Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Frequent intragenic rearrangements of DPYD in colorectal tumours

Subjects

Abstract

Dihydropyrimidine dehydrogenase is a crucial enzyme for the degradation of 5-fluorouracil (5FU). DPYD, which encodes dihydropyrimidine dehydrogenase, is prone to acquire genomic rearrangements because of the presence of an intragenic fragile site FRA1E. We evaluated DPYD copy number variations (CNVs) in a prospective series of 242 stage I–III colorectal tumours (including 87 patients receiving 5FU-based treatment). CNVs in one or more exons of DPYD were detected in 27% of tumours (deletions or amplifications of one or more DPYD exons observed in 17% and 10% of cases, respectively). A significant relationship was observed between the DPYD intragenic rearrangement status and dihydropyrimidine dehydrogenase (DPD) mRNA levels (both at the tumour level). The presence of somatic DPYD aberrations was not associated with known prognostic or predictive biomarkers, except for LOH of chromosome 8p. No association was observed between DPYD aberrations and patient survival, suggesting that assessment of somatic DPYD intragenic rearrangement status is not a powerful biomarker to predict the outcome of 5FU-based chemotherapy in patients with colorectal cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P . Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 74–108.

    Article  PubMed  Google Scholar 

  2. Kanthan R, Senger JL, Kanthan SC . Molecular events in primary and metastatic colorectal carcinoma: a review. Patholog Res Int 2012; 2012: 597497.

    PubMed  PubMed Central  Google Scholar 

  3. Al-Sohaily S, Biankin A, Leong R, Kohonen-Corish M, Warusavitarne J . Molecular pathways in colorectal cancer. J Gastroenterol Hepatol 2012; 27: 1423–1431.

    Article  CAS  PubMed  Google Scholar 

  4. Meyerhardt JA, Mayer RJ . Systemic therapy for colorectal cancer. N Engl J Med 2005; 352: 476–487.

    Article  CAS  PubMed  Google Scholar 

  5. Twelves C, Wong A, Nowacki MP, Abt M, Burris H III, Carrato A et al. Capecitabine as adjuvant treatment for stage III colon cancer. N Engl J Med 2005; 352: 2696–2704.

    Article  CAS  PubMed  Google Scholar 

  6. Andre T, Boni C, Navarro M, Tabernero J, Hickish T, Topham C et al. Improved overall survival with oxaliplatin, fluorouracil, and leucovorin as adjuvant treatment in stage II or III colon cancer in the MOSAIC trial. J Clin Oncol 2009; 27: 3109–3116.

    Article  CAS  PubMed  Google Scholar 

  7. Tournigand C, Andre T, Bonnetain F, Chibaudel B, Lledo G, Hickish T et al. Adjuvant therapy with fluorouracil and oxaliplatin in stage II and elderly patients (between ages 70 and 75 years) with colon cancer: Subgroup Analyses of the Multicenter International Study of Oxaliplatin, Fluorouracil, and Leucovorin in the Adjuvant Treatment of Colon Cancer Trial. J Clin Oncol 2012; 30: 3353–3360.

    Article  CAS  PubMed  Google Scholar 

  8. Van Loon K, Venook AP . Adjuvant treatment of colon cancer: what is next? Curr Opin Oncol 2011; 23: 403–409.

    Article  CAS  PubMed  Google Scholar 

  9. Heggie GD, Sommadossi JP, Cross DS, Huster WJ, Diasio RB . Clinical pharmacokinetics of 5-fluorouracil and its metabolites in plasma, urine, and bile. Cancer Res 1987; 47: 2203–2206.

    CAS  PubMed  Google Scholar 

  10. van Kuilenburg ABP, Hausler P, Schalhorn A, Tanck MWT, Proost JH, Terborg C et al. Evaluation of 5-fluorouracil pharmacokinetics in cancer patients with a c.1905+1G>A mutation in DPYD by means of a Bayesian limited sampling strategy. Clin Pharmacokinet 2012; 51: 163–174.

    Article  CAS  PubMed  Google Scholar 

  11. Mattison LK, Soong R, Diasio RB . Implications of dihydropyrimidine dehydrogenase on 5-fluorouracil pharmacogenetics and pharmacogenomics. Pharmacogenomics 2002; 3: 485–492.

    Article  CAS  PubMed  Google Scholar 

  12. van Kuilenburg ABP . Dihydropyrimidine dehydrogenase and the efficacy and toxicity of 5-fluorouracil. Eur J Cancer 2004; 40: 939–950.

