Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Novel rare variants in congenital cardiac arrhythmia genes are frequent in drug-induced torsades de pointes

Abstract

Marked prolongation of the QT interval and polymorphic ventricular tachycardia following medication (drug-induced long QT syndrome, diLQTS) is a severe adverse drug reaction (ADR) that phenocopies congenital long QT syndrome (cLQTS) and is one of the leading causes for drug withdrawal and relabeling. We evaluated the frequency of rare non-synonymous variants in genes contributing to the maintenance of heart rhythm in cases of diLQTS using targeted capture coupled to next-generation sequencing. Eleven of 31 diLQTS subjects (36%) carried a novel missense mutation in genes with known congenital arrhythmia associations or with a known cLQTS mutation. In the 26 Caucasian subjects, 23% carried a highly conserved rare variant predicted to be deleterious to protein function in these genes compared with only 2–4% in public databases (P<0.003). We conclude that the rare variation in genes responsible for congenital arrhythmia syndromes is frequent in diLQTS. Our findings demonstrate that diLQTS is a pharmacogenomic syndrome predisposed by rare genetic variants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Selzer A, Wray HW . Quinidine syncope. Paroxysmal ventricular fibrillation occurring during treatment of chronic atrial arrhythmias. Circulation 1964; 30: 17–26.

    Article  CAS  PubMed  Google Scholar 

  2. Koster RW, Wellens HJ . Quinidine-induced ventricular flutter and fibrillation without digitalis therapy. Am J Cardiol 1976; 38: 519–523.

    Article  CAS  PubMed  Google Scholar 

  3. Kemper AJ, Dunlap R, Pietro DA . Thioridazine-induced torsade de pointes. Successful therapy with isoproterenol. JAMA 1983; 249: 2931–2934.

    Article  CAS  PubMed  Google Scholar 

  4. Wilke RA, Lin DW, Roden DM, Watkins PB, Flockhart D, Zineh I et al. Identifying genetic risk factors for serious adverse drug reactions: current progress and challenges. Nat Rev Drug Discov 2007; 6: 904–916.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Torp-Pedersen C, Møller M, Bloch-Thomsen PE, Køber L, Sandøe E, Egstrup K et al. Dofetilide in patients with congestive heart failure and left ventricular dysfunction. Danish Investigations of Arrhythmia and Mortality on Dofetilide Study Group. N Engl J Med 1999; 341: 857–865.

    Article  CAS  PubMed  Google Scholar 

  6. Murray KT . Ibutilide. Circulation 1998; 97: 493–497.

    Article  CAS  PubMed  Google Scholar 

  7. Soyka LF, Wirtz C, Spangenberg RB . Clinical safety profile of sotalol in patients with arrhythmias. Am J Cardiol 1990; 65: 74A–81A;, discussion 82A-83A.

    Article  CAS  PubMed  Google Scholar 

  8. Roden DM . Cellular basis of drug-induced torsades de pointes. Br J Pharmacol 2008; 154: 1502–1507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Roden DM, Viswanathan PC . Genetics of acquired long QT syndrome. J Clin Invest 2005; 115: 2025–2032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Roden DM, Altman RB, Benowitz NL, Flockhart DA, Giacomini KM, Johnson JA et al. Pharmacogenomics: challenges and opportunities. Ann Intern Med 2006; 145: 749–757.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Giacomini KM, Brett CM, Altman RB, Benowitz NL, Dolan ME, Flockhart DA et al. The pharmacogenetics research network: from SNP discovery to clinical drug response. Clin Pharmacol Ther 2007; 81: 328–345.

    Article  CAS  PubMed  Google Scholar 

  12. Mallal S, Phillips E, Carosi G, Molina J-M, Workman C, Tomazic J et al. HLA-B*5701 screening for hypersensitivity to abacavir. N Engl J Med 2008; 358: 568–579.

    Article  PubMed  Google Scholar 

  13. Link E, Parish S, Armitage J, Bowman L, Heath S, Matsuda F et al. SLCO1B1 variants and statin-induced myopathy--a genomewide study. N Engl J Med 2008; 359: 789–799.

    Article  CAS  PubMed  Google Scholar 

  14. Motsinger-Reif AA, Jorgenson E, Relling MV, Kroetz DL, Weinshilboum R, Cox NJ et al. Genome-wide association studies in pharmacogenomics: successes and lessons. Pharmacogenet, Genomics; advance online publication, 15 July 2010 (e-pub ahead of print).

  15. Newton-Cheh C, Eijgelsheim M, Rice KM, de Bakker PIW, Yin X, Estrada K et al. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat Genet 2009; 41: 399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pfeufer A, Sanna S, Arking DE, Müller M, Gateva V, Fuchsberger C et al. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat Genet 2009; 41: 407–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kaab S, Ritchie M, Crawford D, Sinner M, Kannankeril P, Wilde A et al. Genome-wide association study identifies novel genomic regions associated with drug-induced long Qt syndrome. Circulation 2009; 120: S580.

    Google Scholar 

  18. Volpi S, Heaton C, Mack K, Hamilton JB, Lannan R, Wolfgang CD et al. Whole genome association study identifies polymorphisms associated with QT prolongation during iloperidone treatment of schizophrenia. Mol Psychiatry 2009; 14: 1024–1031.

