Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

An in silico screen links gene expression signatures to drug response in glioblastoma stem cells

Subjects

Abstract

Cancer stem cells (CSCs) are thought to promote resistance to chemotherapeutic drugs in glioblastoma, the most common and aggressive primary brain tumor. However, the use of high-throughput drug screens to discover novel small-molecule inhibitors for CSC has been hampered by their instability in long-term cell culture. We asked whether predictive models of drug response could be developed from gene expression signatures of established cell lines and applied to predict drug response in glioblastoma stem cells. Predictions for active compounds were confirmed both for 185 compounds in seven established glioma cell lines and 21 compounds in three glioblastoma stem cells. The use of established cell lines as a surrogate for drug response in CSC lines may enable the large-scale virtual screening of drug candidates that would otherwise be difficult or impossible to test directly in CSCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Riddick G, Fine HA . Integration and analysis of genome-scale data from gliomas. Nat Rev Neurol 2011; 7: 439–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Jiang Y, Uhrbom L . On the origin of glioma. Ups J Med Sci 2012; 117: 113–121.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hemmati H D, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci 2003; 100: 15178–15183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee J, Kotliarova S, Kotliarov Y, Li A, Su Q, Donin NM et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006; 9: 391–403.

    Article  CAS  PubMed  Google Scholar 

  5. Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res 2008; 68: 9125–9130.

    Article  CAS  PubMed  Google Scholar 

  6. Groszer M . Negative regulation of neural stem/progenitor cell proliferation by the Pten Tumor suppressor gene in vivo. Science 2001; 294: 2186–2189.

    Article  CAS  PubMed  Google Scholar 

  7. Häyry V, Tanner M, Blom T, Tynninen O, Roselli A, Ollikainen M et al. Copy number alterations of the polycomb gene BMI1 in gliomas. Acta Neuropathol 2008; 116: 97–102.

    Article  PubMed  Google Scholar 

  8. Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genet 2000; 25: 55–57.

    Article  CAS  PubMed  Google Scholar 

  9. Kwon C-H, Zhao D, Chen J, Alcantara S, Li Y, Burns DK et al. Pten haploinsufficiency accelerates formation of high-grade astrocytomas. Cancer Res 2008; 68: 3286–3294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Liu C, Tu Y, Sun X, Jiang J, Jin X, Bo X et al. Wnt/beta-Catenin pathway in human glioma: expression pattern and clinical/prognostic correlations. Clin Exp Med 2010; 11: 105–112.

    Article  PubMed  Google Scholar 

  11. Purow BW, Haque RM, Noel MW, Su Q, Burdick MJ, Lee J et al. Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation. Cancer Res 2005; 65: 2353–2363.

    Article  CAS  PubMed  Google Scholar 

  12. Alcantara Llaguno S, Chen J, Kwon CH, Jackson ELLi Y, Burns DK et al. Malignant astrocytomas originate from neural stem/progenitor cells in a somatic tumor suppressor mouse model. Cancer Cell 2009; 15: 45–56.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP et al. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell 2005; 8: 119–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chen J, Li Y, Yu TS, McKay RM, Burns DK, Kernie SG et al. A restricted cell population propagates glioblastoma growth after chemotherapy. Nature 2012; 488: 522–526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012; 483: 603–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012; 483: 570–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Riddick G, Song H, Ahn S, Walling J, Borges-Rivera D, Zhang W et al. Predicting in vitro drug sensitivity using Random Forests. Bioinformatics 2010; 27: 220–224.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lamb J . The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 2006; 313: 1929–1935.

    Article  CAS  PubMed  Google Scholar 

  19. Shoemaker RH . The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 2006; 6: 813–823.

    Article  CAS  PubMed  Google Scholar 

  20. Cancer Genome Atlas Research Network, McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008; 455: 1061–1068.

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Developmental Therapeutics Program (NCI) for providing drug sensitivity data for the NCI-60 cell lines and the Sanger Wellcome Trust for providing drug sensitivity and gene expression data for 485 cell lines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H A Fine.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riddick, G., Song, H., Holbeck, S. et al. An in silico screen links gene expression signatures to drug response in glioblastoma stem cells. Pharmacogenomics J 15, 347–353 (2015). https://doi.org/10.1038/tpj.2014.61

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2014.61

Search

Quick links