Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Exome sequencing and array-based comparative genomic hybridisation analysis of preferential 6-methylmercaptopurine producers

Subjects

Abstract

Preferential conversion of azathioprine or 6-mercaptopurine into methylated metabolites is a major cause of thiopurine resistance. To seek potentially Mendelian causes of thiopurine hypermethylation, we recruited 12 individuals who exhibited extreme therapeutic resistance while taking azathioprine or 6-mercaptopurine and performed whole-exome sequencing (WES) and copy-number variant analysis by array-based comparative genomic hybridisation (aCGH). Exome-wide variant filtering highlighted four genes potentially associated with thiopurine metabolism (ENOSF1 and NFS1), transport (SLC17A4) or therapeutic action (RCC2). However, variants of each gene were found only in two or three patients, and it is unclear whether these genes could influence thiopurine hypermethylation. Analysis by aCGH did not identify any unusual or pathogenic copy-number variants. This suggests that if causative mutations for the hypermethylation phenotype exist they may be heterogeneous, occurring in several different genes, or they may lie within regulatory regions not captured by WES. Alternatively, hypermethylation may arise from the involvement of multiple genes with small effects. To test this hypothesis would require recruitment of large patient samples and application of genome-wide association studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Lennard L . The clinical pharmacology of 6-mercaptopurine. Eur J Clin Pharmacol 1992; 43: 329–339.

    Article  CAS  Google Scholar 

  2. Rosenberg JL, Wall AJ, Levin B, Binder HJ, Kirsner JB . A controlled trial of azathioprine in the management of chronic ulcerative colitis. Gastroenterology 1975; 69: 96–99.

    CAS  PubMed  Google Scholar 

  3. Lennard-Jones JE . Azathioprine and 6-mercaptopurine have a role in the treatment of Crohn's disease. Dig Dis Sci 1981; 26: 364–368.

    Article  CAS  Google Scholar 

  4. O'Donoghue DP, Dawson AM, Powell-Tuck J, Bown RL, Lennard-Jones JE . Double-blind withdrawal trial of azathioprine as maintenance treatment for Crohn's disease. Lancet 1978; 2: 955–957.

    Article  CAS  Google Scholar 

  5. Chouchana L, Narjoz C, Beaune P, Loriot MA, Roblin X . Review article: the benefits of pharmacogenetics for improving thiopurine therapy in inflammatory bowel disease. Aliment Pharmacol Ther 2012; 35: 15–36.

    Article  CAS  Google Scholar 

  6. Gearry RB, Barclay ML . Azathioprine and 6-mercaptopurine pharmacogenetics and metabolite monitoring in inflammatory bowel disease. J Gastroenterol Hepatol 2005; 20: 1149–1157.

    Article  CAS  Google Scholar 

  7. Smith M, Blaker P, Patel C, Marinaki A, Arenas M, Escuredo E et al. The impact of introducing thioguanine nucleotide monitoring into an inflammatory bowel disease clinic. Int J Clin Pract 2013; 67: 161–169.

    Article  CAS  Google Scholar 

  8. van Egmond R, Chin P, Zhang M, Sies CW, Barclay ML . High TPMT enzyme activity does not explain drug resistance due to preferential 6-methylmercaptopurine production in patients on thiopurine treatment. Aliment Pharmacol Ther 2012; 35: 1181–1189.

    Article  CAS  Google Scholar 

  9. Chouchana L, Roche D, Jian R, Beaune P, Loriot MA . Poor response to thiopurine in inflammatory bowel disease: how to overcome therapeutic resistance? Clin Chem 2013; 59: 1023–1026.

    Article  CAS  Google Scholar 

  10. Roberts RL, Gearry RB, Barclay ML, Kennedy MA . IMPDH1 promoter mutations in a patient exhibiting azathioprine resistance. Pharmacogenomics J 2006; 7: 312–317.

    Article  Google Scholar 

  11. Haglund S, Almer S, Peterson C, Soderman J . Gene expression and thiopurine metabolite profiling in inflammatory bowel disease - novel clues to drug targets and disease mechanisms? PloS One 2013; 8: e56989.

    Article  CAS  Google Scholar 

  12. Price MJ, Carson AR, Murray SS, Phillips T, Janel L, Tisch R et al. First pharmacogenomic analysis using whole exome sequencing to identify novel genetic determinants of clopidogrel response variability: results of the Genotype Information and Functional Testing (GIFT) exome study. J Am Coll Cardiol 2012; 59: E9.

    Article  Google Scholar 

  13. Tammiste A, Jiang T, Fischer K, Mägi R, Krjutškov K, Pettai K et al. Whole-exome sequencing identifies a polymorphism in the BMP5 gene associated with SSRI treatment response in major depression. J Psychopharmacol 2013; 27: 915–920.

    Article  CAS  Google Scholar 

  14. Tiwari AK, Need AC, Lohoff FW, Zai CC, Chowdhury NI, Muller DJ et al. Exome sequence analysis of Finnish patients with clozapine-induced agranulocytosis. Mol Psychiatry 2014; 19: 403–405.

