Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genome-wide association study of serious blistering skin rash caused by drugs

Abstract

Stevens–Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN) are rare but severe, potentially life threatening adverse drug reactions characterized by skin blistering. Previous studies have identified drug-specific and population-specific genetic risk factors with large effects. In this study, we report the first genome-wide association study (GWAS) of SJS/TEN induced by a variety of drugs. Our aim was to identify common genetic risk factors with large effects on SJS/TEN risk. We conducted a genome-wide analysis of 96 retrospective cases and 198 controls with a panel of over one million single-nucleotide polymorphisms (SNPs). We further improved power with about 4000 additional controls from publicly available datasets. No genome-wide significant associations with SNPs or copy number variants were observed, although several genomic regions were suggested that may have a role in predisposing to drug-induced SJS/TEN. Our GWAS did not find common, highly penetrant genetic risk factors responsible for SJS/TEN events in the cases selected.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Roujeau JC, Guillaume JC, Fabre JP, Penso D, Fléchet ML, Girre JP . Toxic epidermal necrolysis (Lyell syndrome). Incidence and drug etiology in France, 1981–1985. Arch Dermatol 1990; 126: 37–42.

    Article  CAS  Google Scholar 

  2. Roujeau JC, Stern RS . Severe adverse cutaneous reactions to drugs. N Engl J Med 1994; 331: 1272–1285.

    Article  CAS  Google Scholar 

  3. Bastuji-Garin S, Rzany B, Stern RS, Shear NH, Naldi L, Roujeau J-C . Clinical classification of cases of toxic epidermal necrolysis, Stevens-Johnson syndrome, and erythema multiforme. Arch Dermatol 1993; 129: 92–96.

    Article  CAS  Google Scholar 

  4. Lin MS, Dai YS, Pwu RF, Chen YH, Chang NC . Risk estimates for drugs suspected of being associated with Stevens-Johnson syndrome and toxic epidermal necrolysis: a case-control study. Intern Med J 2005; 35: 188–190.

    Article  Google Scholar 

  5. Mockenhaupt M, Viboud C, Dunant A, Naldi L, Halevy S, Bouwes Bavinck JN et al. Stevens-Johnson syndrome and toxic epidermal necrolysis: assessment of medication risks with emphasis on recently marketed drugs. The EuroSCAR-study. J Invest Dermatol 2008; 128: 35–44.

    Article  CAS  Google Scholar 

  6. Chung W-H, Hung S-I, Hong H-S, Hsih M-S, Yang L-C, Ho H-C et al. Medical genetics: a marker for Stevens-Johnson syndrome. Nature 2004; 428: 486.

    Article  CAS  Google Scholar 

  7. Lonjou C, Thomas L, Borot N, Ledger N, de Toma C, LeLouet H et al. A marker for Stevens-Johnson syndrome: ethnicity matters. Pharmacogenomics J 2006; 6: 265–268.

    Article  CAS  Google Scholar 

  8. Hung SI, Chung WH, Jee SH, Chen WC, Chang YT, Lee WR et al. Genetic susceptibility to carbamazepine-induced cutaneous adverse drug reactions. Pharmacogenet Genomics 2006; 16: 297–306.

    Article  CAS  Google Scholar 

  9. Man CB, Kwan P, Baum L, Yu E, Lau KM, Cheng AS et al. Association between HLA-B*1502 allele and antiepileptic drug-induced cutaneous reactions in Han Chinese. Epilepsia 2007; 48: 1015–1018.

    Article  CAS  Google Scholar 

  10. Roujeau JC, Huynh TN, Bracq C, Guillaume JC, Revuz J, Touraine R . Genetic susceptibility to toxic epidermal necrolysis. Arch Dermatol 1987; 123: 1171–1173.

    Article  CAS  Google Scholar 

  11. Halevy S, Ghislain PD, Mockenhaupt M, Fagot JP, Bouwes Bavinck JN, Sidoroff A et al. Allopurinol is the most common cause of Stevens-Johnson syndrome and toxic epidermal necrolysis in Europe and Israel. J Am Acad Dermatol 2008; 58: 25–32.

    Article  Google Scholar 

  12. Lonjou C, Borot N, Sekula P, Ledger N, Thomas L, Halevy S et al. A European study of HLA-B in Stevens-Johnson syndrome and toxic epidermal necrolysis related to five high-risk drugs. Pharmacogenet Genomics 2008; 18: 99–107.

