Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Using local multiplicity to improve effect estimation from a hypothesis-generating pharmacogenetics study

Abstract

We propose a multiple estimation adjustment (MEA) method to correct effect overestimation due to selection bias from a hypothesis-generating study (HGS) in pharmacogenetics. MEA uses a hierarchical Bayesian approach to model individual effect estimates from maximal likelihood estimation (MLE) in a region jointly and shrinks them toward the regional effect. Unlike many methods that model a fixed selection scheme, MEA capitalizes on local multiplicity independent of selection. We compared mean square errors (MSEs) in simulated HGSs from naive MLE, MEA and a conditional likelihood adjustment (CLA) method that model threshold selection bias. We observed that MEA effectively reduced MSE from MLE on null effects with or without selection, and had a clear advantage over CLA on extreme MLE estimates from null effects under lenient threshold selection in small samples, which are common among β€˜top’ associations from a pharmacogenetics HGS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Dawid AP . Selection paradoxes of bayesian inference. Multivar Anal Appl 1994; 24: 211–220.

    Google ScholarΒ 

  2. GΓΆring HH, Terwilliger JD, Blangero J . Large upward bias in estimation of locus-specific effects from genomewide scans. Am J Hum Genet 2001; 69: 1357–1369.

    ArticleΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  3. Ioannidis JP, Ntzani EE, Trikalinos TA, Contopoulos-Ioannidis DG . Replication validity of genetic association studies. Nat Genet 2001; 29: 306–309.

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  4. Faye LL, Sun L, Dimitromanolakis A, Bull SB . A flexible genome-wide bootstrap method that accounts for ranking and threshold-selection bias in GWAS interpretation and replication study design. Stat Med 2011; 30: 1898–1912.

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  5. Allison DB, Fernandez JR, Heo M, Zhu S, Etzel C, Beasley TM et al. Bias in estimates of quantitative-trait-locus effect in genome scans: demonstration of the phenomenon and a method-of-moments procedure for reducing bias. Am J Hum Genet 2002; 70: 575–585.

    ArticleΒ  CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  6. Zollner S, Pritchard JK . Overcoming the winner’s curse: estimating penetrance parameters from case-control data. Am J Hum Genet 2007; 80: 605–615.

    ArticleΒ  CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  7. Ghosh A, Zou F, Wright FA . Estimating odds ratios in genome scans: an approximate conditional likelihood approach. Am J Hum Genet 2008; 82: 1064–1074.

    ArticleΒ  CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  8. Xiao R, Boehnke M . Quantifying and correcting for the winner's curse in genetic association studies. Genet Epidemiol 2009; 33: 453–462.

    ArticleΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  9. Sun L, Bull SB . Reduction of selection bias in genomewide studies by resampling. Genet Epidemiol 2005; 28: 352–367.

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  10. Yu K, Chatterjee N, Wheeler W, Li Q, Wang S, Rothman N et al. Flexible design for following up positive findings. Am J Hum Genet 2007; 81: 540–551.

    ArticleΒ  CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  11. Sun L, Dimitromanolakis A, Faye LL, Paterson AD, Waggott D, Bull SB . BR-squared: a practical solution to the winner’s curse in genome-wide scans. Hum Genet 2011; 129: 545–552.

    ArticleΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  12. Daly AK . Genome-wide association studies in pharmacogenomics. Nat Rev Genet 2010; 11: 241–246.

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  13. Benjamini Y, Hochberg Y . Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 1995; 57: 289–300.

    Google ScholarΒ 

  14. Higdon R, van Belle G, Kolker E . A note on the false discovery rate and inconsistent comparisons between experiments. Bioinformatics 2008; 24: 1225–1228.

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  15. Chen GK, Witte JS . Enriching the analysis of genomewide association studies with hierarchical modeling. Am J Hum Genet 2007; 81: 397–404.

    ArticleΒ  CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  16. Lewinger JP, Conti ΓƒDV, Baurley JW, Triche TJ, Thomas DC . Hierarchical Bayes prioritization of marker associations from a genome-wide association scan for further investigation. Genet Epidemiol 2007; 882: 871–882.

    ArticleΒ  Google ScholarΒ 

  17. Thompson JR, GΓΆgele M, Weichenberger CX, Modenese M, Attia J, Barrett JH et al. SNP prioritization using a Bayesian probability of association. Genet Epidemiol 2013; 37: 214–221.

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  18. Stein C . Inadmissibility of the usual estimator for the mean of a multivariate normal distribution. Proc Third Berkeley Symp Math Stat Probab 1955; 1: 197–206.

    Google ScholarΒ 

  19. Efron B . Correlation and large-scale simultaneous significance testing. J Am Stat Assoc 2007; 102: 93–103.

    ArticleΒ  CASΒ  Google ScholarΒ 

  20. Friguet C, Kloareg M, Causeur D . A factor model approach to multiple testing under dependence. J Am Stat Assoc 2009; 104: 1406–1415.

    ArticleΒ  Google ScholarΒ 

  21. Lunn D, Spiegelhalter D, Thomas A, Best N . The BUGS project: Evolution, critique and future directions. Stat Med 2009; 28: 3049–3067.

    ArticleΒ  PubMedΒ  Google ScholarΒ 

  22. The 1000 Genomes Project Consortium, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE et al. An integrated map of genetic variation from 1,092 human genomes. Nature 2012; 491: 56–65.

    ArticleΒ  PubMed CentralΒ  Google ScholarΒ 

  23. Park J-H, Wacholder S, Gail MH, Peters U, Jacobs KB, Chanock SJ et al. Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet 2010; 42: 570–575.

    ArticleΒ  CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  24. Conti DV, Witte JS . Hierarchical modeling of linkage disequilibrium: genetic structure and spatial relations. Am J Hum Genet 2003; 72: 351–363.

    ArticleΒ  CASΒ  PubMedΒ  PubMed CentralΒ  Google ScholarΒ 

  25. Abecasis GR, Noguchi E, Heinzmann A, Traherne JA, Bhattacharyya S, Leaves NI et al. Extent and distribution of linkage disequilibrium in three genomic regions. Am J Hum Genet 2001; 68: 191–197.

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  26. Thomas DC, Siemiatycki J, Dewar R, Robins J, Goldberg M, Armstrong BG . The problem of multiple inference in studies designed to generate hypotheses. Am J Epidemiol 1985; 122: 1080–1095.

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  27. Efron B . Tweedie’s formula and selection bias. J Am Stat Assoc 2011; 106: 1602–1614.

    ArticleΒ  CASΒ  PubMedΒ  Google ScholarΒ 

  28. Chuang-stein C . Sample size and the probability of a successful trial. Pharm Stat 2006; 5: 305–309.

    ArticleΒ  PubMedΒ  Google ScholarΒ 

Download references

Acknowledgements

We thank Bonnie Fijal for helpful discussions and comments and anonymous reviewers for their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Ouyang.

Ethics declarations

Competing interests

WZ completed most of the work as an employee of InVentiv Health Clinical, LLC and HO is an employee of Eli Lilly and Company.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, W., Ouyang, H. Using local multiplicity to improve effect estimation from a hypothesis-generating pharmacogenetics study. Pharmacogenomics J 16, 107–112 (2016). https://doi.org/10.1038/tpj.2015.19

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2015.19

Search

Quick links