    Article  CAS  Google Scholar 

  15. Wagle N, Grabiner BC, Van Allen EM, Hodis E, Jacobus S, Supko JG et al. Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discov 2014; 4: 546–553.

    Article  Google Scholar 

  16. Sies C, Florkowski C, George P, Gearry R, Barclay M, Harraway J et al. Measurement of thiopurine methyltransferase activity guides dose-initiation and prevents toxicity from azathioprine. N Z Med J 2005; 118: U1324.

    PubMed  Google Scholar 

  17. McLeod HL, Lin JS, Scott EP, Pui CH, Evans WE . Thiopurine methyltransferase activity in American white subjects and black subjects. Clin Pharm Ther 1994; 55: 15–20.

    Article  CAS  Google Scholar 

  18. Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754–1760.

    Article  CAS  Google Scholar 

  19. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009; 25: 2078–2079.

    Article  Google Scholar 

  20. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20: 1297–1303.

    Article  CAS  Google Scholar 

  21. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011; 43: 491–498.

    Article  CAS  Google Scholar 

  22. Blankenberg D, Kuster GV, Coraor N, Ananda G, Lazarus R, Mangan M et al. Galaxy: a web-based genome analysis tool for experimentalists. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA (eds). Current Protocols in Molecular Biology. John Wiley & Sons, Inc.: New Jersey, USA, 2010 pp 19.10.1–19.10.21.

    Google Scholar 

  23. Giardine B, Riemer C, Hardison RC, Burhans R, Elnitski L, Shah P et al. Galaxy: a platform for interactive large-scale genome analysis. Genome Res 2005; 15: 1451–1455.

    Article  CAS  Google Scholar 

  24. Goecks J, Nekrutenko A, Taylor J . Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol 2010; 11: 2010–2011.

    Article  Google Scholar 

  25. Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA et al. A map of human genome variation from population-scale sequencing. Nature 2010; 467: 1061–1073.

    Article  Google Scholar 

  26. Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE et al. An integrated map of genetic variation from 1,092 human genomes. Nature 2012; 491: 56–65.

    Article  Google Scholar 

  27. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 2009; 461: 272–276.

    Article  CAS  Google Scholar 

  28. Kircher M, Witten DM, Jain P, O'Roak BJ, Cooper GM, Shendure J . A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet 2014; 46: 310–315.

    Article  CAS  Google Scholar 

  29. Cooper GM, Stone EA, Asimenos G, Green ED, Batzoglou S, Sidow A . Distribution and intensity of constraint in mammalian genomic sequence. Genome Res 2005; 15: 901–913.

    Article  CAS  Google Scholar 

  30. Cooper GM, Goode DL, Ng SB, Sidow A, Bamshad MJ, Shendure J et al. Single-nucleotide evolutionary constraint scores highlight disease-causing mutations. Nat Methods 2010; 7: 250–251.

    Article  CAS  Google Scholar 

  31. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248–249.

    Article  CAS  Google Scholar 

  32. Zaza G, Cheok M, Krynetskaia N, Thorn C, Stocco G, Hebert JM et al. Thiopurine pathway. Pharmacogenet Genomics 2010; 20: 573–574.

    Article  CAS  Google Scholar 

  33. Rosmarin D, Palles C, Pagnamenta A, Kaur K, Pita G, Martin M et al. A candidate gene study of capecitabine-related toxicity in colorectal cancer identifies new toxicity variants at DPYD and a putative role for ENOSF1 rather than TYMS. Gut 2014; 64: 111–120.

    Article  Google Scholar 

  34. Karas-Kuzelicki N, Milek M, Mlinaric-Rascan I . MTHFR and TYMS genotypes influence TPMT activity and its differential modulation in males and females. Clin Biochem 2010; 43: 37–42.

    Article  CAS  Google Scholar 

  35. Milek M, Smid A, Tamm R, Kuzelicki NK, Metspalu A, Mlinaric-Rascan I . Post-translational stabilization of thiopurine S-methyltransferase by S-adenosyl-L-methionine reveals regulation of TPMT*1 and *3C allozymes. Biochem Pharmacol 2012; 83: 969–976.

    Article  CAS  Google Scholar 

  36. Smith MA, Marinaki AM, Arenas M, Shobowale-Bakre M, Lewis CM, Ansari A et al. Novel pharmacogenetic markers for treatment outcome in azathioprine-treated inflammatory bowel disease. Aliment Pharmacol Ther 2009; 30: 375–384.

    Article  CAS  Google Scholar 

  37. Stocco G, Yang W, Crews KR, Thierfelder WE, Decorti G, Londero M et al. PACSIN2 polymorphism influences TPMT activity and mercaptopurine-related gastrointestinal toxicity. Hum Mol Genet 2012; 21: 4793–4804.

    Article  CAS  Google Scholar 

  38. Blaker PA, Peters van Ton AM, Arenas Hernandez M, Smith MA, Smith CH, Irving P et al. PWE-234: optimising the response to thiopurine therapy: a search for novel explanations for thiopurine hypermethylation. Gut 2012; 61: A393.

