Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Common variants associated with changes in levels of circulating free fatty acids after administration of glucose–insulin–potassium (GIK) therapy in the IMMEDIATE trial

Abstract

Glucose–insulin–potassium (GIK) therapy may promote a shift from oxygen-wasteful free fatty acid (FFA) metabolism to glycolysis, potentially reducing myocardial damage during ischemia. Genetic variation associated with FFA response to GIK was investigated in an IMMEDIATE (Immediate Myocardial Metabolic Enhancement During Initial Assessment and Treatment in Emergency care) sub-study (n=117). In patients with confirmed acute coronary syndromes, associations between 132 634 variants and 12-h circulating FFA response were assessed. Between initial and 6-h measurements, three LINGO2 variants were associated with increased levels of total FFA (P-value for 2 degree of freedom test, P2df 5.51 × 10−7). Lead LINGO2 single-nucleotide polymorphism, rs12003487, was nominally associated with reduced 30-day ejection fraction (P2df=0.03). Several LINGO2 signals were linked to alterations in epigenetic profile and gene expression levels. Between 6 and 12 h, rs7017336 nearest to IMPA1/FABP12 showed an association with decreased saturated FFAs (P2df=5.47 × 10−7). Nearest to DUSP26, rs7464104 was associated with a decrease in unsaturated FFAs (P2df=5.51 × 10−7). Genetic variation may modify FFA response to GIK, potentially conferring less beneficial outcomes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. van der Vusse GJ, Glatz JF, Stam HC, Reneman RS . Fatty acid homeostasis in the normoxic and ischemic heart. Physiol Rev 1992; 72: 881–940.

    Article  CAS  PubMed  Google Scholar 

  2. Gertz EW, Wisneski JA, Stanley WC, Neese RA . Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments. J Clin Invest 1988; 82: 2017–2025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Depre C, Vanoverschelde JL, Taegtmeyer H . Glucose for the heart. Circulation 1999; 99: 578–588.

    Article  CAS  PubMed  Google Scholar 

  4. Lee L, Horowitz J, Frenneaux M . Metabolic manipulation in ischaemic heart disease, a novel approach to treatment. Eur Heart J 2004; 25: 634–641.

    Article  CAS  PubMed  Google Scholar 

  5. Lopaschuk GD, Wambolt RB, Barr RL . An imbalance between glycolysis and glucose oxidation is a possible explanation for the detrimental effects of high levels of fatty acids during aerobic reperfusion of ischemic hearts. J Pharmacol Exp Ther 1993; 264: 135–144.

    CAS  PubMed  Google Scholar 

  6. Heusch G . Hibernating myocardium. Physiol Rev 1998; 78: 1055–1085.

    Article  CAS  PubMed  Google Scholar 

  7. Steinberg HO, Tarshoby M, Monestel R, Hook G, Cronin J, Johnson A et al. Elevated circulating free fatty acid levels impair endothelium-dependent vasodilation. J Clin Invest 1997; 100: 1230–1239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Steinberg HO, Paradisi G, Hook G, Crowder K, Cronin J, Baron AD . Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes 2000; 49: 1231–1238.

    Article  CAS  PubMed  Google Scholar 

  9. Apstein CS, Gravino FN, Haudenschild CC . Determinants of a protective effect of glucose and insulin on the ischemic myocardium. Effects on contractile function, diastolic compliance, metabolism, and ultrastructure during ischemia and reperfusion. Circ Res 1983; 52: 515–526.

    Article  CAS  PubMed  Google Scholar 

  10. Cave AC, Ingwall JS, Friedrich J, Liao R, Saupe KW, Apstein CS et al. ATP synthesis during low-flow ischemia: influence of increased glycolytic substrate. Circulation 2000; 101: 2090–2096.

    Article  CAS  PubMed  Google Scholar 

  11. Eberli FR, Weinberg EO, Grice WN, Horowitz GL, Apstein CS . Protective effect of increased glycolytic substrate against systolic and diastolic dysfunction and increased coronary resistance from prolonged global underperfusion and reperfusion in isolated rabbit hearts perfused with erythrocyte suspensions. Circ Res 1991; 68: 466–481.

