Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Predicting inhaled corticosteroid response in asthma with two associated SNPs

Abstract

Inhaled corticosteroids (ICS) are the most commonly used controller medications prescribed for asthma. Two single-nucleotide polymorphisms (SNPs), rs1876828 in corticotrophin releasing hormone receptor 1 and rs37973 in GLCCI1, have previously been associated with corticosteroid efficacy. We studied data from four existing clinical trials of asthmatics, who received ICS and had lung function measured by forced expiratory volume in 1 s (FEV1) before and after the period of such treatment. We combined the two SNPs rs37973 and rs1876828 into a predictive test of FEV1 change using a Bayesian model, which identified patients with good or poor steroid response (highest or lowest quartile, respectively) with predictive performance of 65.7% (P=0.039 vs random) area under the receiver–operator characteristic curve in the training population and 65.9% (P=0.025 vs random) in the test population. These findings show that two genetic variants can be combined into a predictive test that achieves similar accuracy and superior replicability compared with single SNP predictors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Association AL . Trends in Asthma Morbidity and Mortality. American Lung Association, Services EaSURaP: Washington, DC, 2010.

    Google Scholar 

  2. Expert Panel Report 3 (EPR-3). Guidelines for the Diagnosis and Management of Asthma-Summary Report 2007. J Allergy Clin Immunol 2007; 120 (5 Suppl): S94–S138.

    Google Scholar 

  3. Szefler SJ, Martin RJ, King TS, Boushey HA, Cherniack RM, Chinchilli VM . et al. Significant variability in response to inhaled corticosteroids for persistent asthma. J Allergy Clin Immunol 2002; 109: 410–418.

    Article  CAS  PubMed  Google Scholar 

  4. Tantisira KG, Lake S, Silverman ES, Palmer LJ, Lazarus R, Silverman EK et al. Corticosteroid pharmacogenetics: association of sequence variants in CRHR1 with improved lung function in asthmatics treated with inhaled corticosteroids. Hum Mol Genet 2004; 13: 1353–1359.

    Article  CAS  PubMed  Google Scholar 

  5. Tantisira KG, Lasky-Su J, Harada M, Murphy A, Litonjua AA, Himes BE et al. Genomewide association between GLCCI1 and response to glucocorticoid therapy in asthma. N Engl J Med 2011; 365: 1173–1183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim WJ, Sheen SS, Kim TH, Huh JW, Lee JH, Kim EK et al. Association between CRHR1 polymorphism and improved lung function in response to inhaled corticosteroid in patients with COPD. Respirology 2009; 14: 260–263.

    Article  PubMed  Google Scholar 

  7. Jones TS, Kaste SC, Liu W, Cheng C, Yang W, Tantisira KG et al. CRHR1 polymorphisms predict bone density in survivors of acute lymphoblastic leukemia. J Clin Oncol 2008; 26: 3031–3037.

    Article  CAS  PubMed  Google Scholar 

  8. Licinio J, O′Kirwan F, Irizarry K, Merriman B, Thakur S, Jepson R et al. Association of a corticotropin-releasing hormone receptor 1 haplotype and antidepressant treatment response in Mexican-Americans. Mol Psychiatry 2004; 9: 1075–1082.

    Article  CAS  PubMed  Google Scholar 

  9. National Asthma Education and Prevention Program. Expert Panel Report: Guidelines for the Diagnosis and Management of Asthma Update on Selected Topics--2002. J Allergy Clin Immunol 2002; 110 (5 Suppl): S141–S219.

    Google Scholar 

  10. Wu AC, Tantisira K, Li L, Schuemann B, Weiss S . Repeatability of response to asthma medications. J Allergy Clin Immunol 2009; 123: 385–390.

    Article  PubMed  Google Scholar 

  11. Tantisira KG, Fuhlbrigge AL, Tonascia J, Van Natta M, Zeiger RS, Strunk RC et al. Bronchodilation and bronchoconstriction: predictors of future lung function in childhood asthma. J Allergy Clin Immunol 2006; 117: 1264–1271.

    Article  PubMed  Google Scholar 

  12. Liu H, Li J, Wong L . Use of extreme patient samples for outcome prediction from gene expression data. Bioinformatics 2005; 21: 3377–3384.

    Article  CAS  PubMed  Google Scholar 

  13. Himes BE, Wu AC, Duan QL, Klanderman B, Litonjua AA, Tantisira K et al. Predicting response to short-acting bronchodilator medication using Bayesian networks. Pharmacogenomics 2009; 10: 1393–1412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lazarus SC, Boushey HA, Fahy JV, Chinchilli VM, Lemanske Jr RF, Sorkness CA et al. Long-acting beta2-agonist monotherapy vs continued therapy with inhaled corticosteroids in patients with persistent asthma: a randomized controlled trial. JAMA 2001; 285: 2583–2593.

    Article  CAS  PubMed  Google Scholar 

  15. Lemanske Jr RF, Sorkness CA, Mauger EA, Lazarus SC, Boushey HA, Fahy JV et al. Inhaled corticosteroid reduction and elimination in patients with persistent asthma receiving salmeterol: a randomized controlled trial. JAMA 2001; 285: 2594–2603.

    Article  CAS  PubMed  Google Scholar 

  16. Peters SP, Anthonisen N, Castro M, Holbrook JT, Irvin CG, Smith LJ et al. Randomized comparison of strategies for reducing treatment in mild persistent asthma. N Engl J Med 2007; 356: 2027–2039.

