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Serum kynurenic acid is reduced in affective psychosis
BE Wurfel1,2, WC Drevets3, SA Bliss2, JR McMillin2, H Suzuki1, BN Ford1, HM Morris1, TK Teague2,4,5,6, R Dantzer7 and JB Savitz1,8

A subgroup of individuals with mood and psychotic disorders shows evidence of inflammation that leads to activation of the
kynurenine pathway and the increased production of neuroactive kynurenine metabolites. Depression is hypothesized to be
causally associated with an imbalance in the kynurenine pathway, with an increased metabolism down the 3-hydroxykynurenine
(3HK) branch of the pathway leading to increased levels of the neurotoxic metabolite, quinolinic acid (QA), which is a putative N-
methyl-D-aspartate (NMDA) receptor agonist. In contrast, schizophrenia and psychosis are hypothesized to arise from increased
metabolism of the NMDA receptor antagonist, kynurenic acid (KynA), leading to hypofunction of GABAergic interneurons, the
disinhibition of pyramidal neurons and striatal hyperdopaminergia. Here we present results that challenge the model of excess
KynA production in affective psychosis. After rigorous control of potential confounders and multiple testing we find significant
reductions in serum KynA and/or KynA/QA in acutely ill inpatients with major depressive disorder (N= 35), bipolar disorder (N= 53)
and schizoaffective disorder (N= 40) versus healthy controls (N= 92). No significant difference was found between acutely ill
inpatients with schizophrenia (n= 21) and healthy controls. Further, a post hoc comparison of patients divided into the categories of
non-psychotic affective disorder, affective psychosis and psychotic disorder (non-affective) showed that the greatest decrease in
KynA was in the affective psychosis group relative to the other diagnostic groups. Our results are consistent with reports of
elevations in proinflammatory cytokines in psychosis, and preclinical work showing that inflammation upregulates the enzyme,
kynurenine mono-oxygenase (KMO), which converts kynurenine into 3-hydroxykynurenine and quinolinic acid.
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INTRODUCTION
Elevations in circulating levels of proinflammatory mediators, a
phenomenon usually associated with ‘systemic low-grade inflam-
mation’ is observed across several psychiatric disorders including
major depressive disorder (MDD),1–3 bipolar disorder (BD),
schizophrenia and other psychotic disorders.4–9 While this
inflammatory profile can arise secondary to comorbid medical
conditions, infections, stress, obesity or lifestyle factors, there is
evidence that at least in some individuals, inflammation could be
a causal mechanism underlying depression or psychosis. Notably,
prospective studies have shown a positive association between
circulating levels of C-reactive protein (CRP) or interleukin 6 (IL-6)
concentrations at baseline and the development of de novo cases
of MDD,10,11 BD12 and psychosis.11 Furthermore, immunotherapy
of hepatitis C or melanoma with interferon alpha or IL-2 induces a
depressive episode in about 30–40% of patients.13–16

The biological mechanisms by which inflammatory mediators
cause depression and psychotic illness are only partially under-
stood. Cytokines and other inflammatory molecules affect
serotonergic, dopaminergic and glutamatergic
neurotransmission.17,18 At the circuit level, these alterations in
neurotransmission can alter the function of the visceromotor
network including the ventromedial prefrontal cortex (PFC), insula
and hippocampus19–21 and additionally may induce hypoactivity
of a ‘reward network’ centered on the ventral striatum.22–24

Activation of a key immunoregulatory network, the kynurenine

pathway also could be crucial. Two landmark papers showed that
lipopolysaccharide (LPS) does not cause depression-like behavior
in rodents when the activation of the kynurenine pathway is
genetically or pharmacologically blocked even when the levels of
proinflammatory cytokines remain elevated.25,26 Interferon
gamma (IFNγ) and to a lesser extent other cytokines such as
tumor necrosis factor alpha (TNF) activate the kynurenine pathway
by increasing expression of the enzyme, indoleamine-2,3-dioxy-
genase (IDO) that converts tryptophan to kynurenine. Originally it
was hypothesized that activation of the kynurenine pathway led
to depression by depleting tryptophan and serotonin in the
brain.27–29 However, LPS causes an increase in tryptophan and
serotonin turnover in the brains of rodents,30 and the depressive
effects of LPS can be blocked with the IDO inhibitor, 1-methyl-
tryptophan, without affecting brain tryptophan and serotonin
turnover.25