    Article  CAS  PubMed  Google Scholar 

  13. van Kuilenburg ABP, Haasjes J, Richel DJ, Zoetekouw L, van Lenthe H, De Abreu RA et al. Clinical implications of dihydropyrimidine dehydrogenase (DPD) deficiency in patients with severe 5-fluorouracil-associated toxicity: identification of new mutations in the DPD gene. Clin Cancer Res 2000; 6: 4705–4712.

    CAS  PubMed  Google Scholar 

  14. Milano GA, Etienne MC, Pierrefite V, Barberi-Heyob M, Deporte-Fety R, Renée N . Dihydropyrimidine dehydrogenase deficiency and fluorouracil-related toxicity. Br J Cancer 1999; 79: 627–630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ciccolini J, Mercier C, Evrard A, Dahan L, Boyer JC, Duffaud F et al. A rapid and inexpensive method for anticipating severe toxicity to fluorouracil and fluorouracil-based chemotherapy. Ther Drug Monit 2006; 28: 678–685.

    Article  CAS  PubMed  Google Scholar 

  16. Amstutz U, Farese S, Aebi S, Largiader CR . Dihydropyrimidine dehydrogenase gene variation and severe 5-fluorouracil toxicity: a haplotype assessment. Pharmacogenomics 2009; 10: 931–944.

    Article  CAS  PubMed  Google Scholar 

  17. Deenen MJ, Tol J, Burylo AM, Doodeman VD, de BA, Vincent A et al. Relationship between single nucleotide polymorphisms and haplotypes in DPYD and toxicity and efficacy of capecitabine in advanced colorectal cancer. Clin Cancer Res 2011; 17: 3455–3468.

    Article  CAS  PubMed  Google Scholar 

  18. Etienne MC, Chéradame S, Fischel JL, Formento P, Dassonville O, Renée N et al. Response to fluorouracil therapy in cancer patients: the role of tumoral dihydropyrimidine dehydrogenase activity. J Clin Oncol 1995; 13: 1663–1670.

    Article  CAS  PubMed  Google Scholar 

  19. Salonga D, Danenberg KD, Johnson MR, Metzger R, Groshen S, Tsao-Wei DD et al. Colorectal tumors responding to 5-fluorouracil have low gene expression levels of dihydropyrimidine dehydrogenase, thymidylate synthase, and thymidine phosphorylase. Clin Cancer Res 2000; 6: 1322–1327.

    CAS  PubMed  Google Scholar 

  20. Hormozian F, Schmitt JG, Sagulenko E, Schwab M, Savelyeva L . FRA1E common fragile site breaks map within a 370kilobase pair region and disrupt the dihydropyrimidine dehydrogenase gene (DPYD). Cancer Lett 2007; 246: 82–91.

    Article  CAS  PubMed  Google Scholar 

  21. Arlt MF, Durkin SG, Ragland RL, Glover TW . Common fragile sites as targets for chromosome rearrangements. DNA Repair (Amst) 2006; 5: 1126–1135.

    Article  CAS  Google Scholar 

  22. van Kuilenburg ABP, Meijer J, Mul ANP, Hennekam RCM, Hoovers JMN, de Die-Smulders CEM et al. Analysis of severely affected patients with dihydropyrimidine dehydrogenase deficiency reveals large intragenic rearrangements of DPYD and a de novo interstitial deletion del(1)(p13.3p21.3). Hum Genet 2009; 125: 581–590.

    Article  CAS  PubMed  Google Scholar 

  23. van Kuilenburg ABP, Meijer J, ANPM Mul, Meinsma R, Schmid V, Dobritzsch D et al. Intragenic deletions and a deep intronic mutation affecting pre-mRNA splicing in the dihydropyrimidine dehydrogenase gene as novel mechanisms causing 5-fluorouracil toxicity. Hum Genet 2010; 128: 529–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Walther A, Houlston R, Tomlinson I . Association between chromosomal instability and prognosis in colorectal cancer: a meta-analysis. Gut 2008; 57: 941–950.

    Article  CAS  PubMed  Google Scholar 

  25. Ticha I, Kleiblova P, Fidlerova J, Novotny J, Pohlreich P, Kleibl Z . Lack of large intragenic rearrangements in dihydropyrimidine dehydrogenase (DPYD) gene in fluoropyrimidine-treated patients with high-grade toxicity. Cancer Chemother Pharmacol 2009; 64: 615–618.