    Article  PubMed  Google Scholar 

  17. Boushey HA, Sorkness CA, King TS, Sullivan SD, Fahy JV, Lazarus SC et al. Daily versus as-needed corticosteroids for mild persistent asthma. N Engl J Med 2005; 352: 1519–1528.

    Article  CAS  PubMed  Google Scholar 

  18. Willer CJ, Sanna S, Jackson AU, Scuteri A, Bonnycastle LL, Clarke R et al. Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat Genet 2008; 40: 161–169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. A map of human genome variation from population-scale sequencing. Nature 2010; 467: 1061–1073.

  20. Kass RE, Raftery AE . Bayes Factors. J Am Stat Assoc 1995; 90: 773–795.

    Article  Google Scholar 

  21. Sebastiani P, Abad M, Ramoni MF . Bayesian Networks for Genomic Analysis. In: Dougherty ER, Shmulevich I, Chen J, Wang ZJ (eds). Genomic Signal Processing and Statistics 2005 p. 281–320.

  22. Good I . The Bayes/Non-Bayes compromise: A brief review. J Am Stat Assoc 1992; 87: 597–606.

    Article  Google Scholar 

  23. Lauritzen SL, Wermuth N . Graphical models for association between variables, some of which are quantitative and some qualitative. Ann Stat 1989; 17: 31–57.

    Article  Google Scholar 

  24. Cowell RG . Local propagation in conditional gaussian bayesian networks. Machine Learn Res 2005; 6: 1517–1550.

    Google Scholar 

  25. Lasko TA, Bhagwat JG, Zou KH, Ohno-Machado L . The use of receiver operating characteristic curves in biomedical informatics. J Biomed Inform 2005; 38: 404–415.

    Article  PubMed  Google Scholar 

  26. DeLong ER, DeLong DM, Clarke-Pearson DL . Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988; 44: 837–845.

    Article  CAS  PubMed  Google Scholar 

  27. McGeachie M, Ramoni RL, Mychaleckyj JC, Furie KL, Dreyfuss JM, Liu Y et al. Integrative predictive model of coronary artery calcification in atherosclerosis. Circulation 2009; 120: 2448–2454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sebastiani P, Ramoni MF, Nolan V, Baldwin CT, Steinberg MH . Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia. Nat Genet 2005; 37: 435–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Stefansson H, Helgason A, Thorleifsson G, Steinthorsdottir V, Masson G, Barnard J et al. A common inversion under selection in Europeans. Nat Genet 2005; 37: 129–137.

    Article  CAS  PubMed  Google Scholar 

  30. Tantisira KG, Lazarus R, Litonjua AA, Klanderman B, Weiss ST . Chromosome 17: association of a large inversion polymorphism with corticosteroid response in asthma. Pharmacogenet Genomics 2008; 18: 733–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu AC, Himes BE, Lasky-Su J, Litonjua A, Li L, Lange C et al. Development of a Pharmacogenetic Predictive Test in asthma: proof of concept. Pharmacogenet Genomics 2010; 20: 86–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Marsh S, Hoskins JM . Irinotecan pharmacogenomics. Pharmacogenomics 2010; 11: 1003–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Meckley LM, Wittkowsky AK, Rieder MJ, Rettie AE, Veenstra DL . An analysis of the relative effects of VKORC1 and CYP2C9 variants on anticoagulation related outcomes in warfarin-treated patients. Thromb Haemost 2008; 100: 229–239.

    Article  CAS  PubMed  Google Scholar 

  34. Meschia JF . Pharmacogenetics and stroke. Stroke 2009; 40: 3641–3645.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT et al. Cytochrome P450 genetic polymorphisms and the response to prasugrel: relationship to pharmacokinetic, pharmacodynamic, and clinical outcomes. Circulation 2009; 119: 2553–2560.

    Article  CAS  PubMed  Google Scholar 

  36. Ziegler S, Schillinger M, Funk M, Felber K, Exner M, Mlekusch W et al. Association of a functional polymorphism in the clopidogrel target receptor gene, P2Y12, and the risk for ischemic cerebrovascular events in patients with peripheral artery disease. Stroke 2005; 36: 1394–1399.

    Article  CAS  PubMed  Google Scholar 

  37. Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F et al. SLCO1B1 variants and statin-induced myopathy--a genomewide study. N Engl J Med 2008; 359: 789–799.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by: U01 HL65899, P01 HL083069, R01 HL092197, K08 HL088046, and T32 HL007427 from the National Heart, Lung and Blood Institute, National Institutes of Health. We thank the participants, investigators, and administrators of the studies considered herein: SOCS/SLIC, LOCCS, and IMPACT. We thank Barbara Klanderman, Trisha Rodgers, and Liz Bevilacqua for their prior effort in genotyping these SNPs at the Channing Lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K G Tantisira.

Ethics declarations

Competing interests

Dr Peters has served as a consultant for AstraZeneca, Aerocrine, Airsonett AB, Delmedica, GlaxoSmithKline, Merck and TEVA, and is a member of Speakers’ Bureaus sponsored by Integrity Continuing Education and Merck, and is a consultant to the ALA-ACRC's DCC and was PI of its LOCCS trial. Dr Lima has received a $75 000 research grant from Merck. Drs Chang, McGeachie, Peters, Tantisira, and Wu declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

McGeachie, M., Wu, A., Chang, HH. et al. Predicting inhaled corticosteroid response in asthma with two associated SNPs. Pharmacogenomics J 13, 306–311 (2013). https://doi.org/10.1038/tpj.2012.15

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2012.15

Keywords

This article is cited by

Search

Quick links