Myint and Kim proposed that it is the balance between
neurotoxic and neuroprotective metabolites rather than the
reduction in tryptophan that is central to the pathogenesis of
depressive illness.31 This hypothesis has been supported by
subsequent empirical studies.32–36 Kynurenine is metabolized
along two mutually exclusive pathways to form either kynurenic
acid (KynA) or alternatively, 3-hydroxykynurenine (3HK), 3-
hydroxyanthrallic acid (3-HAA) and quinolinic acid (QA)37–39

(Supplementary Figure S1). Under physiological conditions
approximately equal amounts of 3HK and KynA are produced
from kynurenine.40 However, under inflammatory conditions, the
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production of 3HK and its metabolites are favored.32,35,41,42 The
metabolites in the ‘QA-pathway’, especially 3HK and QA are often
described as ‘neurotoxic’ and ‘gliotoxic’. For instance, 3HK is
capable of inducing oxidative stress, mitochondrial stress and cell
death,43 while QA, which is produced by microglia and macro-
phages exerts neurotoxic effects through multiple different
mechanisms, including activation of the N-methyl-D-aspartate
(NMDA) receptor.44,45 In contrast, KynA is thought to be an
astrocyte-derived metabolite that among other roles, acts as an
endogenous competitive antagonist of ionotropic excitatory
amino-acid receptors including the NMDA receptor, and also acts
as an antagonist of α7 nicotinic receptors.39,44

In line with the original model by Myint and Kim,31 we and
others have reported increases in neurotoxic metabolites and/or
decreases in KynA in the blood36,46,47 and cerebrospinal fluid
(CSF)48,49 of MDD patients. However, the data are less consistent in
the case of BD,50–54 and in schizophrenia, there is evidence for an
increase in KynA levels in the blood,55 postmortem brain56 and the
CSF.57–59

However, it is still unclear why a difference in the pattern of
kynurenine pathway metabolism should exist between depression
and psychosis/schizophrenia when inflammation appears com-
mon to both disorders. In the case of depression, excess
production of 3HK and QA is thought to exert toxic effects via
numerous mechanisms including free radical formation, impair-
ment of mitochondrial function, induction of DNA damage,
potentiation of neuronal glutamate release, inhibition of the
astrocytic reuptake of glutamate, disruption of the blood–brain
barrier and destabilization of the cellular cytoskeleton.43,45 On the
other hand, one mechanism underlying schizophrenia and
psychosis more generally, is thought to involve an increased
capacity for dopamine synthesis and presynaptic dopamine
release, leading to an excess of striatal dopaminergic neurotrans-
mission together with cortical hypodopaminergia.60,61 Subse-
quently, this model was elaborated to account for the
psychotomimetic effects of non-competitive NMDA receptor
antagonists like phencyclidine (PCP) and ketamine, leading to
the hypothesis that psychosis and/or schizophrenia is under-
pinned by NMDA receptor hypofunction acting on GABAergic
interneurons and leading to the disinhibition of pyramidal
neurons (including projections onto midbrain dopamine neurons),
downstream excitotoxicity and striatal hyperdopaminergia.62,63 In
an elegant series of animal studies, Schwarcz, Erhardt and
colleagues have demonstrated that similar to NMDA receptor
antagonists such as phencyclidine and ketamine, increases in the
endogenous NMDA antagonist, KynA, produces cognitive abnorm-
alities that theoretically model clinical aspects of
schizophrenia.64–66

In summary, although inflammatory processes are common to
depression, affective psychosis and schizophrenia, the prevailing
model of how activation of the kynurenine pathway contributes to
these disorders is very different. Depression is believed to arise
from the excess production of neurotoxic QA-pathway metabo-
lites together with a reduction in KynA,32,36,37,46 while in contrast,
psychosis and schizophrenia are thought to be driven by increases
in KynA.39,54,67 This ‘double dissociation’ is very interesting in light
of the continued debate about the veracity of current diagnostic
categories and the present trend towards the study of cross-
disorder phenotypes (for example, Research Domain Criteria
program).68

The central question that we address in this study is: where do
patients with affective psychosis (that is, MDD with psychosis, BD
with psychosis and schizoaffective disorder) fall on the
kynurenine-pathway spectrum, that is, closer to MDD (without
psychosis) or closer to schizophrenia? This is an important
question because the existence of a reversed KynA/QA ratio in
patients with affective psychosis versus patients with schizophre-
nia would not only have implications for understanding

pathophysiology, but could potentially have utility as a non-
invasive diagnostic, prognostic and treatment biomarker.

