Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Clinical Implications
  • Published:

Association of SUMO1 and UBC9 genotypes with tumor response in non-small-cell lung cancer treated with irinotecan-based chemotherapy

Abstract

Irinotecan induces small ubiquitin-like modifier (SUMO)-1 conjugation to topoisomerase-I, leading to enhanced sensitivity to irinotecan. In this study, we genotyped SUMO1 and UBC9 polymorphisms in 147 non-small-cell lung cancer (NSCLC) treated with irinotecan chemotherapy to investigate the association between genotypes and tumor response rate. Immunohistochemistry for SUMO1 and UBC9 was performed in 42 tumor samples and correlated with genotypes. The UBC9 10920CG genotype was associated with significantly higher response rate than the C/C genotype (81 vs 37%, P=0.0002). This predictive effect on tumor response was also seen in multivariate analysis (odds ratio=8.5, P=0.003). Moreover, tumors arising from the UBC9 10920CG genotype were associated with higher prevalence of SUMO1 overexpression compared with those with CC genotype (78 vs 31%, P=0.021). This finding suggests that the UBC9 10920CG genotype enhances sensitivity to irinotecan chemotherapy in advanced NSCLC through upregulation of SUMO1 in tumor cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pommier Y . Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 2006; 6: 789–802.

    Article  CAS  PubMed  Google Scholar 

  2. Pommier Y, Pourquier P, Urasaki Y, Wu J, Laco GS . Topoisomerase I inhibitors: selectivity and cellular resistance. Drug Resist Updat 1999; 2: 307–318.

    Article  CAS  PubMed  Google Scholar 

  3. Xu Y, Villalona-Calero MA . Irinotecan: mechanisms of tumor resistance and novel strategies for modulating its activity. Ann Oncol 2002; 13: 1841–1851.

    Article  CAS  PubMed  Google Scholar 

  4. Rasheed ZA, Rubin EH . Mechanisms of resistance to topoisomerase I-targeting drugs. Oncogene 2003; 22: 7296–7304.

    Article  CAS  PubMed  Google Scholar 

  5. Liao Z, Robey RW, Guirouilh-Barbat J, To KK, Polgar O, Bates SE et al. Reduced expression of DNA topoisomerase I in SF295 human glioblastoma cells selected for resistance to homocamptothecin and diflomotecan. Pharmacol 2008; 73: 490–497.

    CAS  Google Scholar 

  6. Kanzawa F, Sugimoto Y, Minato K, Kasahara K, Bungo M, Nakagawa K et al. Establishment of a camptothecin analogue (CPT-11)-resistant cell line of human non-small cell lung cancer: characterization and mechanism of resistance. Cancer Res 1990; 50: 5919–5924.

    CAS  PubMed  Google Scholar 

  7. Sugimoto Y, Tsukahara S, Oh-hara T, Isoe T, Tsuruo T . Decreased expression of DNA topoisomerase I in camptothecin-resistant tumor cell lines as determined by a monoclonal antibody. Cancer Res 1990; 50: 6925–6930.

    CAS  PubMed  Google Scholar 

  8. Desai SD, Liu LF, Vazquez-Abad D, D’Arpa P . Ubiquitin-dependent destruction of topoisomerase I is stimulated by the antitumor drug camptothecin. J Biol Chem 1997; 272: 24159–24164.

    Article  CAS  PubMed  Google Scholar 

  9. Desai SD, Li TK, Rodriguez-Bauman A, Rubin EH, Liu LF . Ubiquitin/26S proteasome-mediated degradation of topoisomerase I as a resistance mechanism to camptothecin in tumor cells. Cancer Res 2001; 61: 5926–5932.

    CAS  PubMed  Google Scholar 

  10. Geiss-Friedlander R, Melchior F . Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol 2007; 8: 947–956.

    Article  CAS  PubMed  Google Scholar 

  11. Desterro JM, Thomson J, Hay RT . Ubch9 conjugates SUMO but not ubiquitin. FEBS Lett 1997; 417: 297–300.

    Article  CAS  PubMed  Google Scholar 

  12. Horie K, Tomida A, Sugimoto Y, Yasugi T, Yoshikawa H, Taketani Y et al. SUMO-1 conjugation to intact DNA topoisomerase I amplifies cleavable complex formation induced by camptothecin. Oncogene 2002; 21: 7913–7922.

    Article  CAS  PubMed  Google Scholar 

  13. Mo YY, Yu Y, Shen Z, Beck WT . Nucleolar delocalization of human topoisomerase I in response to topotecan correlates with sumoylation of the protein. J Biol Chem 2002; 277: 2958–2964.

    Article  CAS  PubMed  Google Scholar 

  14. Jacquiau HR, van Waardenburg RC, Reid RJ, Woo MH, Guo H, Johnson ES et al. Defects in SUMO (small ubiquitin-related modifier) conjugation and deconjugation alter cell sensitivity to DNA topoisomerase I-induced DNA damage. J Biol Chem 2005; 280: 23566–23575.

    Article  CAS  PubMed  Google Scholar 

  15. Yang M, Hsu CT, Ting CY, Liu LF, Hwang J . Assembly of a polymeric chain of SUMO1 on human topoisomerase I in vitro. J Biol Chem 2006; 281: 8264–8274.

    Article  CAS  PubMed  Google Scholar 

  16. Mao Y, Sun M, Desai SD, Liu LF . SUMO-1 conjugation to topoisomerase I: a possible repair response to topoisomerase-mediated DNA damage. Proc Natl Acad Sci USA 2000; 97: 4046–4051.

