Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Pharmacogenetics of ABCB5, ABCC5 and RLIP76 and doxorubicin pharmacokinetics in Asian breast cancer patients

Abstract

This study investigated the impact of ABCB5, ABCC5 and RLIP76 polymorphisms on doxorubicin pharmacokinetics in Asian breast cancer patients (N=62). Direct sequencing was performed to screen for previously identified ABCC5 polymorphisms as well as polymorphisms in the exons and exon–intron boundaries of ABCB5 and RLIP76 genes. Genotype–phenotype correlations were analyzed using Mann–Whitney U-test. The homozygous variant allele at the ABCC5 g.+7161G>A (rs1533682) locus was significantly associated with higher doxorubicin clearance (g.+7161AA vs g.+7161GG, CL/BSA (Lh−1m−2): 30.34 (25.41–33.60) vs 22.46 (15.04–49.4), P=0.04). Homozygosity for the reference allele at the ABCC5 g.-1679T>A locus was associated with significantly higher doxorubicinol exposure (g.-1679TT vs g.-1679TA, AUC0-∞/dose/BSA (hm−5): 15.48 (6.18–67.17) vs 8.88 (3.68–21.71), P=0.0001). No significant influence of the three newly identified ABCB5 polymorphisms (c.2T>C, c.343A>G and c.1573G>A) on doxorubicin pharmacokinetics was observed. No polymorphisms were identified in the RLIP76 gene. These findings suggest that ABCC5 polymorphisms may explain partially the interpatient variability in doxorubicin disposition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Chang BK, Brenner DE, Gutman R . Cellular pharmacology of doxorubicinol alone and combined with verapamil in pancreatic cancer cell lines. Anticancer Res 1989; 9: 341–345.

    CAS  PubMed  Google Scholar 

  2. Olson RD, Mushlin PS, Brenner DE, Fleischer S, Cusack BJ, Chang BK et al. Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc Natl Acad Sci USA 1988; 85: 3585–3589.

    Article  CAS  Google Scholar 

  3. Boucek RJ, Olson RD, Brenner DE, Ogunbunmi EM, Inui M, Fleischer S . The major metabolite of doxorubicin is a potent inhibitor of membrane-associated ion pumps. A correlative study of cardiac muscle with isolated membrane fractions. J Biol Chem 1987; 262: 15851–15856.

    CAS  PubMed  Google Scholar 

  4. Sharom FJ . ABC multidrug transporters: structure, function and role in chemoresistance. Pharmacogenomics 2008; 9: 105–127.

    Article  CAS  Google Scholar 

  5. Bao L, Hazari S, Mehra S, Kaushal D, Moroz K, Dash S . Increased expression of P-glycoprotein and doxorubicin chemoresistance of metastatic breast cancer is regulated by miR-298. Am J Pathol 2012; 180: 2490–2503.

    Article  CAS  Google Scholar 

  6. Pajic M, Iyer JK, Kersbergen A, van der Burg E, Nygren AOH, Jonkers J et al. Moderate increase in Mdr1a/1b expression causes in vivo resistance to doxorubicin in a mouse model for hereditary breast cancer. Cancer Res 2009; 69: 6396–6404.

    Article  CAS  Google Scholar 

  7. Versantvoort CH, Broxterman HJ, Pinedo HM, de Vries EG, Feller N, Kuiper CM et al. Energy-dependent processes involved in reduced drug accumulation in multidrug-resistant human lung cancer cell lines without P-glycoprotein expression. Cancer Res 1992; 52: 17–23.

    CAS  PubMed  Google Scholar 

  8. Allen JD, Jackson SC, Schinkel AH . A mutation hot spot in the Bcrp1 (Abcg2) multidrug transporter in mouse cell lines selected for doxorubicin resistance. Cancer Res 2002; 62: 2294–2299.

