Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

ITPKC and CASP3 polymorphisms and risks for IVIG unresponsiveness and coronary artery lesion formation in Kawasaki disease

Abstract

Functional single-nucleotide polymorphisms (SNPs) in inositol 1,4,5-trisphosphate 3-kinase C (ITPKC) (rs28493229) and caspase-3 (CASP3) (rs113420705; formerly rs72689236) are associated with susceptibility to Kawasaki's disease (KD). To evaluate the involvement of these 2 SNPs in the risk for intravenous immunoglobulin (IVIG) unresponsiveness, we investigated 204 Japanese KD patients who received a single IVIG dose of 2 g kg−1 (n=70) or 1 g kg−1 daily for 2 days (n=134). The susceptibility allele of both SNPs showed a trend of overrepresentation in IVIG non-responders and, in combined analysis of these SNPs, patients with at least 1 susceptible allele at both loci had a higher risk for IVIG unresponsiveness (P=0.0014). In 335 prospectively collected KD patients who were treated with IVIG (2 g kg−1), this 2-locus model showed a more significant association with resistance to initial and additional IVIG (P=0.011) compared with individual SNPs. We observed a significant association when all KD patients with coronary artery lesions were analyzed with the 2-locus model (P=0.0031). Our findings strongly suggest the existence of genetic factors affecting patients’ responses to treatment and the risk for cardiac complications, and provide clues toward understanding the pathophysiology of KD inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kawasaki T . Acute febrile mucocutaneous syndrome with lymphoid involvement with specific desquamation of the fingers and toes in children [in Japanese]. Arerugi 1967; 16: 178–222.

    CAS  PubMed  Google Scholar 

  2. Amano S, Hazama F, Hamashima Y . Pathology of Kawasaki disease: I. Pathology and morphogenesis of the vascular changes. Jpn Circ J 1979; 43: 633–643.

    Article  CAS  PubMed  Google Scholar 

  3. Kato H, Koike S, Yamamoto M, Ito Y, Yano E . Coronary aneurysms in infants and young children with acute febrile mucocutaneous lymph node syndrome. J Pediatr 1975; 86: 892–898.

    Article  CAS  PubMed  Google Scholar 

  4. Newburger JW, Takahashi M, Beiser AS, Burns JC, Bastian J, Chung KJ et al. A single intravenous infusion of gamma globulin as compared with four infusions in the treatment of acute Kawasaki syndrome. N Engl J Med 1991; 324: 1633–1639.

    Article  CAS  PubMed  Google Scholar 

  5. Burns JC, Capparelli EV, Brown JA, Newburger JW, Glode MP . Intravenous gamma-globulin treatment and retreatment in Kawasaki disease. US/Canadian Kawasaki Syndrome Study Group. Pediatr Infect Dis J 1998; 17: 1144–1148.

    Article  CAS  PubMed  Google Scholar 

  6. Wallace CA, French JW, Kahn SJ, Sherry DD . Initial intravenous gammaglobulin treatment failure in Kawasaki disease. Pediatrics 2000; 105: e78.

    Article  CAS  PubMed  Google Scholar 

  7. Durongpisitkul K, Soongswang J, Laohaprasitiporn D, Nana A, Prachuabmoh C, Kangkagate C . Immunoglobulin failure and retreatment in Kawasaki disease. Pediatr Cardiol 2003; 24: 145–148.

    Article  CAS  PubMed  Google Scholar 

  8. Uehara R, Belay ED, Maddox RA, Holman RC, Nakamura Y, Yashiro M et al. Analysis of potential risk factors associated with nonresponse to initial intravenous immunoglobulin treatment among Kawasaki disease patients in Japan. Pediatr Infect Dis J 2008; 27: 155–160.

    PubMed  Google Scholar 

  9. Onouchi Y, Tamari M, Takahashi A, Tsunoda T, Yashiro M, Nakamura Y et al. A genome-wide linkage analysis of Kawasaki disease: evidence for linkage to chromosome 12. J Hum Genet 2007; 52: 179–190.

    Article  CAS  PubMed  Google Scholar 

  10. Onouchi Y, Gunji T, Burns JC, Shimizu C, Newburger JW, Yashiro M et al. ITPKC functional polymorphism associated with Kawasaki disease susceptibility and formation of coronary artery aneurysms. Nat Genet 2008; 40: 35–42.

    Article  CAS  PubMed  Google Scholar 

  11. Onouchi Y, Ozaki K, Burns JC, Shimizu C, Hamada H, Honda T et al. Common variants in CASP3 confer susceptibility to Kawasaki disease. Hum Mol Genet 2010; 19: 2898–2906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ayusawa M, Sonobe T, Uemura S, Ogawa S, Nakamura Y, Kiyosawa N et al. Kawasaki Disease Research Committee. Revision of diagnostic guidelines for Kawasaki disease (the 5th revised edition). Pediatr Int 2005; 47: 232–234.

