Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

CYP2C9, CYP2C19, ABCB1 genetic polymorphisms and phenytoin plasma concentrations in Mexican-Mestizo patients with epilepsy

Abstract

We aimed to explore the possible influence of CYP2C9 (*2, *3 and IVS8-109 A>T), CYP2C19 (*2, *3 and *17) and ABCB1 (1236C>T, 2677G>A/T and 3435C>T) on phenytoin (PHT) plasma concentrations in 64 Mexican Mestizo (MM) patients with epilepsy currently treated with PHT in mono- (n=25) and polytherapy (n=39). Genotype and allele frequencies of these variants were also estimated in 300 MM healthy volunteers. Linear regression models were used to assess associations between the dependent variables (PHT plasma concentration and dose-corrected PHT concentration) with independent variables (CYP2C9, CYP2C19 and ABCB1 genotypes, ABCB1 haplotypes, age, sex, weight, and polytherapy). In multivariate models, CYP2C9 IVS8-109 T was significantly associated with higher PHT plasma concentrations (t(64)=2.27; P=0.03). Moreover, this allele was more frequent in the supratherapeutic group as compared with the subtherapeutic group (0.13 versus 0.03, respectively; P=0.05, Fisher's exact test). Results suggest that CYP2C9 IVS8-109 T allele may decrease CYP2C9 enzymatic activity on PHT. More research is needed to confirm findings.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Ngugi AK, Bottomley C, Kleinschmidt I, Sander JW, Newton CR . Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia 2010; 51: 883–890.

    Article  PubMed  PubMed Central  Google Scholar 

  2. García PF, Millán R, Peñaloza Y . Epidemiología clínica de la epilepsia. Rev Mex Neuroci 2010; 11: 82–102.

    Google Scholar 

  3. Quet F, Preux PM, Huerta M, Ramirez R, Abad T, Fragoso G et al. Determining the burden of neurological disorders in populations living in tropical areas: who would be questioned? Lessons from a Mexican rural community. Neuroepidemiology 2011; 36: 194–203.

    Article  PubMed  Google Scholar 

  4. Martínez-Juárez IE, López-Zapata R, Gómez-Arias B, Bravo-Armenta E, Romero-Ocampo L, Estévez-Cruz Z et al. Epilepsia farmacorresistente: uso de la nueva definición y factores de riesgo relacionados. Estudio en población mexicana de un centro de tercer nivel. Rev Neurol 2012; 54: 159–166.

    PubMed  Google Scholar 

  5. Thorn CF, Whirl-Carrillo M, Leeder JS, Klein TE, Altman RB . PharmGKB summary: phenytoin pathway. Pharmacogenet Genomics 2012; 22: 466–470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seger D 1990 Phenytoin and other anticonvulsants. In: Haddad LM, Winchester JF. Clinical Management of Poisoning and Drug Overdose 2nd (ed). WB Saunders: New York, pp 877–893.

    Google Scholar 

  7. Goldstein JA . Clinical relevance of genetic polymorphisms in the human CYP2C subfamily. Br J Clin Pharmacol 2001; 52: 349–355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Aynacioglu AS, Brockmoller J, Bauer S, Sachse C, Güzelbey P, Ongen Z et al. Frequency of cytochrome P450 CYP2C9 variants in a Turkish population and functional relevance for phenytoin. Br J Clin Pharmacol 1999; 48: 409–415.

    Article  CAS  PubMed  Google Scholar 

  9. Tate SK, Depondt CH, Sisodiya SM, Cavalleri GL, Schorge S, Soranzo N et al. Genetic predictors of the maximum doses patients receive during clinical use of the antiepileptic drug carbamazepine and phenytoin. Proc Natl Acad Sci USA 2005; 102: 5507–5512.

    Article  CAS  PubMed  Google Scholar 

  10. Taguchi M, Hongou K, Yagi S, Miyawaki T, Takizawa M, Aiba T et al. Evaluation of phenytoin dosage regimens based on genotyping of CYP2C subfamily in routinely treated Japanese patients. Drug Metab Pharmacokinet 2005; 20: 107–112.

    Article  CAS  PubMed  Google Scholar 

  11. Van der Weide J, Steijns LS, van Weelden MJ, de Haan K . The effect of genetic polymorphism of cytochrome P450 CYP2C9 on phenytoin dose requirement. Pharmacogenetics 2001; 11: 287–291.

    Article  CAS  PubMed  Google Scholar 

  12. Hatta FH, Teh LK, Helldén A, Hellgren KE, Roh HK, Salleh MZ et al. Search for the molecular basis of ultra-rapid CYP2C9-catalysed metabolism: relationship between SNP IVS8-109 A>T and the losartan metabolism phenotype in Swedes. Eur J Clin Pharmacol 2012; 68: 1033–1042.