    CAS  PubMed  Google Scholar 

  9. Riganti C, Miraglia E, Viarisio D, Costamagna C, Pescarmona G, Ghigo D et al. Nitric oxide reverts the resistance to doxorubicin in human colon cancer cells by inhibiting the drug efflux. Cancer Res 2005; 65: 516–525.

    CAS  PubMed  Google Scholar 

  10. Lal S, Sandanaraj E, Wong ZW, Ang PCS, Wong NS, Lee EJD et al. CBR1 and CBR3 pharmacogenetics and their influence on doxorubicin disposition in Asian breast cancer patients. Cancer Sci 2008; 99: 2045–2054.

    Article  CAS  Google Scholar 

  11. Lal S, Wong ZW, Jada SR, Xiang X, Chen Shu X, Ang PCS et al. Novel SLC22A16 polymorphisms and influence on doxorubicin pharmacokinetics in Asian breast cancer patients. Pharmacogenomics 2007; 8: 567–575.

    Article  CAS  Google Scholar 

  12. Lal S, Wong ZW, Sandanaraj E, Xiang X, Ang PCS, Lee EJD et al. Influence of ABCB1 and ABCG2 polymorphisms on doxorubicin disposition in Asian breast cancer patients. Cancer Sci 2008; 99: 816–823.

    Article  CAS  Google Scholar 

  13. Sandanaraj E, Lal S, Selvarajan V, Ooi LL, Wong ZW, Wong NS et al. PXR pharmacogenetics: association of haplotypes with hepatic CYP3A4 and ABCB1 messenger RNA expression and doxorubicin clearance in Asian breast cancer patients. Clin Cancer Res Off J Am Assoc Cancer Res 2008; 14: 7116–7126.

    Article  CAS  Google Scholar 

  14. Dean M, Allikmets R . Complete characterization of the human ABC gene family. J Bioenerg Biomembr 2001; 33: 475–479.

    Article  CAS  Google Scholar 

  15. Frank NY, Pendse SS, Lapchak PH, Margaryan A, Shlain D, Doeing C et al. Regulation of progenitor cell fusion by ABCB5 P-glycoprotein, a novel human ATP-binding cassette transporter. J Biol Chem 2003; 278: 47156–47165.

    Article  CAS  Google Scholar 

  16. Moitra K, Scally M, McGee K, Lancaster G, Gold B, Dean M . Molecular evolutionary analysis of ABCB5: the ancestral gene is a full transporter with potentially deleterious single nucleotide polymorphisms. PloS One 2011; 6: e16318.

    Article  Google Scholar 

  17. Frank NY, Margaryan A, Huang Y, Schatton T, Waaga-Gasser AM, Gasser M et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 2005; 65: 4320–4333.

    Article  CAS  Google Scholar 

  18. Kawanobe T, Kogure S, Nakamura S, Sato M, Katayama K, Mitsuhashi J et al. Expression of human ABCB5 confers resistance to taxanes and anthracyclines. Biochem Biophys Res Commun 2012; 418: 736–741.

    Article  CAS  Google Scholar 

  19. Yang JY, Ha S-A, Yang Y-S, Kim JW . p-Glycoprotein ABCB5 and YB-1 expression plays a role in increased heterogeneity of breast cancer cells: correlations with cell fusion and doxorubicin resistance. BMC Cancer 2010; 10: 388.

    Article  Google Scholar 

  20. Dean M, Annilo T . Evolution of the ATP-binding cassette (ABC) transporter superfamily in vertebrates. Annu Rev Genomics Hum Genet 2005; 6: 123–142.

    Article  CAS  Google Scholar 

  21. Borst P, Elferink RO . Mammalian ABC transporters in health and disease. Annu Rev Biochem 2002; 71: 537–592.

    Article  CAS  Google Scholar 

  22. Yoshida M, Suzuki T, Komiya T, Hatashita E, Nishio K, Kazuhiko N et al. Induction of MRP5 and SMRP mRNA by adriamycin exposure and its overexpression in human lung cancer cells resistant to adriamycin. Int J Cancer J Int Cancer 2001; 94: 432–437.

