Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genetic and metabolic determinants of methotrexate-induced mucositis in pediatric acute lymphoblastic leukemia

Abstract

Methotrexate (MTX) is an effective and toxic chemotherapeutic drug in the treatment of pediatric acute lymphoblastic leukemia(ALL). In this prospective study, we aimed to identify metabolic and genetic determinants of MTX toxicity. One hundred and thirty-four Dutch pediatric ALL patients were treated with four high infusions MTX (HD-MTX: 5 g m−2) every other week according to the DCOG-ALL-10 protocol. Mucositis (National Cancer Institute grade 3) was the most frequent occurring toxicity during the HD-MTX phase (20%) and occurred especially after the first MTX course. Mucositis was not associated with plasma MTX, plasma folate or plasma homocysteine levels. Patients with mucositis had higher erythrocyte folate levels at the start of protocol M than patients without mucositis (median 1.4 vs 1.2 μmol l−1, P<0.008), this could reflect an increased MTX uptake in mucosal cells of patients with mucositis. From 17 single-nucleotide polymorphisms in the MTX pathway, only patients with the wild-type variant of rs7317112 SNP in the ABCC4 gene had more mucositis (AA (39%) vs AG/GG (15%), P=0.016). We found no evidence that erythrocyte folate levels mediate in the association between the rs7317112 and mucositis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Gatta G, Botta L, Rossi S, Aareleid T, Bielska-Lasota M, Clavel J et al. Childhood cancer survival in Europe 1999-2007: results of EUROCARE-5-a population-based study. Lancet Oncol 2014; 15: 35–47.

    Article  Google Scholar 

  2. Pui CH, Carroll WL, Meshinchi S, Arceci RJ . Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol 2011; 29: 551–565.

    Article  Google Scholar 

  3. Kamps WA, van der Pal-de Bruin KM, Veerman AJ, Fiocco M, Bierings M, Pieters R . Long-term results of Dutch Childhood Oncology Group studies for children with acute lymphoblastic leukemia from 1984–2004. Leukemia 2010; 24: 309–319.

    Article  CAS  Google Scholar 

  4. Crews KR, Liu T, Rodriguez-Galindo C, Tan M, Meyer WH, Panetta JC et al. High-dose methotrexate pharmacokinetics and outcome of children and young adults with osteosarcoma. Cancer 2004; 100: 1724–1733.

    Article  CAS  Google Scholar 

  5. Niemi M, Pasanen MK, Neuvonen PJ . Organic anion transporting polypeptide 1B1: a genetically polymorphic transporter of major importance for hepatic drug uptake. Pharmacol Rev 2011; 63: 157–181.

    Article  CAS  Google Scholar 

  6. Zhao R, Diop-Bove N, Visentin M, Goldman ID . Mechanisms of membrane transport of folates into cells and across epithelia. Annu Rev Nutr 2011; 31: 177–201.

    Article  CAS  Google Scholar 

  7. Wennerstrand P, Martensson LG, Soderhall S, Zimdahl A, Appell ML . Methotrexate binds to recombinant thiopurine S-methyltransferase and inhibits enzyme activity after high-dose infusions in childhood leukaemia. Eur J Clin Pharmacol 2013; 69: 1641–1649.

    Article  CAS  Google Scholar 

  8. Krajinovic M, Moghrabi A . Pharmacogenetics of methotrexate. Pharmacogenomics 2004; 5: 819–834.

    Article  CAS  Google Scholar 

  9. Ravindranath Y . Down syndrome and leukemia: new insights into the epidemiology, pathogenesis, and treatment. Pediatr Blood Cancer 2005; 44: 1–7.

    Article  Google Scholar 

  10. Witt H, Luck W, Hennies HC, Classen M, Kage A, Lass U et al. Mutations in the gene encoding the serine protease inhibitor, Kazal type 1 are associated with chronic pancreatitis. Nat Genet 2000; 25: 213–216.

    Article  CAS  Google Scholar 

  11. Assembly WMAG. The Declaration of Helsinki — Sixth Revision. Helsinki, Finland, 2008.

  12. Trotti A, Colevas AD, Setser A, Rusch V, Jaques D, Budach V et al. CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. Semin Radiat Oncol 2003; 13: 176–181.