    Article  CAS  PubMed  Google Scholar 

  13. Dorado P, Gallego A, Peñas-LLedó E, Terán E, LLerena A . Relationship between the CYP2C9 IVS8-109 A>T polymorphism and high losartan hydroxylation in healthy Ecuadorian volunteers. Pharmacogenomics 2014; 15: 1417–1421.

    Article  CAS  PubMed  Google Scholar 

  14. Man M, Farmen M, Dumaual C, Teng CH, Moser B, Irie S et al. Genetic variation in metabolizing enzyme and transporter genes: comprehensive assessment in 3 major East Asian subpopulations with comparison to Caucasians and Africans. J Clin Pharmacol 2010; 50: 929–940.

    Article  CAS  PubMed  Google Scholar 

  15. Brøsen K, de Morais SM, Meyer UA, Goldstein JA . A multifamily study on the relationship between CYP2C19 genotype and S-mephenytoin oxidation phenotype. Pharmacogenetics 1995; 5: 312–317.

    Article  PubMed  Google Scholar 

  16. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 2006; 79: 103–113.

    Article  CAS  PubMed  Google Scholar 

  17. Rudberg I, Mohebi B, Hermann M, Refsum H, Molden E . Impact of the ultrarapid CYP2C19*17 allele on serum concentration of escitalopram in psychiatric patients. Clin Pharmacol Ther 2008; 83: 322–327.

    Article  CAS  PubMed  Google Scholar 

  18. Rudberg I, Hermann M, Refsum H, Molden E . Serum concentrations of sertraline and N-desmethyl sertraline in relation to CYP2C19 genotype in psychiatric patients. Eur J Clin Pharmacol 2008; 64: 1181–1188.

    Article  CAS  PubMed  Google Scholar 

  19. Bauer T, Bouman HJ, van Werkum JW, Ford NF, ten Berg JM, Taubert D . Impact of CYP2C19 variant genotypes on clinical efficacy of antiplatelet treatment with clopidogrel: systematic review and meta-analysis. BMJ 2011; 343: d4588.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Luna-Tortós C, Fedrowitz M, Löscher W . Several major antiepileptic drugs are substrates for human P-glycoprotein. Neuropharmacology 2008; 55: 1364–1375.

    Article  PubMed  Google Scholar 

  21. Hung CC, Chen CC, Lin CJ, Liou HH . Functional evaluation of polymorphisms in the human ABCB1 gene and the impact on clinical responses of antiepileptic drugs. Pharmacogenet Genomics 2008; 18: 390–402.

    Article  CAS  PubMed  Google Scholar 

  22. Siddiqui A, Kerb R, Weale ME, Brinkmann U, Smith A, Goldstein DB et al. Association of multidrug resistance in epilepsy with a polymorphism in the drug-transporter gene ABCB1. NEJM 2003; 348: 1442–1448.

    Article  CAS  PubMed  Google Scholar 

  23. Marzolini C, Paus E, Buclin T, Kim RB . Polymorphisms in human MDR1 (P-glycoprotein): recent advances and clinical relevance. Clin Pharmacol Ther 2004; 75: 13–33.

    Article  CAS  PubMed  Google Scholar 

  24. Allabi AC, Gala JL, Horsmans Y . CYP2C9, CYP2C19, ABCB1 (MDR1) genetic polymorphisms and phenytoin metabolism in a Black Beninese population. Pharmacogenet Genomics 2005; 15: 779–786.

    Article  CAS  PubMed  Google Scholar 

  25. Dorado P, López-Torres E, Peñas-LLedó EM, Martínez-Antón J, LLerena A . Neurological toxicity after phenytoin infusion in a pediatric patient with epilepsy: influence of CYP2C9, CYP2C19 and ABCB1 genetic polymorphisms. Pharmacogenomics J 2013; 13: 359–361.

    Article  CAS  PubMed  Google Scholar 

  26. Ninomiya H, Mamiya K, Matsuo S, Ieiri I, Higuchi S, Tashiro N . Genetic polymorphism of the CYP2C subfamily and excessive serum phenytoin concentration with central nervous system intoxication. Ther Drug Monit 2000; 22: 230–232.

    Article  CAS  PubMed  Google Scholar 

  27. Sullivan-Klose TH, Ghanayem BI, Bell DA, Zhang ZY, Kaminsky LS, Shenfield GM et al. The role of the CYP2C9-Leu359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics 1996; 6: 341–349.