    Article  Google Scholar 

  39. Duley JA, Somogyi AA, Martin JH . The future of thiopurine pharmacogenomics. Pharmacogenomics 2012; 13: 1549–1552.

    Article  CAS  Google Scholar 

  40. Hindorff LA, MacArthur J, Morales J, Junkins HA, Hall PN, Klemm AK et al. A Catalog of Published Genome-Wide Association Studies. 2014 (accessed 18 August 2014). Available from www.genome.gov/gwastudies.

  41. Czaja AJ . Autoimmune hepatitis – approach to diagnosis. MedGenMed 2006; 82: 55.

    Google Scholar 

  42. MacDonald JR, Ziman R, Yuen RKC, Feuk L, Scherer SW . The database of genomic variants: a curated collection of structural variation in the human genome. Nucleic Acids Res 2014; 42: D986–D992.

    Article  CAS  Google Scholar 

  43. Preacher KJ . Calculation for the chi-square test: an interactive calculation tool for chi-square tests of goodness of fit and independence (computer software), 2001. Available from http://quantpsy.org.

  44. The UniProt Consortium. Activities at the Universal Protein Resource (UniProt). Nucleic Acids Res 2014; 42: D191–D198.

    Article  Google Scholar 

  45. He Y, Hoskins JM, McLeod HL . Copy number variants in pharmacogenetic genes. Trends Mol Med 2011; 17: 244–251.

    Article  CAS  Google Scholar 

  46. Frayne J, Hall L . The gene for the human tMDC I sperm surface protein is non-functional: implications for its proposed role in mammalian sperm-egg recognition. Biochem J 1998; 334: 171–176.

    Article  CAS  Google Scholar 

  47. Matimba A, Li F, Livshits A, Cartwright CS, Scully S, Fridley BL et al. Thiopurine pharmacogenomics: association of SNPs with clinical response and functional validation of candidate genes. Pharmacogenomics 2014; 15: 433–447.

    Article  CAS  Google Scholar 

  48. Blaker PA, Arenas-Hernandez M, Smith MA, Shobowale-Bakre EA, Fairbanks L, Irving PM et al. Mechanism of allopurinol induced TPMT inhibition. Biochem Pharmacol 2013; 86: 539–547.

    Article  CAS  Google Scholar 

  49. Karas-Kuzelicki N, Jazbec J, Milek M, Mlinaric-Rascan I . Heterozygosity at the TPMT gene locus, augmented by mutated MTHFR gene, predisposes to 6-MP related toxicities in childhood ALL patients. Leukemia 2009; 23: 971–974.

    Article  CAS  Google Scholar 

  50. Marelja Z, Stöcklein W, Nimtz M, Leimkühler S . A novel role for human Nfs1 in the cytoplasm: Nfs1 acts as a sulfur donor for MOCS3, a protein involved in molybdenum cofactor biosynthesis. J Biol Chem 2008; 283: 25178–25185.

    Article  CAS  Google Scholar 

  51. Hille R . The mononuclear molybdenum enzymes. Chem Rev 1996; 96: 2757–2816.

    Article  CAS  Google Scholar 

  52. Johnson JL, Waud WR, Rajagopalan KV, Duran M, Beemer FA, Wadman SK . Inborn errors of molybdenum metabolism: combined deficiencies of sulfite oxidase and xanthine dehydrogenase in a patient lacking the molybdenum cofactor. Proc Natl Acad Sci USA 1980; 77: 3715–3719.

    Article  CAS  Google Scholar 

  53. Togawa N, Miyaji T, Izawa S, Omote H, Moriyama Y . A Na+-phosphate cotransporter homologue (SLC17A4 protein) is an intestinal organic anion exporter. Am J Physiol Cell Physiol 2012; 302: C1652–C1660.

    Article  CAS  Google Scholar 

  54. Humphries JD, Byron A, Bass MD, Craig SE, Pinney JW, Knight D et al. Proteomic analysis of integrin-associated complexes identifies RCC2 as a dual regulator of Rac1 and Arf6. Sci Signal 2009; 2: ra51.

    Article  Google Scholar 

  55. Bronk JR, Lister N, Shaw MI . Transport and metabolism of 6-thioguanine and 6-mercaptopurine in mouse small intestine. Clin Sci (Lond) 1988; 74: 629–638.

    Article  CAS  Google Scholar 

  56. Drögemöller BI, Wright GE, Niehaus DJ, Emsley R, Warnich L . Next-generation sequencing of pharmacogenes: a critical analysis focusing on schizophrenia treatment. Pharmacogenet Genomics 2013; 23: 666–674.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Jim and Mary Carney Charitable Trust and University of Otago Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Kennedy.

Ethics declarations

Competing interests

The authors declare no conflict of interst

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chua, E., Cree, S., Barclay, M. et al. Exome sequencing and array-based comparative genomic hybridisation analysis of preferential 6-methylmercaptopurine producers. Pharmacogenomics J 15, 414–421 (2015). https://doi.org/10.1038/tpj.2015.9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2015.9

Search

Quick links