    Article  CAS  Google Scholar 

  13. Hung SI, Chung WH, Liou LB, Chu CC, Lin M, Huang HP et al. HLA-B*5801 allele as a genetic marker for severe cutaneous adverse reactions caused by allopurinol. Proc Natl Acad Sci USA 2005; 102: 4134–4139. Epub 2005 Mar 4132.

    Article  CAS  Google Scholar 

  14. Ueta M, Sotozono C, Tokunaga K, Yabe T, Kinoshita S . Strong association between HLA-A*0206 and Stevens-Johnson syndrome in the Japanese. Am J Ophthalmol 2007; 143: 367–368.

    Article  CAS  Google Scholar 

  15. Pirmohamed M, Arbuckle JB, Bowman CE, Brunner M, Burns DK, Delrieu O et al. Investigation into the multidimensional genetic basis of drug-induced Stevens-Johnson syndrome and toxic epidermal necrolysis. Pharmacogenomics 2007; 8: 1661–1691.

    Article  CAS  Google Scholar 

  16. Kazeem GR, Cox C, Aponte J, Messenheimer J, Brazell C, Nelsen AC et al. High-resolution HLA genotyping and severe cutaneous adverse reactions in lamotrigine-treated patients. Pharmacogenet Genomics 2009; 19: 661–665.

    Article  CAS  Google Scholar 

  17. The International HapMap 3 Consortium. Integrating common and rare genetic variation in diverse human populations. Nature 2010; 467: 52–58.

    Article  Google Scholar 

  18. Daly AK, Donaldson PT, Bhatnagar P, Shen Y, Pe′er I, Floratos A et al. HLA-B*5701 genotype is a major determinant of drug-induced liver injury due to flucloxacillin. Nat Genet 2009; 41: 816–819.

    Article  CAS  Google Scholar 

  19. Purcell S . PLINK v 1.05.

  20. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  Google Scholar 

  21. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D . Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904–909.

    Article  CAS  Google Scholar 

  22. Novembre J, Johnson T, Bryc K, Kutalik Z, Boyko AR, Auton A et al. Genes mirror geography within Europe. Nature 2008; 456: 98–101.

    Article  CAS  Google Scholar 

  23. R Development Core Team. R. A Language and Environment for Statistical Computing, vol. 1. Vienna Austria R Foundation for Statistical Computing, 2009. Available from http://www.r-project.org.

  24. Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 2007; 17: 1665–1674.

    Article  CAS  Google Scholar 

  25. Need AC, Ge D, Weale ME, Maia J, Feng S, Heinzen EL et al. A genome-wide investigation of SNPs and CNVs in schizophrenia. PLoS Genet 2009; 5: e1000373.

    Article  Google Scholar 

  26. Walsh T, McClellan JM, McCarthy SE, Addington AM, Pierce SB, Cooper GM et al. Rare structural variants disrupt multiple genes in neurodevelopmental pathways in schizophrenia. Science 2008; 320: 539–543.

    Article  CAS  Google Scholar 

  27. Nelson MR, Bryc K, King KS, Indap A, Boyko AR, Novembre J et al. The population reference sample, POPRES: a resource for population, disease, and pharmacological genetics research. Am J Hum Genet 2008; 83: 347–358.

    Article  CAS  Google Scholar 

  28. Wellcome trust case control consortium—phase 2, downloaded from http://www.ebi.ac.uk/ega/page.php.

  29. Nelson MR, Bacanu SA, Mosteller M, Li L, Bowman CE, Roses AD et al. Genome-wide approaches to identify pharmacogenetic contributions to adverse drug reactions. Pharmacogenomics J 2009; 9: 23–33.

    Article  CAS  Google Scholar 

  30. Fukata Y, Adesnik H, Iwanaga T, Bredt DS, Nicoll RA, Fukata M . Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 2006; 313: 1792–1795.

    Article  CAS  Google Scholar 

  31. Jacobsson JA, Haitina T, Lindblom J, Fredriksson R . Identification of six putative human transporters with structural similarity to the drug transporter SLC22 family. Genomics 2007; 90: 595–609.