    Article  CAS  Google Scholar 

  28. Excoffier L, Lischer HE . Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 2010; 10: 564–567.

    Article  PubMed  Google Scholar 

  29. LLerena A, Dorado P, O'Kirwan F, Jepson R, Licinio J, Wong ML . Lower frequency of CYP2C9*2 in Mexican-Americans compared to Spaniards. Pharmacogenomics J 2004; 4: 403–406.

    Article  CAS  PubMed  Google Scholar 

  30. Dorado P, Berecz R, Norberto MJ, Yasar U, Dahl ML, LLerena A . CYP2C9 genotypes and diclofenac metabolism in Spanish healthy volunteers. Eur J Clin Pharmacol 2003; 59: 221–225.

    Article  CAS  PubMed  Google Scholar 

  31. Dorado P, Sosa-Macias MG, Peñas-Lledó EM, Alanis-Bañuelos RE, Wong ML, Licinio J et al. CYP2C9 allele frequency differences between populations of Mexican-Mestizo, Mexican-Tepehuano, and Spaniards. Pharmacogenomics J 2011; 11: 108–112.

    Article  CAS  PubMed  Google Scholar 

  32. Castelán-Martínez OD, Hoyo-Vadillo C, Sandoval-García E, Sandoval-Ramírez L, González-Ibarra M, Solano-Solano G et al. Allele frequency distribution of CYP2C9 2 and CYP2C9 3 polymorphisms in six Mexican populations. Gene 2013; 523: 167–172.

    Article  PubMed  Google Scholar 

  33. Hoyo-Vadillo C, Garcia-Mena J, Valladares A, Venturelli CR, Wacher-Rodarte N, Kumate J et al. Association of CYP2C19 genotype with type 2 diabetes. Health 2010; 2: 1184–1190.

    Article  Google Scholar 

  34. Salazar-Flores J, Torres-Reyes LA, Martínez-Cortés G, Rubi-Castellanos R, Sosa-Macías M, Muñoz-Valle JF et al. Distribution of CYP2D6 and CYP2C19 polymorphisms associated with poor metabolizer phenotype in five Amerindian groups and western Mestizos from Mexico. Genet Test Mol Biomarkers 2012; 16: 1098–1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Luo HR, Poland RE, Lin KM, Wan YJ . Genetic polymorphism of cytochrome P450 2C19 in Mexican Americans: a cross-ethnic comparative study. Clin Pharmacol Ther 2006; 80: 33–40.

    Article  CAS  PubMed  Google Scholar 

  36. Nastasi-Catanese JA, Padilla-Gutiérrez JR, Valle Y, Ortega-Gutiérrez F, Gallegos-Arreola MP, Figuera LE . Genetic contribution of CYP2C9, CYP2C19, and APOE variants in acenocoumarol response. Genet Mol Res 2013; 12: 4413–4421.

    Article  CAS  PubMed  Google Scholar 

  37. Sosa-Macías M, Llerena A . Cytochrome P450 genetic polymorphisms of Mexican indigenous populations. Drug Metabol Drug Interact 2013; 28: 193–208.

    Article  PubMed  Google Scholar 

  38. Favela-Mendoza AF, Martinez-Cortes G, Hernandez-Zaragoza M, Salazar-Flores J, Muñoz-Valle JF, Martinez-Sevilla VM et al. Genetic variability of CYP2C19 in a Mexican population: contribution to the knowledge of the inheritance pattern of CYP2C19*17 to develop the ultrarapid metabolizer phenotype. J Genet 2015; 94: 3–7.

    Article  CAS  PubMed  Google Scholar 

  39. Leal-Ugarte E, Gutiérrez-Angulo M, Macías-Gómez NM, Peralta-Leal V, Durán-González J, De La Luz Ayala-Madrigal M et al. MDR1 C3435T polymorphism in Mexican children with acute lymphoblastic leukemia and in healthy individuals. Hum Biol 2008; 80: 449–455.

    Article  PubMed  Google Scholar 

  40. Vargas-Alarcón G, Ramírez-Bello J, de la Peña A, Calderón-Cruz B, Peña-Duque MA, Martínez Ríos MA et al. Distribution of ABCB1CYP3A5CYP2C19, and P2RY12 gene polymorphisms in a Mexican Mestizos population. Mol Biol Rep 2014; 41: 7023–7029.

    Article  PubMed  Google Scholar 

  41. Data from HapMap project. NCBI dbSNP. Available at: http://www.ncbi.nlm.nih.gov/projects/SNP/.

  42. Anderson GD . Pharmacogenetics and enzyme induction/inhibition properties of antiepileptic drugs. Neurology 2004; 63: S3–S8.