    Article  CAS  PubMed  Google Scholar 

  12. Vanoverschelde JL, Janier MF, Bakke JE, Marshall DR, Bergmann SR . Rate of glycolysis during ischemia determines extent of ischemic injury and functional recovery after reperfusion. Am J Physiol 1994; 267: H1785–H1794.

    CAS  PubMed  Google Scholar 

  13. Selker HP, Beshansky JR, Griffith JL, D'Agostino RB, Massaro JM, Udelson JE et al. Study design for the Immediate Myocardial Metabolic Enhancement During Initial Assessment and Treatment in Emergency Care (IMMEDIATE) Trial: A double-blind randomized controlled trial of intravenous glucose, insulin, and potassium for acute coronary syndromes in emergency medical services. Am Heart J 2012; 163: 315–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Selker HP, Beshansky JR, Sheehan PR, Massaro JM, Griffith JL, D'Agostino RB et al. Out-of-hospital administration of intravenous glucose-insulin-potassium in patients with suspected acute coronary syndromes: the IMMEDIATE randomized controlled trial. JAMA 2012; 307: 1925–1933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lemaitre RN, Tanaka T, Tang W, Manichaikul A, Foy M, Kabagambe EK et al. Genetic loci associated with plasma phospholipid n-3 fatty acids: a meta-analysis of genome-wide association studies from the CHARGE Consortium. PLoS Genet 2011; 7: e1002193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wu JH, Lemaitre RN, Manichaikul A, Guan W, Tanaka T, Foy M et al. Genome-wide association study identifies novel loci associated with concentrations of four plasma phospholipid fatty acids in the de novo lipogenesis pathway: results from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium. Circ Cardiovasc Genet 2013; 6: 171–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ellis KL, Zhou Y, Beshansky JR, Ainehsazan E, Yang Y, Selker HP et al. Genetic variation at glucose and insulin trait loci and response to glucose-insulin-potassium (GIK) therapy: the IMMEDIATE trial. Pharmacogenomics J 2014; 15: 55–62.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Ellis KL, Zhou Y, Beshansky JR, Ainehsazan E, Selker HP, Cupples LA et al. Genetic modifiers of response to glucose-insulin-potassium (GIK) infusion in acute coronary syndromes and associations with clinical outcomes in the IMMEDIATE Trial. Pharmacogenomics J 2015; 15: 488–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krebs M, Stingl H, Nowotny P, Weghuber D, Bischof M, Waldhausl W et al. Prevention of in vitro lipolysis by tetrahydrolipstatin. Clin Chem 2000; 46: 950–954.

    CAS  PubMed  Google Scholar 

  20. Voight BF, Kang HM, Ding J, Palmer CD, Sidore C, Chines PS et al. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS Genet 2012; 8: e1002793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grove ML, Yu B, Cochran BJ, Haritunians T, Bis JC, Taylor KD et al. Best practices and joint calling of the HumanExome BeadChip: The CHARGE Consortium. PLoS One 2013; 8: e68095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D . Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904–909.

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Ji L . Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. Heredity (Edinb) 2005; 95: 221–227.

    Article  CAS  Google Scholar 

  24. Zhang W, Gamazon ER, Zhang X, Konkashbaev A, Liu C, Szilagyi KL et al. SCAN database: facilitating integrative analyses of cytosine modification and expression QTL. Database (Oxford) 2015; 2015, e-pub ahead of print March 27 2015. doi: 10.1093/database/bav025.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Chen EY, Tan CM, Kou Y, Duan Q, Wang Z, Meirelles GV et al. Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinformatics 2013; 14: 128.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature 2012; 489: 57–74.

    Article  Google Scholar 

  27. Jonassen AK, Aasum E, Riemersma RA, Mjos OD, Larsen TS . Glucose-insulin-potassium reduces infarct size when administered during reperfusion. Cardiovasc Drugs Ther 2000; 14: 615–623.

    Article  CAS  PubMed  Google Scholar 

  28. Opie LH, Bruyneel K, Owen P . Effects of glucose, insulin and potassium infusion on tissue metabolic changes within first hour of myocardial infarction in the baboon. Circulation 1975; 52: 49–57.

    Article  CAS  PubMed  Google Scholar 

  29. Stanley AW Jr, Moraski RE, Russell RO, Rogers WJ, Mantle JA, Kreisberg RA et al. Effects of glucose-insulin-potassium on myocardial substrate availability and utilization in stable coronary artery disease. Studies on myocardial carbohydrate, lipid and oxygen arterial-coronary sinus differences in patients with coronary artery disease. Am J Cardiol 1975; 36: 929–937.