    Article  CAS  Google Scholar 

  23. Pratt S, Shepard RL, Kandasamy RA, Johnston PA, Perry W, Dantzig AH . The multidrug resistance protein 5 (ABCC5) confers resistance to 5-fluorouracil and transports its monophosphorylated metabolites. Mol Cancer Ther 2005; 4: 855–863.

    Article  CAS  Google Scholar 

  24. Sharma R, Singhal SS, Wickramarachchi D, Awasthi YC, Awasthi S . RLIP76 (RALBP1)-mediated transport of leukotriene C4 (LTC4) in cancer cells: implications in drug resistance. Int J Cancer J Int Cancer 2004; 112: 934–942.

    Article  CAS  Google Scholar 

  25. Awasthi S, Sharma R, Singhal SS, Zimniak P, Awasthi YC . RLIP76, a novel transporter catalyzing ATP-dependent efflux of xenobiotics. Drug Metab Dispos Biol Fate Chem 2002; 30: 1300–1310.

    Article  CAS  Google Scholar 

  26. Awasthi S, Singhal SS, Srivastava SK, Zimniak P, Bajpai KK, Saxena M et al. Adenosine triphosphate-dependent transport of doxorubicin, daunomycin, and vinblastine in human tissues by a mechanism distinct from the P-glycoprotein. J Clin Invest 1994; 93: 958–965.

    Article  CAS  Google Scholar 

  27. Awasthi S, Sharma R, Yang Y, Singhal SS, Pikula S, Bandorowicz-Pikula J et al. Transport functions and physiological significance of 76 kDa Ral-binding GTPase activating protein (RLIP76). Acta Biochim Pol 2002; 49: 855–867.

    CAS  PubMed  Google Scholar 

  28. Awasthi S, Singhal SS, Sharma R, Zimniak P, Awasthi YC . Transport of glutathione conjugates and chemotherapeutic drugs by RLIP76 (RALBP1): a novel link between G-protein and tyrosine kinase signaling and drug resistance. Int J Cancer J Int Cancer 2003; 106: 635–646.

    Article  CAS  Google Scholar 

  29. Singhal SS, Wickramarachchi D, Singhal J, Yadav S, Awasthi YC, Awasthi S . Determinants of differential doxorubicin sensitivity between SCLC and NSCLC. FEBS Lett 2006; 580: 2258–2264.

    Article  CAS  Google Scholar 

  30. Vatsyayan R, Chaudhary P, Lelsani PCR, Singhal P, Awasthi YC, Awasthi S et al. Role of RLIP76 in doxorubicin resistance in lung cancer. Int J Oncol 2009; 34: 1505–1511.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gwee PC, Tang K, Sew PH, Lee EJD, Chong SS, Lee CGL . Strong linkage disequilibrium at the nucleotide analogue transporter ABCC5 gene locus. Pharmacogenet Genomics 2005; 15: 91–104.

    Article  CAS  Google Scholar 

  32. Lal S, Mahajan A, Chen WN, Chowbay B . Pharmacogenetics of target genes across doxorubicin disposition pathway: a review. Curr Drug Metab 2010; 11: 115–128.

    Article  CAS  Google Scholar 

  33. Sauna ZE, Kimchi-Sarfaty C, Ambudkar SV, Gottesman MM . Silent polymorphisms speak: how they affect pharmacogenomics and the treatment of cancer. Cancer Res 2007; 67: 9609–9612.

    Article  CAS  Google Scholar 

  34. Conne B, Stutz A, Vassalli JD . The 3’ untranslated region of messenger RNA: a molecular “hotspot” for pathology? Nat Med 2000; 6: 637–641.

    Article  CAS  Google Scholar 

  35. Saito S, Iida A, Sekine A, Miura Y, Ogawa C, Kawauchi S et al. Identification of 779 genetic variations in eight genes encoding members of the ATP-binding cassette, subfamily C (ABCC/MRP/CFTR. J Hum Genet 2002; 47: 147–171.