    Article  CAS  PubMed  Google Scholar 

  43. Johannessen SI, Landmark CJ . Antiepileptic drug interactions – principles and clinical implications. Curr Neuropharmacol 2010; 8: 254–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hung CC, Lin CJ, Chen CC, Chang CJ, Liou HH . Dosage recommendation of phenytoin for patients with epilepsy with different CYP2C9/CYP2C19 polymorphisms. Ther Drug Monit 2004; 26: 534–540.

    Article  CAS  PubMed  Google Scholar 

  45. Odani A, Hashimoto Y, Otsuki Y, Uwai Y, Hattori H, Furusho K et al. Genetic polymorphism of the CYP2C subfamily and its effect on the pharmacokinetics of phenytoin in Japanese patients with epilepsy. Clin Pharmacol Ther 1997; 62: 287–292.

    Article  CAS  PubMed  Google Scholar 

  46. Mamiya K, Ieiri I, Shimamoto J, Yukawa E, Imai J, Ninomiya H et al. The effects of genetic polymorphisms of CYP2C9 and CYP2C19 on phenytoin metabolism in Japanese adult patients with epilepsy: studies in stereoselective hydroxylation and population pharmacokinetics. Epilepsia 1998; 39: 1317–1323.

    Article  CAS  PubMed  Google Scholar 

  47. Ramasamy K, Narayan SK, Shewade DG, Chandrasekaran A . Influence of CYP2C9 genetic polymorphism and undernourishment on plasma-free phenytoin concentrations in epileptic patients. Ther Drug Monit 2010; 32: 762–766.

    Article  CAS  PubMed  Google Scholar 

  48. Maekawa K, Fukushima-Uesaka H, Tohkin M, Hasegawa R, Kajio H, Kuzuya N et al. Four novel defective alleles and comprehensive haplotype analysis of CYP2C9 in Japanese. Pharmacogenet Genomics 2006; 16: 497–514.

    Article  CAS  PubMed  Google Scholar 

  49. Sugimoto K, Uno T, Yamazaki H, Tateishi T . Limited frequency of the CYP2C19*17 allele and its minor role in a Japanese population. Br J Clin Pharmacol 2008; 65: 437–439.

    Article  CAS  PubMed  Google Scholar 

  50. Payan M, Rouini MR, Tajik N, Ghahremani MH, Tahvilian R . Hydroxylation index of omeprazole in relation to CYP2C19 polymorphism and sex in a healthy Iranian population. Daru 2014; 22: 81.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sanford JC, Guo Y, Sadee W, Wang D . Regulatory polymorphisms in CYP2C19 affecting hepatic expression. Drug Metabol Drug Interact 2013; 28: 23–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kerb R, Aynacioglu AS, Brockmöller J, Schlagenhaufer R, Bauer S, Szekeres T et al. The predictive value of MDR1, CYP2C9, and CYP2C19 polymorphisms for Phenytoin plasma levels. Pharmacogenomics J 2001; 1: 204–210.

    Article  CAS  PubMed  Google Scholar 

  53. Ebid AH, Ahmed MM, Mohammed SA . Therapeutic drug monitoring and clinical outcomes in epileptic Egyptian patients: a gene polymorphism perspective study. Ther Drug Monit 2007; 29: 305–312.

    Article  PubMed  Google Scholar 

  54. Simon C, Stieger B, Kullak-Ublick GA, Fried M, Mueller S, Fritschy JM et al. Intestinal expression of cytochrome P450 enzymes and ABC transporters and carbamazepine and phenytoin disposition. Acta Neurol Scand 2007; 115: 232–242.

    Article  CAS  PubMed  Google Scholar 

  55. Hennessy S, Leonard CE, Freeman CP, Metlay JP, Chu X, Strom BL et al. CYP2C9, CYP2C19, and ABCB1 genotype and hospitalization for phenytoin toxicity. J Clin Pharmacol 2009; 49: 1483–1487.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Haerian BS, Roslan H, Raymond AA, Tan CT, Lim KS, Zulkifli SZ et al. ABCB1 C3435T polymorphism and the risk of resistance to antiepileptic drugs in epilepsy: a systematic review and meta-analysis. Seizure 2010; 19: 339–346.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from Consejo Nacional de Ciencia y Tecnología de México (CONACyT) (#167261). AOV was supported by a scholarship (Doctor’s degree) from CONACyT (#328295).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M López-López.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortega-Vázquez, A., Dorado, P., Fricke-Galindo, I. et al. CYP2C9, CYP2C19, ABCB1 genetic polymorphisms and phenytoin plasma concentrations in Mexican-Mestizo patients with epilepsy. Pharmacogenomics J 16, 286–292 (2016). https://doi.org/10.1038/tpj.2015.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2015.45

This article is cited by

Search

Quick links