    Article  Google Scholar 

  13. Rousseau A, Marquet P . Application of pharmacokinetic modelling to the routine therapeutic drug monitoring of anticancer drugs. Fundam Clin Pharmacol 2002; 16: 253–262.

    Article  CAS  Google Scholar 

  14. Ducros V, Belva-Besnet H, Casetta B, Favier A . A robust liquid chromatography tandem mass spectrometry method for total plasma homocysteine determination in clinical practice. Clin Chem Lab Med 2006; 44: 987–990.

    Article  CAS  Google Scholar 

  15. Urano W, Taniguchi A, Yamanaka H, Tanaka E, Nakajima H, Matsuda Y et al. Polymorphisms in the methylenetetrahydrofolate reductase gene were associated with both the efficacy and the toxicity of methotrexate used for the treatment of rheumatoid arthritis, as evidenced by single locus and haplotype analyses. Pharmacogenetics 2002; 12: 183–190.

    Article  CAS  Google Scholar 

  16. van Ede AE, Laan RF, Blom HJ, Huizinga TW, Haagsma CJ, Giesendorf BA et al. The C677T mutation in the methylenetetrahydrofolate reductase gene: a genetic risk factor for methotrexate-related elevation of liver enzymes in rheumatoid arthritis patients. Arthritis Rheum 2001; 44: 2525–2530.

    Article  CAS  Google Scholar 

  17. Shimasaki N, Mori T, Samejima H, Sato R, Shimada H, Yahagi N et al. Effects of methylenetetrahydrofolate reductase and reduced folate carrier 1 polymorphisms on high-dose methotrexate-induced toxicities in children with acute lymphoblastic leukemia or lymphoma. J Pediatr Hematol Oncol 2006; 28: 64–68.

    Article  CAS  Google Scholar 

  18. Huang L, Tissing WJ, de Jonge R, van Zelst BD, Pieters R . Polymorphisms in folate-related genes: association with side effects of high-dose methotrexate in childhood acute lymphoblastic leukemia. Leukemia 2008; 22: 1798–1800.

    Article  CAS  Google Scholar 

  19. Aplenc R, Thompson J, Han P, La M, Zhao H, Lange B et al. Methylenetetrahydrofolate reductase polymorphisms and therapy response in pediatric acute lymphoblastic leukemia. Cancer Res 2005; 65: 2482–2487.

    Article  CAS  Google Scholar 

  20. Seidemann K, Book M, Zimmermann M, Meyer U, Welte K, Stanulla M et al. MTHFR 677 (C—&gt;T) polymorphism is not relevant for prognosis or therapy-associated toxicity in pediatric NHL: results from 484 patients of multicenter trial NHL-BFM 95. Ann Hematol 2006; 85: 291–300.

    Article  CAS  Google Scholar 

  21. de Jonge R, Hooijberg JH, van Zelst BD, Jansen G, van Zantwijk CH, Kaspers GJ et al. Effect of polymorphisms in folate-related genes on in vitro methotrexate sensitivity in pediatric acute lymphoblastic leukemia. Blood 2005; 106: 717–720.

    Article  CAS  Google Scholar 

  22. Jansen G, Mauritz RM, Assaraf YG, Sprecher H, Drori S, Kathmann I et al. Regulation of carrier-mediated transport of folates and antifolates in methotrexate-sensitive and-resistant leukemia cells. Adv Enzyme Regul 1997; 37: 59–76.

    Article  CAS  Google Scholar 

  23. Lopez-Lopez E, Ballesteros J, Pinan MA, Sanchez de Toledo J, Garcia de Andoin N, Garcia-Miguel P et al. Polymorphisms in the methotrexate transport pathway: a new tool for MTX plasma level prediction in pediatric acute lymphoblastic leukemia. Pharmacogenet Genomics 2013; 23: 53–61.

    Article  CAS  Google Scholar 

  24. Ramsey LB, Bruun GH, Yang W, Trevino LR, Vattathil S, Scheet P et al. Rare versus common variants in pharmacogenetics: SLCO1B1 variation and methotrexate disposition. Genome Res 2012; 22: 1–8.

    Article  CAS  Google Scholar 

  25. Radtke S, Zolk O, Renner B, Paulides M, Zimmermann M, Moricke A et al. Germline genetic variations in methotrexate candidate genes are associated with pharmacokinetics, toxicity, and outcome in childhood acute lymphoblastic leukemia. Blood 2013; 121: 5145–5153.

