabetes mellitus. Comparison between the association with PTPN22 genotype and the association with ACP1-ADA1 joint genotype. Diabetes Res Clin Pract 2014; 106: 7–9.

    Article  Google Scholar 

  26. Cinek O, Hradsky O, Ahmedov G, Slavcev A, Kolouskova S, Kulich M et al. No independent role of the -1123 G>C and+2740 A>G variants in the association of PTPN22 with type 1 diabetes and juvenile idiopathic arthritis in two Caucasian populations. Diabetes Res Clin Pract 2007; 76: 297–303.

    Article  CAS  PubMed  Google Scholar 

  27. Fedetz M, Matesanz F, Caro-Maldonado A, Smirnov II, Chvorostinka VN, Moiseenko TA et al. The 1858T PTPN22 gene variant contributes to a genetic risk of type 1 diabetes in a Ukrainian population. Tissue Antigens 2006; 67: 430–433.

    Article  CAS  PubMed  Google Scholar 

  28. Gomez LM, Anaya J-M, Gonzalez CI, Pineda-Tamayo R, Otero W, Arango et al. PTPN22 C1858T polymorphism in Colombian patients with autoimmune diseases. Genes Immun 2005; 6: 628–631.

    Article  CAS  PubMed  Google Scholar 

  29. Ikegami H, Kawabata Y, Noso S, Fujisawa T, Ogihara T . Genetics of type 1 diabetes in Asian and Caucasian populations. Diabetes Res Clin Pract 2007; 77: S116–S121.

    Article  CAS  PubMed  Google Scholar 

  30. Mori M, Yamada R, Kobayashi K, Kawaida R, Yamamoto K . Ethnic differences in allele frequency of autoimmune-disease-associated SNPs. J Hum Genet 2005; 50: 264–266.

    Article  PubMed  Google Scholar 

  31. Fierabracci A . Peptide immunotherapies in Type 1 diabetes: lessons from animal models. Curr Med Chem 2011; 18: 577–586.

    Article  CAS  PubMed  Google Scholar 

  32. Bottini N, Vang T, Cucca F, Mustelin T . Role of PTPN22 in type 1 diabetes and other autoimmune diseases. Semin Immunol 2006; 18: 207–213.

    Article  CAS  PubMed  Google Scholar 

  33. Petrone A, Spoletini M, Zampetti S, Capizzi M, Zavarella S, Osborn J et al. The PTPN22 1858T gene variant in type 1 diabetes is associated with reduced residual beta-cell function and worse metabolic control. Diabetes Care 2008; 31: 1214–1218.

    Article  CAS  PubMed  Google Scholar 

  34. Tang S, Peng W, Wang C, Tang H, Zhang Q . Association of the PTPN22 gene (+1858C/T, -1123G/C) polymorphisms with type 1 diabetes mellitus: a sistematic review and meta-analysis. Diabetes Res Clin Pract 2012; 97: 446–452.

    Article  CAS  PubMed  Google Scholar 

  35. Gloria-Bottini F, Saccucci P, Meloni GF, Manca-Bitti ML, Coppeta L, Neri et al. Study of factors influencing susceptibility and age at onset of type 1 diabetes: a review of data from Continental Italy and Sardinia. World J Diabetes 2014; 5: 557–561.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gianchecchi E, Palombi M, Fierabracci A . The putative role of the C1858T polymorphism of protein tyrosine phosphatase PTPN22 gene in autoimmunity. Autoimmun Rev 2013; 12: 717–725.

    Article  CAS  PubMed  Google Scholar 

  37. Mainardi-Novo DTO, Santos AS, Fukui RT, Gamberini M, Correia MRS, Ruiz MO et al. The PTPN22 1858T allele but not variants in the proximal promoter region of IL-21 gene is associated with the susceptibility to type 1 diabetes and the presence of autoantibodies in a Brazilian cohort. Clin Exp Immunol 2013; 172: 16–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kordonouri O, Hartmann R, Charpentier N, Knip M, Danne T, Ilonen J . Genetic risk markers related to diabetes-associated autoantibodies in young patients with type 1 diabetes in berlin, Germany. Exp Clin Endocrinol Diabetes 2010; 118: 245–249.

