Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Determinants of Gefitinib toxicity in advanced non-small cell lung cancer (NSCLC): a pharmacogenomic study of metabolic enzymes and transporters

Abstract

Skin rash, diarrhea and hepatotoxicity are the most common toxicities of Gefitinib, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor. The present study investigated the effects of genetic polymorphisms of drug target, metabolizing enzymes and transporters on Gefitinib toxicities. Thirty single-nucleotide polymorphisms, including EGFR, cytochromes P450 and ATP-binding cassette (ABC), were genotyped by matrix-assisted laser desorption/ionization time-of-flight platform in 59 non-small cell lung cancer patients treated with Gefitinib. Correlation analyses were performed to evaluate their effects on Gefitinib-induced toxicities. ABCB1 rs1128503 TT genotype was a significant high-risk determinant of both skin rash and diarrhea, with 15.78- and 10.78-fold of incident risk increased, respectively. (odds ratio (OR)=15.78, 95% confidence interval (CI) 2.01–124.1, P=0.0087; OR=10.78, 95% CI 1.54–75.40, P=0.0166 vs non-TT genotypes). Patients with ABCB1 rs1128503 TT genotype had greater risk of skin rash and diarrhea. Therefore, polymorphism analyses of ABCB1 might be beneficial to optimize Gefitinib treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Maemondo M, Inoue A, Kobayashi K, Sugawara S, Oizumi S, Isobe H et al. Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med 2010; 362: 2380–2388.

    Article  CAS  Google Scholar 

  2. Mok TS, Wu YL, Thongprasert S, Yang CH, Chu DT, Saijo N et al. Gefitinib or carboplatin - paclitaxel in pulmonary adenocarcinoma. N Engl J Med 2009; 361: 947–957.

    Article  CAS  Google Scholar 

  3. Ku GY, Haaland BA, de Lima Lopes G Jr . Gefitinib vs. chemotherapy as first-line therapy in advanced non-small cell lung cancer: meta-analysis of phase III trials. Lung Cancer 2011; 74: 469–473.

    Article  Google Scholar 

  4. Qi WX, Shen Z, Lin F, Sun YJ, Min DL, Tang LN et al. Comparison of the efficacy and safety of EFGR tyrosine kinase inhibitor monotherapy with standard second-line chemotherapy in previously treated advanced non-small-cell lung cancer: a systematic review and meta-analysis. Asian Pac J Cancer Prev 2012; 13: 5177–5182.

    Article  Google Scholar 

  5. Zhang L, Ma S, Song X, Han B, Cheng Y, Huang C et al. Gefitinib versus placebo as maintenance therapy in patients with locally advanced or metastatic non-small-cell lung cancer (INFORM; C-TONG 0804): a multicentre, double-blind randomised phase 3 trial. Lancet Oncol 2012; 13: 466–475.

    Article  CAS  Google Scholar 

  6. Lacouture ME . Mechanisms of cutaneous toxicities to EGFR inhibitors. Nat Rev Cancer 2006; 6: 803–812.

    Article  CAS  Google Scholar 

  7. Giacomini KM, Brett CM, Altman RB, Benowitz NL, Dolan ME, Flockhart DA et al. The pharmacogenetics research network: from SNP discovery to clinical drug response. Clin Pharmacol Ther 2007; 81: 328–345.

    Article  CAS  Google Scholar 

  8. Hodoglugil U, Carrillo MW, Hebert JM, Karachaliou N, Rosell RC, Altman RB et al. PharmGKB summary: very important pharmacogene information for the epidermal growth factor receptor. Pharmacogenet Genomics 2013; 23: 636–642.

    Article  CAS  Google Scholar 

  9. Parmar S, Schumann C, Rüdiger S, Boeck S, Heinemann V, Kächele V et al. Pharmacogenetic predictors for EGFR-inhibitor-associated skin toxicity. Pharmacogenomics J 2013; 13: 181–188.

    Article  CAS  Google Scholar 

  10. Huang CL, Yang CH, Yeh KH, Hu FC, Chen KY, Shih JY et al. EGFR intron 1 dinucleotide repeat polymorphism is associated with the occurrence of skin rash with Gefitinib treatment. Lung Cancer 2009; 64: 346–351.

    Article  Google Scholar 

  11. Cohen MH, Williams GA, Sridhara R, Chen G, McGuinn WD Jr, Morse D et al. United States Food and Drug Administration Drug Approval summary: Gefitinib (ZD1839; Iressa) tablets. Clin Cancer Res 2004; 10: 1212–1218.

    Article  CAS  Google Scholar 

  12. McKillop D, McCormick AD, Millar A, Miles GS, Phillips PJ, Hutchison M . Cytochrome P450-dependent metabolism of Gefitinib. Xenobiotica 2005; 35: 39–50.

    Article  CAS  Google Scholar 

  13. Li J, Zhao M, He P, Hidalgo M, Baker SD . Differential metabolism of Gefitinib and erlotinib by human cytochrome P450 enzymes. Clin Cancer Res 2007; 13: 3731–3737.

    Article  CAS  Google Scholar 

  14. Li J, Cusatis G, Brahmer J, Sparreboom A, Robey RW, Bates SE et al. Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients. Cancer Biol Ther 2007; 6: 432–438.

    Article  CAS  Google Scholar 

  15. Ozvegy-Laczka C, Hegedus T, Várady G, Ujhelly O, Schuetz JD, Váradi A et al. High-affinity interaction of tyrosine kinase inhibitors with the ABCG2 multidrug transporter. Mol Pharmacol 2004; 65: 1485–1495.