MATERIALS AND METHODS
Participants
The study was approved by the Western Institutional Review Board. All
subjects were deemed capable of providing informed consent by the
treating psychiatrist, and provided written consent prior to participation in
the research.
Subjects were recruited from the adult acute inpatient unit at the

Laureate Psychiatric Clinic & Hospital, in Tulsa, OK, and received a state-of-
the-art psychiatric evaluation and DSM-IV diagnosis from a board-certified
psychiatrist. Where possible, symptom severity was measured with the
Hamilton Depression Scale (Ham-D), Young Mania Rating Scale (YMRS), Brief
Psychiatric Rating Scale Expanded Version 4.0 (BPRS) and CORE Assessment
of Psychomotor Change. In some cases (Table 1) the assessments could not
be completed because the patients were too ill. Potential participants were
excluded if their hospital admission was caused by substance abuse/
dependence or if a comorbid medical illness was suspected to induce the
mood or psychotic symptoms. Comorbid medical conditions by themselves
were not considered exclusionary since their frequency is significantly
elevated in severely-ill psychiatric populations.69,70 No kynurenine data
from these subjects have been previously published.
Healthy controls were recruited from the surrounding community and

were interviewed with the Structured Clinical Interview for DSM-IV-TR and
the Family Interview for Genetic Studies. The following exclusion criteria
applied to healthy controls: a personal history of a psychiatric illness; a first-
degree relative with a mood or psychotic disorder; medical conditions or
concomitant medications likely to influence central nervous system or
immunological function including cardiovascular, respiratory, endocrine
and neurological diseases and a history of drug or alcohol abuse within
6 months or a history of drug or alcohol dependence within 1 year (DSM-
IV-TR criteria).
Morning fasting blood samples were obtained from inpatients and

healthy controls and stored in BD Vacutainer serum tubes and processed
according to the standard BD Vacutainer protocol. Samples for high-
sensitivity C-reactive protein (hs-CRP) were measured immunoturbidime-
trically with the Kamiya Biomedical K-Assay in the Saint Francis
Hospital Clinical Laboratory. Serum samples for tryptophan (TRP), KYN,
KynA, QA, and 3HK were stored at − 80 °C and analyzed in two
separate batches blind-to-diagnosis by Brains Online, LLC. The concentra-
tions were determined by high-performance liquid chromatography
(HPLC) followed by tandem mass spectrometry (MS/MS) using their
standard protocols.

Statistical analysis
Statistical analysis was performed using SYSTAT 13. Deviations from
normality were tested using Shapiro–Wilk and Anderson-Darling Statistics
and non-normally distributed variables were log normalized. Between
group differences in kynurenine pathway metabolites and CRP were tested
with two separate multiple analysis of covariance (MANCOVAs), one with
CRP and the individual kynurenine metabolites as dependent variables,
and the other with Kyn/Trp, KynA/3HK and KynA/QA as dependent
variables. The use of these ratios for assessing IDO activation and the
neurotoxic imbalance has already been justified.34,46,50,71–73 Two separate
MANCOVAs had to be performed because the ratios are not independent
of the individual metabolites and therefore cannot be run in the same
model. For both MANCOVAs, age, sex, body mass index (BMI) and batch
were used as covariates (Table 1). Where one or more of the dependent
variables were significant in the omnibus test, univariate analysis of
varinces (ANOVAs) and pairwise testing with Bonferroni correction for
multiple testing were performed to identify which diagnostic groups
differed from each other. Specifically, we adjusted the statistical threshold
for 9 comparisons: CRP, 5 kynurenine metabolites and 3 ratios (P⩽ 0.006).
Pearson correlation coefficient and linear least-square regressions were
performed to assess the associations between the statistically significant
kynurenine pathway metabolites and/or ratios and the psychiatric rating
scales.
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RESULTS
All of the immune markers were non-normally distributed and
were therefore log normalized prior to the use of parametric
statistics.
The MANCOVA for CRP, TRP, kynurenine, KynA, 3HK and QA