    Article  CAS  PubMed  Google Scholar 

  39. Giza S, Goulas A, Gbandi E, Effraimidou S, Papadopoulou-Alataki E, Eboriadou M et al. The role of PTPN22 C1858T gene polymorphism in diabetes mellitus type 1: first evaluation in Greek children and adolescents. Biomed Res Int 2013; 2013: 721604.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chagastelles PC, Romitti M, Trein MR, Bandinelli E, Tschiedel B, Nardi NB . Association between the 1858T allele of the protein tyrosine phosphatase nonreceptor type 22 and type 1 diabetes in a Brazilian population. Tissue Antigens 2010; 76: 144–148.

    CAS  PubMed  Google Scholar 

  41. Korolija M, Renar IP, Hadžija M, Medvidović EP, Pavković P, Jokić M et al. Association of PTPN22 C1858T and CTLA-4 A49G polymorphisms with type 1 diabetes in Croatians. Diabetes Res Clin Pract 2009; 86: e54–e57.

    Article  CAS  PubMed  Google Scholar 

  42. Nielsen LB, Pörksen S, Andersen MLM, Fredheim S, Svensson J, Hougaard P et al. The PTPN22 C1858T gene variant is associated with proinsulin in new-onset type 1 diabetes. BMC Med Genet 2011; 12: 41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maziarz M, Janer M, Roach JC, Hagopian W, Palmer JP, Deutsch K et al. The association between the PTPN22 1858C>T variant and type 1 diabetes depends on HLA risk and GAD65 autoantibodies. Genes Immun 2010; 11: 406–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rueda B, Núñez C, Orozco G, López-Nevot MA, de la Concha EG, Martin J et al. C1858T functional variant of PTPN22 gene is not associated with celiac disease genetic predisposition. Hum Immunol 2005; 66: 848–852.

    Article  CAS  PubMed  Google Scholar 

  45. Andersen MLM, Rasmussen MA, Pörksen S, Svensson J, Vikre-Jørgensen J, Thomsen J et al. Complex multi-block analysis identifies new immunologic and genetic disease progression patterns associated with the residual β-cell function 1 year after diagnosis of type 1 diabetes. PLoS One 2013; 8: e64632.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kaas A, Andersen MLM, Fredheim S, Hougaard P, Buschard K, Petersen JS et al. Proinsulin, GLP-1, and glucagon are associated with partial remission in children and adolescents with newly diagnosed type 1 diabetes. Pediatr Diabetes 2012; 13: 51–58.

    Article  CAS  PubMed  Google Scholar 

  47. Steffes MW, Sibley S, Jackson M, Thomas W . Beta-cell function and the development of diabetes-related complications in the diabetes control and complications trial. Diabetes Care 2003; 26: 832–836.

    Article  PubMed  Google Scholar 

  48. Cook JJ, Hudson I, Harrison LC, Dean B, Colman PG, Werther GA et al. Double-blind controlled trial of azathioprine in children with newly diagnosed type I diabetes. Diabetes 1989; 38: 779–783.

    Article  CAS  PubMed  Google Scholar 

  49. Wherrett DK, Daneman D . Prevention of type 1 diabetes. Endocrinol Metab Clin North Am 2009; 38: 777–790.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Buckingham BA, Sandborg CI . A randomized trial of methotrexate in newly diagnosed patients with type 1 diabetes mellitus. Clin Immunol 2000; 96: 86–90.

    Article  CAS  PubMed  Google Scholar 

  51. Silverstein J, Maclaren N, Riley W, Spillar R, Radjenovic D, Johnson S . Immunosuppression with azathioprine and prednisone in recent-onset insulin-dependent diabetes mellitus. N Engl J Med 1988; 319: 599–604.

    Article  CAS  PubMed  Google Scholar 

  52. Mastrandrea L, Yu J, Behrens T, Buchlis J, Albini C, Fourtner S et al. Etanercept treatment in children with new-onset type 1 diabetes: pilot randomized, placebo-controlled, double-blind study. Diabetes Care 2009; 32: 1244–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Keymeulen B, Vandemeulebroucke E, Ziegler AG, Mathieu C, Kaufman L, Hale G et al. Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 2005; 352: 2598–2608.