    Article  CAS  PubMed  Google Scholar 

  26. Pare L, Paez D, Salazar J, del RE, Tizzano E, Marcuello E et al. Absence of large intragenic rearrangements in the DPYD gene in a large cohort of colorectal cancer patients treated with 5-FU-based chemotherapy. Br J Clin Pharmacol 2010; 70: 268–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Savva-Bordalo J, Ramalho-Carvalho J, Pinheiro M, Costa VL, Rodrigues A, Dias PC et al. Promoter methylation and large intragenic rearrangements of DPYD are not implicated in severe toxicity to 5-fluorouracil-based chemotherapy in gastrointestinal cancer patients. BMC Cancer 2010; 10: 470.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Vindelov LL, Christensen IJ, Nissen NI . A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 1983; 3: 323–327.

    Article  CAS  PubMed  Google Scholar 

  29. Largillier R, Namer M, Ramaioli A, Ferrero JM, Magne N, Courdi A et al. Prognostic value of S-phase fraction in 920 breast cancer patients: focus on T1N0 status. Int J Biol Markers 2003; 18: 273–279.

    Article  CAS  PubMed  Google Scholar 

  30. Schimanski CC, Linnemann U, Berger MR . Sensitive detection of K-ras mutations augments diagnosis of colorectal cancer metastases in the liver. Cancer Res 1999; 59: 5169–5175.

    CAS  PubMed  Google Scholar 

  31. Cabelguenne A, Blons H, de W,I, Carnot F, Houllier AM, Soussi T et al. p53 alterations predict tumor response to neoadjuvant chemotherapy in head and neck squamous cell carcinoma: a prospective series. J Clin Oncol 2000; 18: 1465–1473.

    Article  CAS  PubMed  Google Scholar 

  32. Boland CR, Thibodeau SN, Hamilton SR, Sidransky D, Eshleman JR, Burt RW et al. A National Cancer Institute Workshop on Microsatellite Instability for cancer detection and familial predisposition: development of international criteria for the determination of microsatellite instability in colorectal cancer. Cancer Res 1998; 58: 5248–5257.

    CAS  PubMed  Google Scholar 

  33. Cazals-Hatem D, Rebouissou S, Bioulac-Sage P, Bluteau O, Blanche H, Franco D et al. Clinical and molecular analysis of combined hepatocellular-cholangiocarcinomas. J Hepatol 2004; 41: 292–298.

    Article  CAS  PubMed  Google Scholar 

  34. Barault L, Veyrie N, Jooste V, Lecorre D, Chapusot C, Ferraz JM et al. Mutations in the RAS-MAPK, PI(3)K (phosphatidylinositol-3-OH kinase) signaling network correlate with poor survival in a population-based series of colon cancers. Int J Cancer 2008; 122: 2255–2259.

    Article  CAS  PubMed  Google Scholar 

  35. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI, Faasse MA et al. CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 2006; 38: 787–793.

    Article  CAS  PubMed  Google Scholar 

  36. Groden J, Thliveris A, Samowitz W, Carlson M, Gelbert L, Albertsen H et al. Identification and characterization of the familial adenomatous polyposis coli gene. Cell 1991; 66: 589–600.

    Article  CAS  PubMed  Google Scholar 

  37. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G . Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 2002; 30: e57.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Morel A, Boisdron-Celle M, Fey L, Soulie P, Craipeau MC, Traore S et al. Clinical relevance of different dihydropyrimidine dehydrogenase gene single nucleotide polymorphisms on 5-fluorouracil tolerance. Mol Cancer Ther 2006; 5: 2895–2904.

    Article  CAS  PubMed  Google Scholar 

  39. Gross E, Busse B, Riemenschneider M, Neubauer S, Seck K, Klein HG et al. Strong association of a common dihydropyrimidine dehydrogenase gene polymorphism with fluoropyrimidine-related toxicity in cancer patients. PLoS ONE 2008; 3: e4003.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schwab M, Zanger UM, Marx C, Schaeffeler E, Klein K, Dippon J et al. Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the German 5-FU toxicity study group. J Clin Oncol 2008; 26: 2131–2138.

    Article  CAS  PubMed  Google Scholar 

  41. Loganayagam A, renas-Hernandez M, Fairbanks L, Ross P, Sanderson JD, Marinaki AM . The contribution of deleterious DPYD gene sequence variants to fluoropyrimidine toxicity in British cancer patients. Cancer Chemother Pharmacol 2010; 65: 403–406.

    Article  CAS  PubMed  Google Scholar 

  42. Amstutz U, Froehlich TK, Largiader CR . Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity. Pharmacogenomics 2011; 12: 1321–1336.