revealed a significant group effect (Wilk’s λ= 0.834, F20,757 = 2.13,
P= 0.003). Follow-up analysis of covariance with sex, age, BMI and
batch as covariates, showed that KynA differed across groups (F4,
232 = 7.17, Po0.001) after correction for multiple comparisons,
with significant reductions in MDD (P= 0.042), BD (P= 0.001) and
schizoaffective disorder (SzA; Po0.001) compared with HCs
(Table 1 and Figure 1). CRP concentrations were not significantly
different across groups in the omnibus ANOVA (F4, 219 = 2.24,
P= 0.066) although when follow-up t-tests were performed there
were either significantly lower or a trend towards significantly
lower CRP concentrations in the healthy control group versus the
MDD (t111 = 2.9, P= 0.005), BD (t129 = 2.2, P= 0.030), SzA (t118 = 1.8,
P= 0.071) but not schizophrenia (t95 = 0.2, P= 0.818) groups.
The MANCOVA analysis for KYN/TRP, KynA/3HK and KynA/QA

also revealed a significant group effect (Wilk’s λ= 0.872, F12,
608 = 2.69, P= 0.002). Follow-up analysis of covariance with sex,
age, BMI and batch as covariates, showed that KYN/TRP did not
significantly differ across groups, however, KynA/3HK (F4,
232 = 3.70, P= 0.006) was significantly reduced in schizoaffective
disorder versus healthy controls (P= 0.004) and KynA/QA (F4,
232 = 5.81, Po0.001) was significantly reduced in the MDD
(P= 0.029), BD (P= 0.004) and the schizoaffective disorder
(P= 0.001) groups compared with healthy controls (Table 1 and
Figure 1).
Neither KynA, KynA/3HK, nor KynA/QA correlated significantly

with depression or mania rating scale scores in the schizoaffective
disorder and BD groups.
The MANCOVA analyses for determining differences between

the patient groups in KYN/TRP, KynA/3HK and KynA/QA and the
individual kynurenine metabolites according to the potential
confounds, urine drug screen (positive versus negative), compre-
hensive metabolic panel (abnormality versus no abnormality),
tobacco use (yes versus no), concurrent anti-depressant drug use
(yes versus no), concurrent anti-psychotic drug use (yes versus no),
concurrent anti-convulsant drug use (yes versus no) and
concurrent anxiolytic drug use (yes versus no) were all non-
significant. Further, there was no significant difference in the
concentrations of kynurenine pathway metabolites between the
patients who presented with significant suicidal ideation versus
those who did not present with significant suicidal ideation as
determined by the treating psychiatrists. As an example, a visual
representation of the data for KynA/QA is shown in
Supplementary Figures S2 and S3.
Next we tested the relationship between inflammation (indexed

by CRP) and the kynurenine metabolites. In the combined sample
there were significant correlations between CRP and Kyn/Trp
(rs = 0.29, Po0.001), 3HK (rs = 0.25, Po0.001), QA (rs = 0.21,
P= 0.002), 3HK/Kyn (a potential surrogate marker of KMO activity,
rs = 0.14, Po0.034), as well as both KynA/3HK (rs = − 0.18,
P= 0.006) and KynA/QA (rs = − 0.15, P= 0.026; Table 2). In contrast,
there were no significant correlations between KynA and CRP (rs =
0.02, P= 0.725) or KynA/Kyn (a potential surrogate marker of KAT
enzyme activity, rs = − 0.1, P= 0.145).
In exploratory analyses we categorized the patients into