    Article  CAS  PubMed  Google Scholar 

  17. Mo YY, Yu Y, Ee PL, Beck WT . Overexpression of a dominant-negative mutant Ubc9 is associated with increased sensitivity to anticancer drugs. Cancer Res 2004; 64: 2793–2798.

    Article  CAS  PubMed  Google Scholar 

  18. Innocenti F, Undevia SD, Iyer L, Chen PX, Das S, Kocherginsky M et al. Genetic variants in the UDP-glucuronosyltransferase 1A1 gene predict the risk of severe neutropenia of irinotecan. J Clin Oncol 2004; 22: 1382–1388.

    Article  CAS  PubMed  Google Scholar 

  19. Hoskins JM, Goldberg RM, Qu P, Ibrahim JG, McLeod HL . UGT1A1*28 genotype and irinotecan-induced neutropenia: dose matters. J Natl Cancer Inst 2007; 99: 1290–1295.

    Article  CAS  PubMed  Google Scholar 

  20. Han JY, Lim HS, Shin ES, Yoo YK, Park YH, Lee JE et al. Comprehensive analysis of UGT1A polymorphisms predictive for pharmacokinetics and treatment outcome in patients with non-small-cell lung cancer treated with irinotecan and cisplatin. J Clin Oncol 2006; 24: 2237–2244.

    Article  CAS  PubMed  Google Scholar 

  21. de Jong FA, Scott-Horton TJ, Kroetz DL, McLeod HL, Friberg LE, Mathijssen RH et al. Irinotecan-induced diarrhea: functional significance of the polymorphic ABCC2 transporter protein. Clin Pharmacol Ther 2007; 81: 42–49.

    Article  CAS  PubMed  Google Scholar 

  22. Sai K, Kaniwa N, Itoda M, Saito Y, Hasegawa R, Komamura K et al. Haplotype analysis of ABCB1/MDR1 blocks in a Japanese population reveals genotype-dependent renal clearance of irinotecan. Pharmacogenetics 2003; 13: 741–757.

    Article  CAS  PubMed  Google Scholar 

  23. Takane H, Miyata M, Burioka N, Kurai J, Fukuoka Y, Suyama H et al. Severe toxicities after irinotecan-based chemotherapy in a patient with lung cancer: a homozygote for the SLCO1B1*15 allele. Ther Drug Monit 2007; 29: 666–668.

    Article  PubMed  Google Scholar 

  24. Han JY, Lim HS, Yoo YK, Shin ES, Park YH, Lee SY et al. Associations of ABCB1, ABCC2, and ABCG2 polymorphisms with irinotecan-pharmacokinetics and clinical outcome in patients with advanced non-small cell lung cancer. Cancer 2007; 110: 138–147.

    Article  PubMed  Google Scholar 

  25. Han JY, Lim HS, Park YH, Lee SY, Lee JS . Lung Cancer. Integrated pharmacogenetic prediction of irinotecan pharmacokinetics and toxicity in patients with advanced non-small cell lung cancer. Lung Cancer 2009; 63: 115–120.

    Article  PubMed  Google Scholar 

  26. Han SS, Cho EY, Lee TS, Kim JW, Park NH, Song YS et al. Interleukin-12 p40 gene (IL12B) polymorphisms and the risk of cervical cancer in Korean women. Eur J Obstet Gynecol Reprod Biol 2008; 140: 71–75.

    Article  CAS  PubMed  Google Scholar 

  27. Romanenko AM, Kinoshita A, Wanibuchi H, Wei M, Zaparin WK, Vinnichenko WI et al. Involvement of ubiquitination and sumoylation in bladder lesions induced by persistent long-term low dose ionizing radiation in humans. J Urol 2006; 175: 739–743.

    Article  CAS  PubMed  Google Scholar 

  28. Braun MS, Richman SD, Quirke P, Daly C, Adlard JW, Elliott F et al. Predictive biomarkers of chemotherapy efficacy in colorectal cancer: results from the UK MRC FOCUS trial. J Clin Oncol 2008; 26: 2690–2698.

    Article  CAS  PubMed  Google Scholar 

  29. van Waardenburg RC, de Jong LA, van Eijndhoven MA, Verseyden C, Pluim D, Jansen LE et al. Platinated DNA adducts enhance poisoning of DNA topoisomerase I by camptothecin. J Biol Chem 2004; 279: 54502–54509.

    Article  CAS  PubMed  Google Scholar 

  30. Cusack Jr JC, Liu R, Houston M, Abendroth K, Elliott PJ, Adams J et al. Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 2001; 61: 3535–3540.

    CAS  Google Scholar 

  31. Desterro JM, Rodriguez MS, Hay RT . SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 1998; 2: 233–239.

    Article  CAS  PubMed  Google Scholar 

  32. Gostissa M, Hengstermann A, Fogal V, Sandy P, Schwarz SE, Scheffner M et al. Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J 1999; 18: 6462–6471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Rodriguez MS, Desterro JM, Lain S, Midgley CA, Lane DP, Hay RT . SUMO-1 modification activates the transcriptional response of p53. EMBO J 1999; 18: 6455–6461.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from National Cancer Center 0810130-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Youn Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, JY., Lee, G., Yoo, S. et al. Association of SUMO1 and UBC9 genotypes with tumor response in non-small-cell lung cancer treated with irinotecan-based chemotherapy. Pharmacogenomics J 10, 86–93 (2010). https://doi.org/10.1038/tpj.2009.46

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2009.46

Keywords

This article is cited by

Search

Quick links