    Article  PubMed  Google Scholar 

  30. Rogers WJ, Stanley AW Jr, Breinig JB, Prather JW, McDaniel HG, Moraski RE et al. Reduction of hospital mortality rate of acute myocardial infarction with glucose-insulin-potassium infusion. Am Heart J 1976; 92: 441–454.

    Article  CAS  PubMed  Google Scholar 

  31. Opie LH, Knuuti J . The adrenergic-fatty acid load in heart failure. J Am Coll Cardiol 2009; 54: 1637–1646.

    Article  CAS  PubMed  Google Scholar 

  32. Ackerman L, Freeman ML, Pacold I, Barnes WE, Johnson B, Reid RW et al. Effect of acute postinfusion lipemia and free fatty acids on myocardial contractility: assessment with radionuclide ventriculography. Eur J Nucl Med 1986; 12: 201–204.

    Article  CAS  PubMed  Google Scholar 

  33. Nielsen R, Norrelund H, Kampmann U, Kim WY, Ringgaard S, Schar M et al. Failing heart of patients with type 2 diabetes mellitus can adapt to extreme short-term increases in circulating lipids and does not display features of acute myocardial lipotoxicity. Circ Heart Fail 2013; 6: 845–852.

    Article  CAS  PubMed  Google Scholar 

  34. Havmoeller R, Reinier K, Teodorescu C, Ahmadi N, Kwok D, Uy-Evanado A et al. Elevated plasma free fatty acids are associated with sudden death: a prospective community-based evaluation at the time of cardiac arrest. Heart Rhythm 2014; 11: 691–696.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Williams MJ, Almen MS, Fredriksson R, Schioth HB . What model organisms and interactomics can reveal about the genetics of human obesity. Cell Mol Life Sci 2012; 69: 3819–3834.

    Article  CAS  PubMed  Google Scholar 

  36. Vilarino-Guell C, Wider C, Ross OA, Jasinska-Myga B, Kachergus J, Cobb SA et al. LINGO1 and LINGO2 variants are associated with essential tremor and Parkinson disease. Neurogenetics 2010; 11: 401–408.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wu YW, Prakash KM, Rong TY, Li HH, Xiao Q, Tan LC et al. Lingo2 variants associated with essential tremor and Parkinson's disease. Hum Genet 2011; 129: 611–615.

    Article  CAS  PubMed  Google Scholar 

  38. Vuillaume ML, Naudion S, Banneau G, Diene G, Cartault A, Cailley D et al. New candidate loci identified by array-CGH in a cohort of 100 children presenting with syndromic obesity. Am J Med Genet A 2014; 164A: 1965–1975.

    Article  PubMed  Google Scholar 

  39. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU et al. Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 2010; 42: 937–948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Voight BF, Scott LJ, Steinthorsdottir V, Morris AP, Dina C, Welch RP et al. Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis. Nat Genet 2010; 42: 579–589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pinent M, Hackl H, Burkard TR, Prokesch A, Papak C, Scheideler M et al. Differential transcriptional modulation of biological processes in adipocyte triglyceride lipase and hormone-sensitive lipase-deficient mice. Genomics 2008; 92: 26–32.

    Article  CAS  PubMed  Google Scholar 

  42. Hansson O, Donsmark M, Ling C, Nevsten P, Danfelter M, Andersen JL et al. Transcriptome and proteome analysis of soleus muscle of hormone-sensitive lipase-null mice. J Lipid Res 2005; 46: 2614–2623.

    Article  CAS  PubMed  Google Scholar 

  43. Albert JS, Yerges-Armstrong LM, Horenstein RB, Pollin TI, Sreenivasan UT, Chai S et al. Null mutation in hormone-sensitive lipase gene and risk of type 2 diabetes. N Engl J Med 2014; 370: 2307–2315.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Smathers RL, Petersen DR . The human fatty acid-binding protein family: evolutionary divergences and functions. Hum Genomics 2011; 5: 170–191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu RZ, Li X, Godbout R . A novel fatty acid-binding protein (FABP) gene resulting from tandem gene duplication in mammals: transcription in rat retina and testis. Genomics 2008; 92: 436–445.