affective disorder (non-psychotic), affective psychosis and psy-
chotic disorder (non-affective) groups in place of the standard
DSM-IV categorizations (Supplementary Table S1 and Figure 2).
First, the principal findings were that KynA differed between the
groups (F3, 233 = 9.69, Po0.001) with both the affective disorder
(P= 0.017) and affective psychosis groups showing reduced levels
of KynA compared with healthy controls (Po0.001). Second,
KynA/3HK (F3,233 = 6.07, Po0.001) was significantly reduced inTa
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affective psychosis versus affective disorder (P= 0.017) and
affective psychosis versus healthy controls (Po0.001). Similarly,
KynA/QA differed across groups (F3,233 = 7.55, Po0.001) and was
significantly reduced in the affective disorder (P= 0.035) and
affective psychosis (Po0.001) groups compared with healthy
controls (details are provided in Supplementary Table S1).
We also performed an additional secondary analysis to evaluate

the effect of phase of illness in BD on CRP and kynurenine
metabolite concentrations. No significant differences between BD
patients with a current depressive (n= 15), manic (n= 25) or mixed

episode (n= 10) were found after controlling for age, sex and BMI
(Wilk’s λ= 0.850, F6,40 = 1.18, P= 0.336). Similarly, there were no
significant group differences in Kyn/Trp, KynA/3HK and KynA/QA
(Wilk’s λ= 0.862, F3,43 = 2.30, P= 0.091).

DISCUSSION
Here we report significantly lower KynA/3HK and KynA/QA ratios
in acutely ill BD and/or schizoaffective disorder patients (and all
affective psychosis patients combined). This effect was driven by a
reduction in KynA concentration. These findings remained
significant after applying a Bonferroni correction for multiple
testing. The results also remained significant with and without
statistically controlling for age, sex and BMI, and were not
significantly affected by concurrent medication use, nicotine use,
drugs of abuse and biochemical abnormalities assessed with a
comprehensive metabolic panel. Further, we observed a reduction
in KynA and KynA/QA in patients with MDD that replicated our
previous results in independent samples of MDD outpatients.34,46

Although CRP concentrations were not significantly different
across groups in the omnibus ANOVA, the mean CRP score of the
healthy control group was ~ 3 mg l− 1 lower than both the MDD
and BD groups, and 3.6 mg/l lower than the schizoaffective
disorder group (Table 1). Follow-up t-tests indicated that the
healthy controls had significantly lower concentrations of CRP or a
statistical trend towards lower concentrations of CRP than the
MDD, BD and SzA groups. However, there was no difference in
CRP concentrations between the healthy controls and the
schizophrenia group.

Figure 1. Scatterplots showing the difference in KynA/QA (a), KynA/3HK (b) and KynA (c) serum concentrations across the diagnostic groups.
The error bars represent the s.e.m. BD, bipolar disorder; HC, healthy controls; Kyn, kynurenine; KynA, kynurenic acid; KynA/QA, ratio of
kynurenic acid to quinolinic acid; KynA/3HK, ratio of kynurenic acid to 3-hydroxykynurenine; MDD, major depressive disorder; SZA,
schizoaffective disorder; SZ, schizophrenia. *Po0.05. **Po0.01.

Table 2. Spearman’s correlation coefficients between CRP and the
kynurenine pathway metabolites

Metabolite CRP (mg l− 1)

TRP (μM) rs= − 0.18, P= 0.008
Kyn (nM) rs= 0.17, P= 0.011
KynA (nM) rs= 0.02, P= 0.725
3HK (nM) rs= 0.25, Po0.001
QA (nM) rs= 0.21, P= 0.002
Kyn/TRP rs= 0.29, Po0.001
KynA/3HK rs= − 0.18, P= 0.006
KynA/QA rs= − 0.15, P= 0.026
3HK/Kyn rs= 0.14, P= 0.034
KynA/Kyn rs= − 0.1, P= 0.145

Abbreviations: CRP, C-reactive protein; Kyn, kynurenine; KynA, kynurenic
acid; KynA/QA, ratio of kynurenic acid to quinolinic acid; Kyn/TRP, ratio of
kynurenine to tryptophan; KynA/3HK, ratio of kynurenic acid to 3-
hydroxykynurenine; TRP, tryptophan.
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The significant positive correlation between CRP and the
activation of the neurotoxic pathway, but not the concentration
of KynA (Table 2), potentially is consistent with previous reports
demonstrating that although during homeostasis approximately
equal amounts of 3HK and KynA are produced from kynurenine,40