    Article  CAS  Google Scholar 

  26. Krynetski E, Evans WE . Drug methylation in cancer therapy: lessons from the TPMT polymorphism. Oncogene 2003; 22: 7403–7413.

    Article  CAS  Google Scholar 

  27. Griffioen PH, de Jonge R, van Zelst BD, Montserrate Brouns R, Lindemans J . Detection and allele-frequencies of the 833T&gt;C, 844ins68 and a novel mutation in the cystathionine beta-synthase gene. Clin Chim Acta 2005; 354: 191–194.

    Article  CAS  Google Scholar 

  28. Sole X, Guino E, Valls J, Iniesta R, Moreno V . SNPStats: a web tool for the analysis of association studies. Bioinformatics 2006; 22: 1928–1929.

    Article  CAS  Google Scholar 

  29. Baron RM, Kenny DA . The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol 1986; 51: 1173–1182.

    Article  CAS  Google Scholar 

  30. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  31. Buitenkamp TD, Mathot RA, de Haas V, Pieters R, Zwaan CM . Methotrexate-induced side effects are not due to differences in pharmacokinetics in children with Down syndrome and acute lymphoblastic leukemia. Haematologica 2010; 95: 1106–1113.

    Article  CAS  Google Scholar 

  32. Liu SG, Li ZG, Cui L, Gao C, Li WJ, Zhao XX . Effects of methylenetetrahydrofolate reductase gene polymorphisms on toxicities during consolidation therapy in pediatric acute lymphoblastic leukemia in a Chinese population. Leuk Lymphoma 2011; 52: 1030–1040.

    Article  CAS  Google Scholar 

  33. Faganel Kotnik B, Grabnar I, Bohanec Grabar P, Dolzan V, Jazbec J . Association of genetic polymorphism in the folate metabolic pathway with methotrexate pharmacokinetics and toxicity in childhood acute lymphoblastic leukaemia and malignant lymphoma. Eur J Clin Pharmacol 2011; 67: 993–1006.

    Article  CAS  Google Scholar 

  34. Witko-Sarsat V, Rieu P, Descamps-Latscha B, Lesavre P, Halbwachs-Mecarelli L . Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest 2000; 80: 617–653.

    Article  CAS  Google Scholar 

  35. van Kooten Niekerk PB, Schmiegelow K, Schroeder H . Influence of methylene tetrahydrofolate reductase polymorphisms and coadministration of antimetabolites on toxicity after high dose methotrexate. Eur J Haematol 2008; 81: 391–398.

    CAS  PubMed  Google Scholar 

  36. Niscola P, Romani C, Cupelli L, Scaramucci L, Tendas A, Dentamaro T et al. Mucositis in patients with hematologic malignancies: an overview. Haematologica 2007; 92: 222–231.

    Article  Google Scholar 

  37. Cheng KK . Association of plasma methotrexate, neutropenia, hepatic dysfunction, nausea/vomiting and oral mucositis in children with cancer. Eur J Cancer Care (Engl) 2008; 17: 306–311.

    Article  Google Scholar 

  38. Maiguma T, Hayashi Y, Ueshima S, Kaji H, Egawa T, Chayama K et al. Relationship between oral mucositis and high-dose methotrexate therapy in pediatric acute lymphoblastic leukemia. Int J Clin Pharmacol Ther 2008; 46: 584–590.

    Article  CAS  Google Scholar 

  39. Masson E, Relling MV, Synold TW, Liu Q, Schuetz JD, Sandlund JT et al. Accumulation of methotrexate polyglutamates in lymphoblasts is a determinant of antileukemic effects in vivo. A rationale for high-dose methotrexate. J Clin Invest 1996; 97: 73–80.

    Article  CAS  Google Scholar 

  40. Mikkelsen TS, Sparreboom A, Cheng C, Zhou Y, Boyett JM, Raimondi SC et al. Shortening infusion time for high-dose methotrexate alters antileukemic effects: a randomized prospective clinical trial. J Clin Oncol 2011; 29: 1771–1778.

    Article  CAS  Google Scholar 

  41. Kremer JM . Toward a better understanding of methotrexate. Arthritis Rheum 2004; 50: 1370–1382.

    Article  CAS  Google Scholar 

  42. Ganji V, Kafai MR . Trends in serum folate, RBC folate, and circulating total homocysteine concentrations in the United States: analysis of data from National Health and Nutrition Examination Surveys, 1988-1994, 1999-2000, and 2001-2002. J Nutr 2006; 136: 153–158.