    Article  CAS  PubMed  Google Scholar 

  46. Xu A, Wang Y, Xu JY, Stejskal D, Tam S, Zhang J et al. Adipocyte fatty acid-binding protein is a plasma biomarker closely associated with obesity and metabolic syndrome. Clin Chem 2006; 52: 405–413.

    Article  CAS  PubMed  Google Scholar 

  47. Xu A, Tso AW, Cheung BM, Wang Y, Wat NM, Fong CH et al. Circulating adipocyte-fatty acid binding protein levels predict the development of the metabolic syndrome: a 5-year prospective study. Circulation 2007; 115: 1537–1543.

    Article  CAS  PubMed  Google Scholar 

  48. Yeung DC, Xu A, Cheung CW, Wat NM, Yau MH, Fong CH et al. Serum adipocyte fatty acid-binding protein levels were independently associated with carotid atherosclerosis. Arterioscler Thromb Vasc Biol 2007; 27: 1796–1802.

    Article  CAS  PubMed  Google Scholar 

  49. Tso AW, Xu A, Sham PC, Wat NM, Wang Y, Fong CH et al. Serum adipocyte fatty acid binding protein as a new biomarker predicting the development of type 2 diabetes: a 10-year prospective study in a Chinese cohort. Diabetes Care 2007; 30: 2667–2672.

    Article  CAS  PubMed  Google Scholar 

  50. Ota H, Furuhashi M, Ishimura S, Koyama M, Okazaki Y, Mita T et al. Elevation of fatty acid-binding protein 4 is predisposed by family history of hypertension and contributes to blood pressure elevation. Am J Hypertens 2012; 25: 1124–1130.

    Article  CAS  PubMed  Google Scholar 

  51. Fuseya T, Furuhashi M, Yuda S, Muranaka A, Kawamukai M, Mita T et al. Elevation of circulating fatty acid-binding protein 4 is independently associated with left ventricular diastolic dysfunction in a general population. Cardiovasc Diabetol 2014; 13: 126.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Tuncman G, Erbay E, Hom X, De Vivo I, Campos H, Rimm EB et al. A genetic variant at the fatty acid-binding protein aP2 locus reduces the risk for hypertriglyceridemia, type 2 diabetes, and cardiovascular disease. Proc Natl Acad Sci USA 2006; 103: 6970–6975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Damcott CM, Moffett SP, Feingold E, Barmada MM, Marshall JA, Hamman RF et al. Genetic variation in fatty acid-binding protein-4 and peroxisome proliferator-activated receptor gamma interactively influence insulin sensitivity and body composition in males. Metabolism 2004; 53: 303–309.

    Article  CAS  PubMed  Google Scholar 

  54. Khalyfa A, Bhushan B, Hegazi M, Kim J, Kheirandish-Gozal L, Bhattacharjee R et al. Fatty-acid binding protein 4 gene variants and childhood obesity: potential implications for insulin sensitivity and CRP levels. Lipids Health Dis 2010; 9: 18.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Wang J, Tang J, Wang B, Song J, Liu J, Wei Z et al. FABP4: a novel candidate gene for polycystic ovary syndrome. Endocrine 2009; 36: 392–396.

    Article  CAS  PubMed  Google Scholar 

  56. Toker L, Bersudsky Y, Plaschkes I, Chalifa-Caspi V, Berry GT, Buccafusca R et al. Inositol-related gene knockouts mimic lithium's effect on mitochondrial function. Neuropsychopharmacology 2014; 39: 319–328.

    Article  CAS  PubMed  Google Scholar 

  57. Daniele G, Eldor R, Merovci A, Clarke GD, Xiong J, Tripathy D et al. Chronic reduction of plasma free fatty acid improves mitochondrial function and whole-body insulin sensitivity in obese and type 2 diabetic individuals. Diabetes 2014; 63: 2812–2820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Vasudevan SA, Skoko J, Wang K, Burlingame SM, Patel PN, Lazo JS et al. MKP-8, a novel MAPK phosphatase that inhibits p38 kinase. Biochem Biophys Res Commun 2005; 330: 511–518.