    Article  CAS  PubMed  Google Scholar 

  19. Wei J, Yang I, Tapper A, Murray K, Viswanathan P, Rudy Y et al. KCNE1 polymorphism confers risk of drug-induced long QT syndrome by altering kinetic properties of IKs potassium channels. Circulation 1999; 100: I–495.

    Google Scholar 

  20. Ackerman MJ, Mohler PJ . Defining a new paradigm for human arrhythmia syndromes: phenotypic manifestations of gene mutations in ion channel- and transporter-associated proteins. Circ Res 2010; 107: 457–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Priori SG, Napolitano C, Schwartz PJ . Low penetrance in the long-QT syndrome: clinical impact. Circulation 1999; 99: 529–533.

    Article  CAS  PubMed  Google Scholar 

  22. Yang P, Kanki H, Drolet B, Yang T, Wei J, Viswanathan PC et al. Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 2002; 105: 1943–1948.

    Article  CAS  PubMed  Google Scholar 

  23. Paulussen ADC, Gilissen RAHJ, Armstrong M, Doevendans PA, Verhasselt P, Smeets HJM et al. Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. J Mol Med 2004; 82: 182–188.

    Article  CAS  PubMed  Google Scholar 

  24. Itoh H, Sakaguchi T, Ding W-G, Watanabe E, Watanabe I, Nishio Y et al. Latent genetic backgrounds and molecular pathogenesis in drug-induced long-QT syndrome. Circ Arrhythm Electrophysiol 2009; 2: 511–523.

    Article  CAS  PubMed  Google Scholar 

  25. Bush WS, Crawford DC, Alexander C, George Jr AL, Roden DM, Ritchie MD . Genetic variation in the rhythmonome: ethnic variation and haplotype structure in candidate genes for arrhythmias. Pharmacogenomics 2009; 10: 1043–1053.

    Article  CAS  PubMed  Google Scholar 

  26. Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation 2001; 103: 196–200.

    Article  CAS  PubMed  Google Scholar 

  27. London B, Michalec M, Mehdi H, Zhu X, Kerchner L, Sanyal S et al. Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation 2007; 116: 2260–2268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Li H, Durbin R . Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009; 25: 1754–1760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010; 20: 1297–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 2011; 43: 491–498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Consortium T1000 GP. A map of human genome variation from population-scale sequencing. Nature 2010; 467: 1061–1073.

    Article  Google Scholar 

  32. SeattleSeq Annotation [Internet]. Available from: http://gvs.gs.washington.edu/SeattleSeqAnnotation/HelpAbout.jsp [cited 11 November 2010]..

  33. Glusman G, Caballero J, Mauldin D, Hood L, Roach J KAVIAR: an accessible system for testing SNV novelty. Bioinformatics (Oxford, England)..

  34. Felsenstein J, Churchill GA . A Hidden Markov Model approach to variation among sites in rate of evolution. Mol Biol Evol 1996; 13: 93–104.

    Article  CAS  PubMed  Google Scholar 

  35. Cooper GM, Stone EA, Asimenos G, Green ED, Batzoglou S, Sidow A . Distribution and intensity of constraint in mammalian genomic sequence. Genome Res 2005; 15: 901–913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kumar P, Henikoff S, Ng PC . Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc 2009; 4: 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  38. Fenichel RR, Malik M, Antzelevitch C, Sanguinetti M, Roden DM, Priori SG et al. Drug-induced torsades de pointes and implications for drug development. J Cardiovasc Electrophysiol 2004; 15: 475–495.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Benjamin EJ, Rice KM, Arking DE, Pfeufer A, van Noord C, Smith AV et al. Variants in ZFHX3 are associated with atrial fibrillation in individuals of European ancestry. Nat Genet 2009; 41: 879–881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roden DM . Long QT syndrome: reduced repolarization reserve and the genetic link. J Intern Med 2006; 259: 59–69.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the NHLBI GO Exome Sequencing Project and its ongoing studies that produced and provided exome variant calls for comparison: the Lung GO Sequencing Project (HL-102923), the WHI Sequencing Project (HL-102924), the Broad GO Sequencing Project (HL-102925), the Seattle GO Sequencing Project (HL-102926) and the Heart GO Sequencing Project (HL-103010). We also thank Kris Norris for patient enrollment, Christie Ingram for project management, Eric Torstenson for C++ programming and Laura Short in the Sanger sequencing core facility. Funding for this study was provided by U01 HL65962 and GM007569 from the National Institutes of Health and by a trans-Atlantic network alliance grant from the Fondation Leducq (‘Preventing Sudden Cardiac Death’).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D M Roden.

Ethics declarations

Competing interests

Drs George and Roden have received royalties for a US Letters Patent No. 6 458 542, issued 1 October 2002 for ‘Method of Screening for Susceptibility to Drug-Induced Cardiac Arrhythmia’.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramirez, A., Shaffer, C., Delaney, J. et al. Novel rare variants in congenital cardiac arrhythmia genes are frequent in drug-induced torsades de pointes. Pharmacogenomics J 13, 325–329 (2013). https://doi.org/10.1038/tpj.2012.14

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2012.14

Keywords

This article is cited by

Search

Quick links