    Article  CAS  PubMed  Google Scholar 

  54. Coppieters KT, Harrison LC, von Herrath MG . Trials in type 1 diabetes: antigen-specific therapies. Clin Immunol 2013; 149: 345–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Hartemann A, Bensimon G, Payan CA, Jacqueminet S, Bourron O, Nicolas N et al. Low-dose interleukin 2 in patients with type 1 diabetes: a phase 1/2 randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol 2013; 1: 295–305.

    Article  CAS  PubMed  Google Scholar 

  56. Moran A, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R et al. Interleukin-1 antagonism in type 1 diabetes of recent onset: two multicentre, randomised, double-blind, placebo-controlled trials. Lancet 2013; 381: 1905–1915.

    Article  CAS  PubMed  Google Scholar 

  57. Yu A, Snowhite I, Vendrame F, Rosenzwajg M, Klatzmann D, Pugliese et al. Selective IL-2 responsiveness of regulatory T cells through multiple intrinsic mechanisms support the use of low-dose IL-2 therapy in Type-1 diabetes. Diabetes 2015; 64: 2172–2183.

    Article  CAS  PubMed  Google Scholar 

  58. Orban T, Bundy B, Becker DJ, DiMeglio LA, Gitelman SE, Goland R et al. Co-stimulation modulation with abatacept in patients with recent-onset type 1 diabetes: a randomised, double-blind, placebo-controlled trial. Lancet 2011; 378: 412–419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pozzilli P, Guglielmi C, Maggi D, Carlone A, Buzzetti R, Manfrini S . Clinical update on the use of immuno modulators (antiCD3, GAD, Diapep277, anti-IL1) in type 1 diabetes. Curr Pharm Des 2011; 17: 3224–3228.

    Article  CAS  PubMed  Google Scholar 

  60. Verrotti A, Chiuri RM, Blasetti A, Mohn A, Chiarelli F . Treatment options for paediatric diabetes. Expert Opin Pharmacother 2010; 11: 2483–2495.

    Article  CAS  PubMed  Google Scholar 

  61. Hou X, Li R, Li K, Yu X, Sun J-P, Fang H . Fast identification of novel lymphoid tyrosine phosphatase inhibitors using target–ligand interaction-based virtual screening. J Med Chem 2014; 57: 9309–9322.

    Article  CAS  PubMed  Google Scholar 

  62. Xie Y, Liu Y, Gong G, Rinderspacher A, Deng S-X, Smith DH et al. Discovery of a novel submicromolar inhibitor of the lymphoid specific tyrosine phosphatase. Bioorg Med Chem Lett 2008; 18: 2840–2844.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Vang T, Xie Y, Liu WH, Vidović D, Liu Y, Wu S et al. Inhibition of lymphoid tyrosine phosphatase by benzofuran salicylic acids. J Med Chem 2011; 54: 562–571.

    Article  CAS  PubMed  Google Scholar 

  64. He Y, Liu S, Menon A, Stanford S, Oppong E, Gunawan AM et al. A potent and selective small-molecule inhibitor for the lymphoid-specific tyrosine phosphatase (LYP), a target associated with autoimmune diseases. J Med Chem 2013; 56: 4990–5008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schölin A, Berne C, Schvarcz E, Karlsson FA, Björk E . Factors predicting clinical remission in adult patients with type 1 diabetes. J Intern Med 1999; 245: 155–162.

    Article  PubMed  Google Scholar 

  66. Ortqvist E, Falorni A, Scheynius A, Persson B, Lernmark A . Age governs gender-dependent islet cell autoreactivity and predicts the clinical course in childhood IDDM. Acta Paediatr 1997; 86: 1166–1171.

    Article  CAS  PubMed  Google Scholar 

  67. Mortensen HB, Hougaard P, Swift P, Hansen L, Holl RW, Bjoerndalen H et al. New definition for the partial remission period in children and adolescents with type 1 diabetes. Diabetes Care 2009; 32: 1384–1390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We express our gratitude to patients and their families for participating in this study. We also thank Kelly Chuang, MHS, Johns Hopkins University for help with language revision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Blasetti.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blasetti, A., Di Giulio, C., Tumini, S. et al. Role of the C1858T polymorphism of protein tyrosine phosphatase non-receptor type 22 (PTPN22) in children and adolescents with type 1 diabetes. Pharmacogenomics J 17, 186–191 (2017). https://doi.org/10.1038/tpj.2016.6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2016.6

Search

Quick links