    Article  CAS  PubMed  Google Scholar 

  59. Takagaki K, Shima H, Tanuma N, Nomura M, Satoh T, Watanabe M et al. Characterization of a novel low-molecular-mass dual specificity phosphatase-4 (LDP-4) expressed in brain. Mol Cell Biochem 2007; 296: 177–184.

    Article  CAS  PubMed  Google Scholar 

  60. Hu Y, Mivechi NF . Association and regulation of heat shock transcription factor 4b with both extracellular signal-regulated kinase mitogen-activated protein kinase and dual-specificity tyrosine phosphatase DUSP26. Mol Cell Biol 2006; 26: 3282–3294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang JY, Lin CH, Yang CH, Tan TH, Chen YR . Biochemical and biological characterization of a neuroendocrine-associated phosphatase. J Neurochem 2006; 98: 89–101.

    Article  CAS  PubMed  Google Scholar 

  62. Li CJ, Lv L, Li H, Yu DM . Cardiac fibrosis and dysfunction in experimental diabetic cardiomyopathy are ameliorated by alpha-lipoic acid. Cardiovasc Diabetol 2012; 11: 73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Esposito G, Prasad SV, Rapacciuolo A, Mao L, Koch WJ, Rockman HA . Cardiac overexpression of a G(q) inhibitor blocks induction of extracellular signal-regulated kinase and c-Jun NH(2)-terminal kinase activity in in vivo pressure overload. Circulation 2001; 103: 1453–1458.

    Article  CAS  PubMed  Google Scholar 

  64. Purcell NH, Wilkins BJ, York A, Saba-El-Leil MK, Meloche S, Robbins J et al. Genetic inhibition of cardiac ERK1/2 promotes stress-induced apoptosis and heart failure but has no effect on hypertrophy in vivo. Proc Natl Acad Sci USA 2007; 104: 14074–14079.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Haq S, Choukroun G, Lim H, Tymitz KM, del Monte F, Gwathmey J et al. Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 2001; 103: 670–677.

    Article  CAS  PubMed  Google Scholar 

  66. Kerkela R, Force T . p38 mitogen-activated protein kinase: a future target for heart failure therapy? J Am Coll Cardiol 2006; 48: 556–558.

    Article  PubMed  Google Scholar 

  67. Wang Y . Mitogen-activated protein kinases in heart development and diseases. Circulation 2007; 116: 1413–1423.

    Article  CAS  PubMed  Google Scholar 

  68. Marber MS, Rose B, Wang Y . The p38 mitogen-activated protein kinase pathway—a potential target for intervention in infarction, hypertrophy, and heart failure. J Mol Cell Cardiol 2011; 51: 485–490.

    Article  CAS  PubMed  Google Scholar 

  69. Bi L, Chiang JY, Ding WX, Dunn W, Roberts B, Li T . Saturated fatty acids activate ERK signaling to downregulate hepatic sortilin 1 in obese and diabetic mice. J Lipid Res 2013; 54: 2754–2762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D et al. Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes 1999; 48: 1270–1274.

    Article  CAS  PubMed  Google Scholar 

  71. Listenberger LL, Ory DS, Schaffer JE . Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J Biol Chem 2001; 276: 14890–14895.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge William S Harris, Department of Internal Medicine, Sanford School of Medicine, University of South Dakota and OmegaQuant Analytics, Sioux Falls, SD, USA for his input and expertise regarding the interpretation of the results reported in this study. We would also like to offer our appreciation to all IMMEDIATE Genetic Ancillary Study participants. The Genetic Ancillary Study was funded by the National Institutes of Health (NIH) grant from National Heart, Lung and Blood Institute (NHLBI; R01HL090997). This work was also supported by National Center for Research Resources Grant Number UL1RR025752, now the National Center for Advancing Translational Sciences, NIH Grant Number Ul1 TR000073. The IMMEDIATE Trial was funded by the NIH cooperative agreement from NHLBI (U01HL077821, U01HL077823, and U01HL077826).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Peter.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ellis, K., Zhou, Y., Rodriguez-Murillo, L. et al. Common variants associated with changes in levels of circulating free fatty acids after administration of glucose–insulin–potassium (GIK) therapy in the IMMEDIATE trial. Pharmacogenomics J 17, 76–83 (2017). https://doi.org/10.1038/tpj.2015.84

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2015.84

This article is cited by

Search

Quick links