    Article  Google Scholar 

  16. Wojnowski L . Genetics of the variable expression of CYP3A in humans. Ther Drug Monit 2004; 26: 192–199.

    Article  CAS  Google Scholar 

  17. Lamba JK, Lin YS, Thummel K, Daly A, Watkins PB, Strom S et al. Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics 2002; 12: 121–132.

    Article  CAS  Google Scholar 

  18. Fukushima-Uesaka H, Saito Y, Watanabe H, Shiseki K, Saeki M, Nakamura T et al. Haplotypes of CYP3A4 and their close linkage with CYP3A5 haplotypes in a Japanese population. Hum Mutat 2004; 23: 100.

    Article  Google Scholar 

  19. Lemos C, Giovannetti E, Zucali PA, Assaraf YG, Scheffer GL, van der Straaten T et al. Impact of ABCG2 polymorphisms on the clinical outcome and toxicity of Gefitinib in non-small-cell lung cancer patients. Pharmacogenomics 2011; 12: 159–170.

    Article  CAS  Google Scholar 

  20. Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G et al. Patterns of somatic mutation in human cancer genomes. Nature 2007; 446: 153–158.

    Article  CAS  Google Scholar 

  21. Bakker E . Is the DNA sequence the gold standard in genetic testing? Quality of molecular genetic tests assessed. Clin Chem 2006; 52: 557–558.

    Article  CAS  Google Scholar 

  22. Brinkmann U, Eichelbaum M . Polymorphisms in the ABC drug transporter gene MDR1. Pharmacogenomics J 2001; 1: 59–64.

    Article  CAS  Google Scholar 

  23. Fromm MF . Importance of P-glycoprotein at blood-tissue barriers. Trends Pharmacol Sci 2004; 25: 423–429.

    Article  CAS  Google Scholar 

  24. Juliano RL, Ling V . A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta 1976; 455: 152–162.

    Article  CAS  Google Scholar 

  25. Kitazaki T, Oka M, Nakamura Y, Tsurutani J, Doi S, Yasunaga M et al. Gefitinib, an EGFR tyrosine kinase inhibitor, directly inhibits the function of P-glycoprotein in multidrug resistant cancer cells. Lung Cancer 2005; 49: 337–343.

    Article  Google Scholar 

  26. Shi Z, Peng XX, Kim IW, Shukla S, Si QS, Robey RW et al. Erlotinib (Tarceva, OSI-774) antagonizes ATP-binding cassette subfamily B member 1 and ATP-binding cassette subfamily G member 2-mediated drug resistance. Cancer Res 2007; 67: 11012–11020.

    Article  CAS  Google Scholar 

  27. Leggas M, Panetta JC, Zhuang Y, Schuetz JD, Johnston B, Bai F et al. Gefitinib modulates the function of multiple ATP-binding cassette transporters in vivo. Cancer Res 2006; 66: 4802–4807.

    Article  CAS  Google Scholar 

  28. Wang D, Johnson AD, Papp AC, Kroetz DL, Sadée W . Multidrug resistance polypeptide 1 (MDR1, ABCB1) variant 3435C>T affects mRNA stability. Pharmacogenet Genomics 2005; 15: 693–704.

    Article  CAS  Google Scholar 

  29. Leschziner GD, Andrew T, Pirmohamed M, Johnson MR . ABCB1 genotype and PGP expression, function and therapeutic drug response: a critical review and recommendations for future research. Pharmacogenomics J 2007; 7: 154–179.

    Article  CAS  Google Scholar 

  30. Skoglund K, Moreno SB, Baytar M, Jönsson JI, Gréen H . ABCB1 haplotypes do not influence transport or efficacy of tyrosine kinase inhibitors in vitro. Pharmgenomics Pers Med 2013; 6: 63–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tamura M, Kondo M, Horio M, Ando M, Saito H, Yamamoto M et al. Genetic polymorphisms of the adenosine triphosphate-binding cassette transporters (ABCG2, ABCB1) and Gefitinib toxicity. Nagoya J Med Sci 2012; 74: 133–140.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Thomas F, Rochaix P, White-Koning M, Hennebelle I, Sarini J, Benlyazid A et al. Population pharmacokinetics of erlotinib and its pharmacokinetic/pharmacodynamic relationships in head and neck squamous cell carcinoma. Eur J Cancer 2009; 45: 2316–2323.

    Article  CAS  Google Scholar 

  33. Hodges LM, Markova SM, Chinn LW, Gow JM, Kroetz DL, Klein TE et al. Very important pharmacogene summary: ABCB1 (MDR1, P-glycoprotein). Pharmacogenet Genomics 2011; 21: 152–161.

    Article  CAS  Google Scholar 

  34. Mathijssen RH, Marsh S, Karlsson MO, Xie R, Baker SD, Verweij J et al. Irinotecan pathway genotype analysis to predict pharmacokinetics. Clin Cancer Res 2003; 9: 3246–3253.

    CAS  PubMed  Google Scholar 

  35. Zhang YT, Yang LP, Shao H, Li KX, Sun CH, Shi LW . ABCB1 polymorphisms may have a minor effect on ciclosporin blood concentrations in myasthenia gravis patients. Br J Clin Pharmacol 2008; 66: 240–246.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by National High Technology Research and Development Program of China (Grant No.: 2012AA02A502), and Innovative drug R&D center based on real-time high-throughput cell-based screening platform and large capacity compound library (Grant No.: 2013ZX09401003-002), and National Natural Science Funds of China (Grant No.: 81372502).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L Zhang or X Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Xin, S., Huang, M. et al. Determinants of Gefitinib toxicity in advanced non-small cell lung cancer (NSCLC): a pharmacogenomic study of metabolic enzymes and transporters. Pharmacogenomics J 17, 325–330 (2017). https://doi.org/10.1038/tpj.2016.31

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2016.31

This article is cited by

Search

Quick links