Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Global pharmacogenomics: Impact of population diversity on the distribution of polymorphisms in the CYP2C cluster among Brazilians

Abstract

The impact of biogeographical ancestry, self-reported ‘race/color’ and geographical origin on the frequency distribution of 10 CYP2C functional polymorphisms (CYP2C8*2, *3, *4, CYP2C9*2, *3, *5, *11, CYP2C19*2, *3 and *17) and their haplotypes was assessed in a representative cohort of the Brazilian population (n=1034). TaqMan assays were used for allele discrimination at each CYP2C locus investigated. Individual proportions of European, African and Amerindian biogeographical ancestry were estimated using a panel of insertion-deletion polymorphisms. Multinomial log-linear models were applied to infer the statistical association between the CYP2C alleles and haplotypes (response variables), and biogeographical ancestry, self-reported Color and geographical origin (explanatory variables). The results showed that CYP2C19*3, CYP2C9*5 and CYP2C9*11 were rare alleles (<1%), the frequency of other variants ranged from 3.4% (CYP2C8*4) to 17.3% (CYP2C19*17). Two distinct haplotype blocks were identified: block 1 consists of three single nucleotide polymorphisms (SNPs) (CYP2C19*17, CYP2C19*2 and CYP2C9*2) and block 2 of six SNPs (CYP2C9*11, CYP2C9*3, CYP2C9*5, CYP2C8*2, CYP2C8*4 and CYP2C8*3). Diplotype analysis generated 41 haplotypes, of which eight had frequencies greater than 1% and together accounted for 96.4% of the overall genetic diversity. The distribution of CYP2C8 and CYP2C9 (but not CYP2C19) alleles, and of CYP2C haplotypes was significantly associated with self-reported Color and with the individual proportions of European and African genetic ancestry, irrespective of Color self-identification. The individual odds of having alleles CYP2C8*2, CYP2C8*3, CYP2C9*2 and CYP2C9*3, and haplotypes including these alleles, varied continuously as the proportion of European ancestry increased. Collectively, these data strongly suggest that the intrinsic heterogeneity of the Brazilian population must be acknowledged in the design and interpretation of pharmacogenomic studies of the CYP2C cluster in order to avoid spurious conclusions based on improper matching of study cohorts. This conclusion extends to other polymorphic pharmacogenes among Brazilians, and most likely to other admixed populations of the Americas.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Perini JA, Struchiner CJ, Silva-Assunção E, Santana ISC, Rangel F, Ojopi EB et al. Pharmacogenetics of warfarin: development of a dosing algorithm for Brazilian patients. Clin Pharmacol Ther 2008; 84: 722–728.

    Article  CAS  PubMed  Google Scholar 

  2. Jonas DE, McLeod HL . Genetic and clinical factors relating to warfarin dosing. Trends Pharmacol Sci 2009; 30: 375–386.

    Article  CAS  PubMed  Google Scholar 

  3. Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MT et al. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood 2010; 115: 3827–3834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med 2009; 360: 354–362.

    Article  CAS  PubMed  Google Scholar 

  5. Giusti B, Gori AM, Marcucci R, Abbate R . Relation of CYP2C19 loss-of-function polymorphism to the occurrence of stent thrombosis. Expert Opin Drug Metab Toxicol 2010; 6: 393–407.

    Article  CAS  PubMed  Google Scholar 

  6. Furuta T, Sugimoto M, Shirai N, Ishizaki T . CYP2C19 pharmacogenomics associated with therapy of Helicobacter pylori infection and gastro-esophageal reflux diseases with a proton pump inhibitor. Pharmacogenomics 2007; 8: 1199–1210.

    Article  CAS  PubMed  Google Scholar 

  7. Bergmann TK, Brasch-Andersen C, Gréen H, Mirza M, Pedersen RS, Nielsen F et al. Impact of CYP2C8*3 on paclitaxel clearance: a population pharmacokinetic and pharmacogenomic study in 93 patients with ovarian cancer. Pharmacogenomics J 2010; e-pub ahead of print 6 April 2010; doi:1038/tpj.2010.19.

  8. Leskelä S, Jara C, Leandro-García LJ, Martínez A, García-Donas J, Hernando S et al. Polymorphisms in cytochromes P450 2C8 and 3A5 are associated with paclitaxel neurotoxicity. Pharmacogenomics J 2010; e-pub ahead of print 9 March 2010; doi:10.1038/tpj.2010.13.

    Article  PubMed  Google Scholar 

  9. Kerb R, Fux R, Mörike K, Kremsner PG, Gil JP, Gleiter CH et al. Pharmacogenetics of antimalarial drugs: effect on metabolism and transport. Lancet Infect Dis 2009; 9: 760–774.

    Article  CAS  PubMed  Google Scholar 

  10. Sim SC, Risinger C, Dahl ML, Aklillu E, Christensen M, Bertilsson L et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther 2006; 79: 103–113.

    Article  CAS  PubMed  Google Scholar 

  11. Sugimoto K, Uno T, Yamazaki H, Tateishi T . Limited frequency of the CYP2C19*17 allele and its minor role in a Japanese population. Br J Clin Pharmacol 2008; 65: 437–439.

    Article  CAS  PubMed  Google Scholar 

  12. Sistonen J, Fuselli S, Palo JU, Chauhan N, Padh H, Sajantila A . Pharmacogenetic variation at CYP2C9, CYP2C19, and CYP2D6 at global and microgeographic scales. Pharmacogenet Genomics 2009; 19: 170–179.