    Article  CAS  Google Scholar 

  36. Oguri T, Achiwa H, Sato S, Bessho Y, Takano Y, Miyazaki M et al. The determinants of sensitivity and acquired resistance to gemcitabine differ in non-small cell lung cancer: a role of ABCC5 in gemcitabine sensitivity. Mol Cancer Ther 2006; 5: 1800–1806.

    Article  CAS  Google Scholar 

  37. Mourskaia AA, Amir E, Dong Z, Tiedemann K, Cory S, Omeroglu A et al. ABCC5 supports osteoclast formation and promotes breast cancer metastasis to bone. Breast Cancer Res BCR 2012; 14: R149.

    Article  CAS  Google Scholar 

  38. Zhu Y, Yu F, Jiao Y, Feng J, Tang W, Yao H et al. Reduced miR-128 in breast tumor-initiating cells induces chemotherapeutic resistance via Bmi-1 and ABCC5. Clin Cancer Res Off J Am Assoc Cancer Res 2011; 17: 7105–7115.

    Article  CAS  Google Scholar 

  39. Dazert P, Meissner K, Vogelgesang S, Heydrich B, Eckel L, Böhm M et al. Expression and localization of the multidrug resistance protein 5 (MRP5/ABCC5), a cellular export pump for cyclic nucleotides, in human heart. Am J Pathol 2003; 163: 1567–1577.

    Article  CAS  Google Scholar 

  40. Warren JB, Pons F, Brady AJ . Nitric oxide biology: implications for cardiovascular therapeutics. Cardiovasc Res 1994; 28: 25–30.

    Article  CAS  Google Scholar 

  41. Carvajal JA, Germain AM, Huidobro-Toro JP, Weiner CP . Molecular mechanism of cGMP-mediated smooth muscle relaxation. J Cell Physiol 2000; 184: 409–420.

    Article  CAS  Google Scholar 

  42. Flesch M, Kilter H, Cremers B, Laufs U, Südkamp M, Ortmann M et al. Effects of endotoxin on human myocardial contractility involvement of nitric oxide and peroxynitrite. J Am Coll Cardiol 1999; 33: 1062–1070.

    Article  CAS  Google Scholar 

  43. Maeda Y, Ikeda U, Oya K, Shimpo M, Ueno S, Urabe M et al. Adeno-associated virus-mediated transfer of endothelial nitric oxide synthase gene inhibits protein synthesis of rat ventricular cardiomyocytes. Cardiovasc Drugs Ther Spons Int Soc Cardiovasc Pharmacother 2001; 15: 19–24.

    Article  CAS  Google Scholar 

  44. Kool M, de Haas M, Scheffer GL, Scheper RJ, van Eijk MJ, Juijn JA et al. Analysis of expression of cMOAT (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res 1997; 57: 3537–3547.

    CAS  PubMed  Google Scholar 

  45. Sharma R, Gupta S, Singh SV, Medh RD, Ahmad H, LaBelle EF et al. Purification and characterization of dinitrophenylglutathione ATPase of human erythrocytes and its expression in other tissues. Biochem Biophys Res Commun 1990; 171: 155–161.

    Article  CAS  Google Scholar 

  46. Singhal SS, Sharma R, Gupta S, Ahmad H, Zimniak P, Radominska A et al. The anionic conjugates of bilirubin and bile acids stimulate ATP hydrolysis by S-(dinitrophenyl)glutathione ATPase of human erythrocyte. FEBS Lett 1991; 281: 255–257.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Medical Research Council (NMRC/0814/2003), Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Chowbay.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lal, S., Sutiman, N., Ooi, L. et al. Pharmacogenetics of ABCB5, ABCC5 and RLIP76 and doxorubicin pharmacokinetics in Asian breast cancer patients. Pharmacogenomics J 17, 337–343 (2017). https://doi.org/10.1038/tpj.2016.17

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2016.17

This article is cited by

Search

Quick links