    Article  CAS  Google Scholar 

  32. Rizwan A, Burckhardt G . Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res 2007; 24: 450–470.

    Article  CAS  Google Scholar 

  33. Dinauer MC . Regulation of neutrophil function by Rac GTPases. Curr Opin Hematol 2003; 10: 8–15.

    Article  CAS  Google Scholar 

  34. Zhao T, Nalbant P, Hoshino M, Dong X, Wu D, Bokoch GM . Signaling requirements for translocation of P-Rex1, a key Rac2 exchange factor involved in chemoattractant-stimulated human neutrophil function. J Leukoc Biol 2007; 81: 1127–1136.

    Article  CAS  Google Scholar 

  35. Aktas E, Kucuksezer UC, Bilgic S, Erten G, Deniz G . Relationship between CD107a expression and cytotoxic activity. Cell Immunol 2009; 254: 149–154.

    Article  CAS  Google Scholar 

  36. Grutzkau A, Smorodchenko A, Lippert U, Kirchhof L, Artuc M, Henz BM . LAMP-1 and LAMP-2, but not LAMP-3, are reliable markers for activation-induced secretion of human mast cells. Cytometry A 2004; 61: 62–68.

    Article  Google Scholar 

  37. Dani A, Chaudhry A, Mukherjee P, Rajagopal D, Bhatia S, George A et al. The pathway for MHCII-mediated presentation of endogenous proteins involves peptide transport to the endo-lysosomal compartment. J Cell Sci 2004; 117: 4219–4230.

    Article  CAS  Google Scholar 

  38. Delamarre L, Pack M, Chang H, Mellman I, Trombetta ES . Differential lysosomal proteolysis in antigen-presenting cells determines antigen fate. Science 2005; 307: 1630–1634.

    CAS  PubMed  Google Scholar 

  39. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG et al. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 2008; 456: 53–59.

    Article  CAS  Google Scholar 

  40. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 2005; 437: 376–380.

    Article  CAS  Google Scholar 

  41. Wang J, Wang W, Li R, Li Y, Tian G, Goodman L et al. The diploid genome sequence of an Asian individual. Nature 2008; 456: 60–65.

    Article  CAS  Google Scholar 

  42. Ng SB, Turner EH, Robertson PD, Flygare SD, Bigham AW, Lee C et al. Targeted capture and massively parallel sequencing of 12 human exomes. Nature 2009; 461: 272–276.

    Article  CAS  Google Scholar 

  43. Ng SB, Buckingham KJ, Lee C, Bigham AW, Tabor HK, Dent KM et al. Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 2010; 42: 30–35.

    Article  CAS  Google Scholar 

  44. Lupski JR, Reid JG, Gonzaga-Jauregui C, Rio Deiros D, Chen DCY, Nazareth L et al. Whole-genome sequencing in a patient with Charcot-Marie-Tooth neuropathy. N Engl J Med 2010; 362: 1181–1191.

    Article  CAS  Google Scholar 

  45. Roach JC, Glusman G, Smit AF, Huff CD, Hubley R, Shannon PT et al. Analysis of genetic inheritance in a family quartet by whole-genome sequencing. Science 2010; 328: 636–639.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Arthur L Holden (Serious Adverse Events Consortium) Brian Spear (Abbott), Joe Walker (Daiichi-Sankyo), Lon Cardon (GlaxoSmithKline), Vincent Mooser (GlaxoSmithKline), Nadine Cohen (Johnson & Johnson), Joanne Meyer (Novartis) Klaus Lindpaintner (Roche), Robert Dix (Sanofi-Aventis), Leonardo Sahelijo (Takeda), Michael Dunn (Wellcome Trust), and Michael E Burczynski (Wyeth) for their support. We also thank Bernd Jagla for his early contribution to the project. We also thank Julian Arbuckle and Clive Bowman for their contribution in recruiting the SJS–TEN cohort from study PGX40001, and all the clinicians who recruited cases and controls to the study, and all the patients who contributed DNA for the study. This work was funded by the International Serious Adverse Events Consortium.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding authors

Correspondence to M R Nelson or I Pe'er.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Y., Nicoletti, P., Floratos, A. et al. Genome-wide association study of serious blistering skin rash caused by drugs. Pharmacogenomics J 12, 96–104 (2012). https://doi.org/10.1038/tpj.2010.84

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2010.84

Keywords

This article is cited by

Search

Quick links