    Article  CAS  Google Scholar 

  43. Bailey LB . Folate in Health and Disease, 2nd edn. Taylor & Francis, 2010.

    Google Scholar 

  44. de Rotte MC, de Jong PH, Pluijm SM, Calasan MB, Barendregt PJ, van Zeben D et al. Association of low baseline levels of erythrocyte folate with treatment nonresponse at three months in rheumatoid arthritis patients receiving methotrexate. Arthritis Rheum 2013; 65: 2803–2813.

    Article  CAS  Google Scholar 

  45. Kim YI, Fawaz K, Knox T, Lee YM, Norton R, Arora S et al. Colonic mucosal concentrations of folate correlate well with blood measurements of folate status in persons with colorectal polyps. Am J Clin Nutr 1998; 68: 866–872.

    Article  CAS  Google Scholar 

  46. Goodsell DS . The molecular perspective: methotrexate. Oncologist 1999; 4: 340–341.

    CAS  Google Scholar 

  47. Assaraf YG . The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist Updat 2006; 9: 227–246.

    Article  CAS  Google Scholar 

  48. Pinedo HM, Zaharko DS, Bull JM, Chabner BA . The reversal of methotrexate cytotoxicity to mouse bone marrow cells by leucovorin and nucleosides. Cancer Res 1976; 36: 4418–4424.

    CAS  PubMed  Google Scholar 

  49. Rask C, Albertioni F, Schroder H, Peterson C . Oral mucositis in children with acute lymphoblastic leukemia after high-dose methotrexate treatment without delayed elimination of methotrexate: relation to pharmacokinetic parameters of methotrexate. Pediatr Hematol Oncol 1996; 13: 359–367.

    Article  CAS  Google Scholar 

  50. Khanna D, Park GS, Paulus HE, Simpson KM, Elashoff D, Cohen SB et al. Reduction of the efficacy of methotrexate by the use of folic acid: post hoc analysis from two randomized controlled studies. Arthritis Rheum 2005; 52: 3030–3038.

    Article  CAS  Google Scholar 

  51. Sterba J, Dusek L, Demlova R, Valik D . Pretreatment plasma folate modulates the pharmacodynamic effect of high-dose methotrexate in children with acute lymphoblastic leukemia and non-Hodgkin lymphoma: ‘folate overrescue’ concept revisited. Clin Chem 2006; 52: 692–700.

    Article  CAS  Google Scholar 

  52. Cohen IJ, Wolff JE . How long can folinic acid rescue be delayed after high-dose methotrexate without toxicity? Pediatr Blood Cancer 2014; 61: 7–10.

    Article  CAS  Google Scholar 

  53. Russel FG, Koenderink JB, Masereeuw R . Multidrug resistance protein 4 (MRP4/ABCC4): a versatile efflux transporter for drugs and signalling molecules. Trends Pharmacol Sci 2008; 29: 200–207.

    Article  CAS  Google Scholar 

  54. Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S et al. BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 2009; 10: R130.

    Article  Google Scholar 

  55. McLaren W, Pritchard B, Rios D, Chen Y, Flicek P, Cunningham F . Deriving the consequences of genomic variants with the Ensembl API and SNP Effect Predictor. Bioinformatics 2010; 26: 2069–2070.

    Article  CAS  Google Scholar 

  56. Samuelsson J, Alonso S, Ruiz-Larroya T, Cheung TH, Wong YF, Perucho M . Frequent somatic demethylation of RAPGEF1/C3G intronic sequences in gastrointestinal and gynecological cancer. Int J Oncol 2011; 38: 1575–1577.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Stichting Kinderen Kankervrij (KiKa errant, nr. 67) and an Erasmus MC translational grant (to EdB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M M van den Heuvel-Eibrink.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

den Hoed, M., Lopez-Lopez, E., te Winkel, M. et al. Genetic and metabolic determinants of methotrexate-induced mucositis in pediatric acute lymphoblastic leukemia. Pharmacogenomics J 15, 248–254 (2015). https://doi.org/10.1038/tpj.2014.63

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2014.63

This article is cited by

Search

Quick links