under conditions of inflammation the production of QA pre-
dominates over KynA, possibly because of the upregulation of
kynurenine mono-oxygenase (KMO).32,35,41,42 Our results thus are
compatible with evidence suggesting that a proinflammatory
drive on the kynurenine metabolic pathway exists in patients with
mood disorders, and also indicate that this proinflammatory drive
is greater in psychotic versus non-psychotic affective disease.
A question that remains is why Kyn/Trp concentrations do not

differ significantly between patients and controls if the depression
and schizoaffective disorder-associated decrease in KynA results
from an inflammatory process? There are several possibilities. First,
we cannot rule out the possibility that non-inflammatory factors
such as genetic or epigenetic variants54 may have contributed to
this neurotoxic shift. Second, much of the work that has drawn a
link between increases in Kyn/Trp and depression is derived from
either preclinical studies or treatment studies of medically-ill
patients where inflammation is induced by LPS and immune-
modifying drugs (for example, interferon α), respectively. LPS and
interferon α cause a robust, systemic inflammatory response that
is indexed by significant increases in CRP and proinflammatory
cytokines including interferon Υ, one of the most important
activators of IDO.74 In contrast, the low-grade inflammation
observed in non-medical illness-associated depression and
psychosis may have different physiological effects. In fact, it is
known that stress and major depression are associated with a shift
away from Th1-type immunity, including a decrease in circulating

concentrations of interferon Υ.75–81 Consistent with these data, a
recent meta-analysis reported that peripheral concentrations of
interferon Υ are reduced in MDD.82 Unfortunately, little is known
about the inflammatory mediators that regulate the expression
and/or activity of KMO and other kynurenine pathway enzymes
but it is conceivable that depression-associated changes in
immunological function alter the activity of KMO or the KAT
enzymes via interferon Υ-independent pathways.
Third, the Kyn/Trp ratio also is affected by the enzyme,

tryptophan-2,3-dioxygenase (TDO), which converts tryptophan to
N-formylkynurenine.83 TDO is induced by corticosteroids that may
be either increased or decreased in depression and affective
psychosis depending on illness subtype or whether cortisol
readings are obtained with or without exposure to a laboratory
stressor.84–87 Thus, the absence of a significant difference in Kyn/
Trp between patients and controls also may reflect HPA
dysfunction such as blunted cortisol release.
While no previous study has measured kynurenine metabolites

in patients with schizoaffective disorder, the results obtained in
the psychotic BD group and the schizoaffective disorder group are
strikingly consistent with the results of two studies of Myint, Kim,
Leonard and colleagues. Myint et al. initially reported that plasma
KynA concentrations in patients with bipolar mania were
decreased by approximately 20% compared to healthy
controls.51 Here we also observed a 20% decrease in the
peripheral concentration of KynA in subjects with BD with
psychosis. Subsequently, Myint et al. measured kynurenine
metabolites in the plasma of medication-free patients with
schizophrenia at admission and following 6 weeks of antipsychotic
treatment.88 KynA was reduced and 3HK was elevated in the
plasma of the patients with schizophrenia compared with healthy

Figure 2. Scatterplots showing the difference in 3HK (a), KynA (b) and KynA/3HK (c), and KynA/QA (d) serum concentrations across groups.
The error bars represent the standard error of the mean. AD, affective disorder without psychosis; AP, affective psychosis; HC, healthy control;
Kyn, kynurenine; KynA, kynurenic acid; KynA/QA, ratio of kynurenic acid to quinolinic acid; KynA/3HK, ratio of kynurenic acid to 3-
hydroxykynurenine; PD, psychotic disorder (non-affective). *Po0.05. **Po0.01.
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controls. Further, the KynA/3HK ratio also remained lower in the
patients relative to controls but nevertheless had significantly
increased relative to baseline after 6 weeks of treatment. Here we
did not find a difference in kynurenine metabolite concentrations
between patients with schizophrenia and controls. However, we
report an approximate decrease of 18% in KynA/3HK in the
schizoaffective disorder group versus the healthy control group.
In contrast, BD patients with psychosis have been reported to