    Article  CAS  PubMed  Google Scholar 

  43. Magne N, Etienne-Grimaldi MC, Cals L, Renee N, Formento JL, Francoual M et al. Dihydropyrimidine dehydrogenase activity and the IVS14+1G>A mutation in patients developing 5FU-related toxicity. Br J Clin Pharmacol 2007; 64: 237–240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Etienne MC, Formento JL, Chazal M, Francoual M, Magne N, Formento P et al. Methylenetetrahydrofolate reductase gene polymorphisms and response to fluorouracil-based treatment in advanced colorectal cancer patients. Pharmacogenetics 2004; 14: 785–792.

    Article  CAS  PubMed  Google Scholar 

  45. Lee SH, Shin MS, Kim HS, Park WS, Kim SY, Lee HK et al. Point mutations and deletions of the Bcl10 gene in solid tumors and malignant lymphomas. Cancer Res 1999; 59: 5674–5677.

    CAS  PubMed  Google Scholar 

  46. Mertens F, Johansson B, Hoglund M, Mitelman F . Chromosomal imbalance maps of malignant solid tumors: a cytogenetic survey of 3185 neoplasms. Cancer Res 1997; 57: 2765–2780.

    CAS  PubMed  Google Scholar 

  47. Iacopetta B, Kawakami K, Watanabe T . Predicting clinical outcome of 5-fluorouracil-based chemotherapy for colon cancer patients: is the CpG island methylator phenotype the 5-fluorouracil-responsive subgroup? Int J Clin Oncol 2008; 13: 498–503.

    Article  CAS  PubMed  Google Scholar 

  48. Roth AD, Delorenzi M, Tejpar S, Yan P, Klingbiel D, Fiocca R et al. Integrated analysis of molecular and clinical prognostic factors in stage II/III colon cancer. J Natl Cancer Inst 2012; 104: 1635–1646.

    Article  CAS  PubMed  Google Scholar 

  49. Naccarati A, Polakova V, Pardini B, Vodickova L, Hemminki K, Kumar R et al. Mutations and polymorphisms in TP53 gene–an overview on the role in colorectal cancer. Mutagenesis 2012; 27: 211–218.

    Article  CAS  PubMed  Google Scholar 

  50. Etienne-Grimaldi MC, Formento JL, Francoual M, Francois E, Formento P, Renee N et al. K-Ras mutations and treatment outcome in colorectal cancer patients receiving exclusive fluoropyrimidine therapy. Clin Cancer Res 2008; 14: 4830–4835.

    Article  CAS  PubMed  Google Scholar 

  51. Sasikumar R, Rejitha JR, Binumon PK, Manoj M . Role of Heterozygous APC mutation in niche succession and initiation of colorectal cancer—a computational study. PLoS ONE 2011; 6: e22720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Mao C, Yang ZY, Hu XF, Chen Q, Tang JL . PIK3CA exon 20 mutations as a potential biomarker for resistance to anti-EGFR monoclonal antibodies in KRAS wild-type metastatic colorectal cancer: a systematic review and meta-analysis. Ann Oncol 2012; 23: 1518–1525.

    Article  CAS  PubMed  Google Scholar 

  53. Liao X, Morikawa T, Lochhead P, Imamura Y, Kuchiba A, Yamauchi M et al. Prognostic role of PIK3CA mutation in colorectal cancer: cohort study and literature review. Clin Cancer Res 2012; 18: 2257–2268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Macartney-Coxson DP, Hood KA, Shi HJ, Ward T, Wiles A, O'Connor R et al. Metastatic susceptibility locus, an 8p hot-spot for tumour progression disrupted in colorectal liver metastases: 13 candidate genes examined at the DNA, mRNA and protein level. BMC Cancer 2008; 8: 187.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sakata KI, Someya M, Matsumoto Y, Tauchi H, Kai M, Toyota M et al. Gimeracil, an inhibitor of dihydropyrimidine dehydrogenase, inhibits the early step in homologous recombination. Cancer Sci 2011; 102: 1712–1716.

    Article  CAS  PubMed  Google Scholar 

  56. Someya M, Sakata K, Matsumoto Y, Tauchi H, Kai M, Hareyama M et al. Effects of depletion of dihydropyrimidine dehydrogenase on focus formation and RPA phosphorylation. J Radiat Res 2012; 53: 250–256.