    Article  PubMed  Google Scholar 

  13. JCS Joint Working Group. Guidelines for diagnosis and management of cardiovascular sequelae in Kawasaki disease (JCS 2008)—digest version. Circ J 2010; 74: 1989–2020.

    Article  Google Scholar 

  14. Suzuki H, Terai M, Hamada H, Honda T, Suenaga T, Takeuchi T et al. Cyclosporin A treatment for kawasaki disease refractory to initial and additional intravenous immunoglobulin. Pediatr Infect Dis J 2011; 30: 871–876.

    Article  PubMed  Google Scholar 

  15. Sano T, Kurotobi S, Matsuzaki K, Yamamoto T, Maki I, Miki K et al. Prediction of non-responsiveness to standard high-dose gamma-globulin therapy in patients with acute Kawasaki disease before starting initial treatment. Eur J Pediatr 2007; 166: 131–137.

    Article  CAS  PubMed  Google Scholar 

  16. Egami K, Muta H, Ishii M, Suda K, Sugahara Y, Iemura M et al. Prediction of resistance to intravenous immunoglobulin treatment in patients with Kawasaki disease. J Pediatr 2006; 149: 237–240.

    Article  CAS  PubMed  Google Scholar 

  17. Kobayashi T, Inoue Y, Takeuchi K, Okada Y, Tamura K, Tomomasa T et al. Prediction of intravenous immunoglobulin unresponsiveness in patients with Kawasaki disease. Circulation 2006; 113: 2606–2612.

    Article  PubMed  Google Scholar 

  18. Yanagawa H, Nagai M, Ohgane H, Hashimoto T, Nakamura Y . An epidemiological study on relapsed cases and household cases of Kawasaki disease [in Japanese]. Nippon Koshu Eisei Zasshi 1985; 32: 3–7.

    Google Scholar 

  19. Tremoulet AH, Devera G, Best BM, Jimenez-Fernandez S, Sun X, Jain S et al. Increased incidence and severity of Kawasaki disease among Filipino-Americans in San Diego county. Pediatr Infect Dis J 2011; 30: 909–911.

    Article  PubMed  Google Scholar 

  20. Kashef S, Safari M, Amin R . Initial intravenous gamma-globulin treatment failure in Iranian children with Kawasaki disease. Kaohsiung J Med Sci 2005; 21: 401–404.

    Article  PubMed  Google Scholar 

  21. Onouchi Y . Molecular genetics of Kawasaki disease. Pediatr Res 2009; 65: 46R–54R.

    Article  PubMed  Google Scholar 

  22. Kuo HC, Yang KD, Juo SH, Liang CD, Chen WC, Wang YS et al. ITPKC single nucleotide polymorphism associated with the Kawasaki disease in a Taiwanese population. PLoS One 2011; 6: e17370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuo HC, Yu HR, Juo SH, Yang KD, Wang YS, Liang CD et al. CASP3 gene single-nucleotide polymorphism (rs72689236) and Kawasaki disease in Taiwanese children. J Hum Genet 2011; 56: 161–165.

    Article  CAS  PubMed  Google Scholar 

  24. Muta H, Ishii M, Hirose A, Furui J, Sugahara Y, Himeno W et al. Randomized prospective trial controlled study of intravenous gamma-globulin products in treatment of Kawasaki disease [in Japanese]. J Jpn Soc Pediatr 2002; 106: 742–746.

    Google Scholar 

  25. Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat Genet 2010; 42: 1118–1125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wu W, Misra RS, Russell JQ, Flavell RA, Rincón M, Budd RC . Proteolytic regulation of nuclear factor of activated T (NFAT) c2 cells and NFAT activity by caspase-3. J Biol Chem 2006; 281: 10682–10690.

    Article  CAS  PubMed  Google Scholar 

  27. Hirose O, Misawa H, Kijima Y, Yamada Y, Arakaki Y, Kajino Y et al. Two dimensional echocardiography of coronary artery in Kawasaki disease (MCLS): detection, changes in acute phase, and follow-up observation of the aneurysm [in Japanese]. J Cardiogr 1981; 11: 89–104.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Millennium Project, Japan Kawasaki Disease Research Center (2009 to YO) and the Ministry of Health, Labour, and Welfare (0401040 to AH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Onouchi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Onouchi, Y., Suzuki, Y., Suzuki, H. et al. ITPKC and CASP3 polymorphisms and risks for IVIG unresponsiveness and coronary artery lesion formation in Kawasaki disease. Pharmacogenomics J 13, 52–59 (2013). https://doi.org/10.1038/tpj.2011.45

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2011.45

Keywords

This article is cited by

Search

Quick links