    Article  CAS  PubMed  Google Scholar 

  13. Ingelman-Sundberg M, Sim SC, Gomez A, Rodriguez-Antona C . Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects. Pharmacol Ther 2007; 116: 496–526.

    Article  CAS  PubMed  Google Scholar 

  14. García-Martín E, Martínez C, Ladero JM, Agúndez JA . Interethnic and intraethnic variability of CYP2C8 and CYP2C9 polymorphisms in healthy individuals. Mol Diagn Ther 2006; 10: 29–40.

    Article  PubMed  Google Scholar 

  15. Vianna-Jorge R, Perini JA, Rondinelli E, Suarez-Kurtz G . CYP2C9 genotypes and the pharmacokinetics of tenoxicam in Brazilians. Clin Pharmacol Ther 2004; 76: 18–26.

    Article  CAS  PubMed  Google Scholar 

  16. Suarez-Kurtz G, Pena SDJ . Pharmacogenomics in the Americas: impact of genetic admixture. Curr Drug Targets 2006; 7: 1649–1658.

    Article  CAS  PubMed  Google Scholar 

  17. Suarez-Kurtz G, Pena SDJ . Pharmacogenetic studies in the Brazilian population. In: Suarez-Kurtz G (ed). Pharmacogenomics in Admixed Populations. Landes Biosciences: TX, USA, 2007, pp 75–98.

    Chapter  Google Scholar 

  18. Bastos-Rodrigues L, Pimenta JR, Pena SDJ . The genetic structure of human populations studied through short insertion-deletion polymorphisms. Ann Hum Genet 2006; 70: 658–665.

    Article  PubMed  Google Scholar 

  19. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 262–265.

    Google Scholar 

  20. Venables WN, Ripley BD . Modern Applied Statistics with S, 4th edn. Springer, New York, 2002.

    Book  Google Scholar 

  21. Fox J . Effect Displays in R for Generalised Linear Models. J Stat Software 2003; 8: 1–27.

    Article  Google Scholar 

  22. Pritchard JK, Stephens M, Donnelly P . Inference of population structure using multilocus genotype data. Genetics 2000; 155: 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. R Core Development Team. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, 2009.

  24. Yasar U, Lindgren S, Eliasson E, Bennet A, Wiman B, de Faire U et al. Linkage between the CYP2C8 and CYP2C9 polymorphisms. Biochem Biophys Res Comm 2002; 299: 25–28.

    Article  CAS  PubMed  Google Scholar 

  25. Pena SD, Di Pietro G, Fuchshuber-Moraes M, Genro JP, Hutz MH, Kehdi F et al. The genomic ancestry of individuals from different geographical regions of Brazil is more uniform than expected (submitted).

  26. Suarez-Kurtz G, Vianna-Jorge R, Perini JA, Pena SDJ . Detection of CYP2C9*5 in a White Brazilian. Clin Pharmacol Ther 2005; 78: 587–588.

    Article  Google Scholar 

  27. Parra FC, Amado RC, Lambertucci JR, Rocha J, Antunes CM, Pena SDJ . Color and genomic ancestry in Brazilians. Proc Natl Acad Sci USA 2003; 100: 177–182.

    Article  CAS  PubMed  Google Scholar 

  28. Salzano FM, Bortolini MC . The evolution and genetics of Latin American populations. Cambridge University Press: Cambridge, UK. 2002.

  29. Cavaco I, Piedade R, Gil JP, Ribeiro V . CYP2C8 polymorphism among the Portuguese. Clin Chem Lab Med 2006; 44: 168–170.

    Article  CAS  PubMed  Google Scholar 

  30. Oliveira E, Marsh S, van Booven DJ, Amorim A, Prata MJ, McLeod HL . Pharmacogenetically relevant polymorphisms in Portugal. Pharmacogenomics 2007; 8: 703–712.

    Article  CAS  PubMed  Google Scholar 

  31. Oliveira E, Pereira R, Amorim A, McLeod H, Prata MJ . Patterns of pharmacogenetic diversity in African populations: role of ancient and recent history. Pharmacogenomics 2009; 10: 1413–1422.

    Article  PubMed  Google Scholar 

  32. Damasceno A, Suarez-Kurtz G . Pharmacogenetically-relevant polymorphisms of the CYP2C cluster in Mozambicans (personal communication).

  33. Suarez-Kurtz G, Amorim A, Damasceno A, Hutz MH, de Moraes MO, Ojopi EB et al. VKORC1 polymorphisms in Brazilians: comparison with the Portuguese and Portuguese-speaking Africans and pharmacogenetic implications. Pharmacogenomics 2010; 11: 1257–1267.

    Article  CAS  PubMed  Google Scholar 

  34. Suarez-Kurtz G . The implications of population admixture in race-based therapy. Clin Pharmacol Ther 2008; 3: 399–400.

    Article  Google Scholar 

  35. Suarez-Kurtz G . Ethnic differences in drug therapy: a pharmacogenomics perspective. Expert Rev Clin Pharmacol 2008; 1: 337–339.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported by grants from Financiadora de Estudos e Projetos (FINEP 01.08.01230.00). GS-K is supported by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and by Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Suarez-Kurtz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suarez-Kurtz, G., Genro, J., de Moraes, M. et al. Global pharmacogenomics: Impact of population diversity on the distribution of polymorphisms in the CYP2C cluster among Brazilians. Pharmacogenomics J 12, 267–276 (2012). https://doi.org/10.1038/tpj.2010.89

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2010.89

Keywords

This article is cited by

Search

Quick links