    Article  CAS  PubMed  Google Scholar 

  57. Jensen SA, Vainer B, Kruhoffer M, Sorensen JB . Microsatellite instability in colorectal cancer and association with thymidylate synthase and dihydropyrimidine dehydrogenase expression. BMC Cancer 2009; 9: 25.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kobunai T, Ooyama A, Sasaki S, Wierzba K, Takechi T, Fukushima M et al. Changes to the dihydropyrimidine dehydrogenase gene copy number influence the susceptibility of cancers to 5-FU-based drugs: data mining of the NCI-DTP data sets and validation with human tumour xenografts. Eur J Cancer 2007; 43: 791–798.

    Article  CAS  PubMed  Google Scholar 

  59. Noguchi T, Tanimoto K, Shimokuni T, Ukon K, Tsujimoto H, Fukushima M et al. Aberrant methylation of DPYD promoter, DPYD expression, and cellular sensitivity to 5-fluorouracil in cancer cells. Clin Cancer Res 2004; 10: 7100–7107.

    Article  CAS  PubMed  Google Scholar 

  60. Ezzeldin HH, Lee AM, Mattison LK, Diasio RB . Methylation of the DPYD promoter: an alternative mechanism for dihydropyrimidine dehydrogenase deficiency in cancer patients. Clin Cancer Res 2005; 11: 8699–8705.

    Article  CAS  PubMed  Google Scholar 

  61. Yu J, McLeod HL, Ezzeldin HH, Diasio RB . Methylation of the DPYD promoter and dihydropyrimidine dehydrogenase deficiency. Clin Cancer Res 2006; 12: 3864.

    Article  CAS  PubMed  Google Scholar 

  62. Yu J, Freimuth RR, Culverhouse R, Marsh S, Watson MA, McLeod HL . DNA methylotype analysis in colorectal cancer. Oncol Rep 2008; 20: 921–927.

    CAS  PubMed  Google Scholar 

  63. Amstutz U, Farese S, Aebi S, Largiader CR . Hypermethylation of the DPYD promoter region is not a major predictor of severe toxicity in 5-fluorouracil based chemotherapy. J Exp Clin Cancer Res 2008; 27: 54.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hirota T, Date Y, Nishibatake Y, Takane H, Fukuoka Y, Taniguchi Y et al. Dihydropyrimidine dehydrogenase (DPD) expression is negatively regulated by certain microRNAs in human lung tissues. Lung Cancer 2012; 77: 16–23.

    Article  PubMed  Google Scholar 

  65. Gross E, Meul C, Raab S, Propping C, Avril S, Aubele M et al. Somatic copy number changes in DPYD are associated with lower risk of recurrence in triple-negative breast cancers. Br J Cancer 2013; 109: 2347–2355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Koopman M, Venderbosch S, Nagtegaal ID, van Krieken JH, Punt CJ . A review on the use of molecular markers of cytotoxic therapy for colorectal cancer, what have we learned? Eur J Cancer 2009; 45: 1935–1949.

    Article  CAS  PubMed  Google Scholar 

  67. Koopman M, Venderbosch S, van TH, Ligtenberg MJ, Nagtegaal I, van Krieken JH et al. Predictive and prognostic markers for the outcome of chemotherapy in advanced colorectal cancer, a retrospective analysis of the phase III randomised CAIRO study. Eur J Cancer 2009; 45: 1999–2006.

    Article  CAS  PubMed  Google Scholar 

  68. Westra JL, Hollema H, Schaapveld M, Platteel I, Oien KA, Keith WN et al. Predictive value of thymidylate synthase and dihydropyrimidine dehydrogenase protein expression on survival in adjuvantly treated stage III colon cancer patients. Ann Oncol 2005; 16: 1646–1653.

    Article  CAS  PubMed  Google Scholar 

  69. Afzal S, Gusella M, Jensen SA, Vainer B, Vogel U, Andersen JT et al. The association of polymorphisms in 5-fluorouracil metabolism genes with outcome in adjuvant treatment of colorectal cancer. Pharmacogenomics 2011; 12: 1257–1267.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the French Research Ministry (Programme Hospitalier de Recherche Clinique) for financial support and the Ligue Nationale Contre le Cancer (CIT programme) for PIK3CA, APC and CIMP analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A B P van Kuilenburg.

Ethics declarations

Competing interests

Raymon Vijzelaar is employed by MRC-Holland that manufactures MLPA probemixes. The remaining authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Kuilenburg, A., Etienne-Grimaldi, MC., Mahamat, A. et al. Frequent intragenic rearrangements of DPYD in colorectal tumours. Pharmacogenomics J 15, 211–218 (2015). https://doi.org/10.1038/tpj.2014.68

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2014.68

Search

Quick links