display elevations in KynA in the CSF and decreases in KMO gene
expression postmortem that could theoretically increase KynA
concentrations in the brain.54,67 Here we find that the reductions
in KynA in the serum were in fact most pronounced in BD patients
with psychosis and patients with schizoaffective disorder, but not
schizophrenia. Nevertheless, given the smaller sample of partici-
pants with schizophrenia, it is likely that our study was under-
powered to detect small effect sizes in this group.
One explanation for the discrepant results in the affective

psychosis literature may relate to stage of illness. In this study, the
participants were acutely ill whereas in the studies that reported
increased CSF KynA in BD, the participants were symptom-free
outpatients with a history of psychosis.54,67 Conceivably, the
increase in KynA in these patients may be reflective of recovery
from illness rather than a pathogenic marker, per se.
A limitation of our study design is that we measured kynurenine

metabolites in the serum, and while kynurenine and 3HK readily
cross the blood–brain barrier, other metabolites such as KynA and
QA do not cross the blood–brain barrier and at least under normal
conditions, do not contribute significantly to brain
concentrations.89 Nevertheless, extant evidence suggests a
significant correlation between peripheral and CSF levels of QA
and KynA in the context of depression and inflammation. For
instance, a highly significant association between the plasma and
CSF concentrations of QA in IFNα-treated hepatitis C patients was
reported by Raison, Miller and colleagues (r= 0.72, Po0.001).33

Further, Brundin, Erhardt and colleagues have reported persistent
reductions in KynA and increases in QA in the CSF of suicide
attempters, consistent with our peripheral measures in subjects
with mood disorders.48,49 In addition, Steiner and colleagues
observed an increased density of QA-positive microglial cells in
the subgenual anterior cingulate cortex (sgACC) and the mid-
anterior cingulate cortex in postmortem samples with either MDD
or BD who died by suicide.90 Notably, psychosis is a significant risk
factor for suicide attempts with up to 10% of first-episode
psychosis patients making at least one suicide attempt.91,92

Further, the presence of psychosis reportedly increases the risk
of suicide in patients with MDD93 and self-harm and suicidality are
highly prevalent in patients at ultra-high risk of psychosis.94

Further, the results of other studies that obtained central
measures of ‘inflammation’ indirectly support our findings. First,
most positron emission tomography (PET) studies of microglial
translocator protein binding have reported increased labeling in
non-psychotic patients with MDD versus healthy controls.95,96 In
addition, three PET studies using the PK 11195 ligand reported
microglia activation in patients with schizophrenia or BD97–99 and
these findings were recently replicated in a study of subjects at
ultra-high risk of psychosis and patients with schizophrenia that
made use of the second generation PBR28 ligand.100 Since QA is
thought to be produced largely by microglia, conceivably, KMO
activity may be elevated in the brain in both affective disorder and
affective psychosis.
A second limitation was the imperfect control for medication

effects. We grouped medication broadly by class, that is, anti-
depressants, anti-psychotics, anti-convulsants and anxiolytics.
However, this method cannot account for variation in the effects
of types of medication within a class, differences in dose and the
effects of multiple combinations of medications. Similarly, we
measured the effects of tobacco use, metabolic abnormalities and

suicidal behavior in a dichotomous manner and thus cannot
account for amount, specificity and severity, respectively.
In summary, within the methodological limitations of the

current design, our study questions the prevailing model of
excess KynA production in affective psychosis, and indicates that
further research is necessary to fully capture the biological role of
the kynurenine pathway in both depression and affective
psychosis.
Regarding the nosological boundaries of the psychiatric

disorders studied here, the results indicate that schizoaffective
disorder may be more closely related to affective psychosis than
to schizophrenia with respect to manifesting a proinflammatory
drive on kynurenine metabolism. Although most studies support
the hypothesis that schizoaffective disorder resides on a
continuum between BD and schizophrenia,101 the other data
suggest that schizoaffective disorder should be subsumed under
the schizophrenia category.102 Nevertheless, it also is conceivable
that schizoaffective disorder is more heterogeneous, with some
patients having a pathophysiology like that of BD and others
having one like that of schizophrenia, and that advances in
nosology will be needed to resolve such questions. It is also
important to note that the mean differences in KynA between
affective and non-affective psychosis were limited to the group
level without directionality or linear associations. Thus at least in
the short term, the measurement of kynurenine metabolites are
unlikely to be useful for individual-level diagnosis.
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