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Pathway-wide association study identifies five shared pathways
associated with schizophrenia in three ancestral distinct
populations
C Liu1,10, CA Bousman1,2,3,4,10, C Pantelis1,2,5,6, E Skafidas1,2,5, D Zhang7,8,9, W Yue7,8,11 and IP Everall1,2,5,6,11

Genome-wide association studies have confirmed the polygenic nature of schizophrenia and suggest that there are hundreds or
thousands of alleles associated with increased liability for the disorder. However, the generalizability of any one allelic marker of
liability is remarkably low and has bred the notion that schizophrenia may be better conceptualized as a pathway(s) disorder. Here,
we empirically tested this notion by conducting a pathway-wide association study (PWAS) encompassing 255 experimentally
validated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways among 5033 individuals diagnosed with schizophrenia and
5332 unrelated healthy controls across three distinct ethnic populations; European-American (EA), African-American (AA) and Han
Chinese (CH). We identified 103, 74 and 87 pathways associated with schizophrenia liability in the EA, CH and AA populations,
respectively. About half of these pathways were uniquely associated with schizophrenia liability in each of the three populations.
Five pathways (serotonergic synapse, ubiquitin mediated proteolysis, hedgehog signaling, adipocytokine signaling and renin
secretion) were shared across all three populations and the single-nucleotide polymorphism sets representing these five pathways
were enriched for single-nucleotide polymorphisms with regulatory function. Our findings provide empirical support for
schizophrenia as a pathway disorder and suggest schizophrenia is not only a polygenic but likely also a poly-pathway disorder
characterized by both genetic and pathway heterogeneity.
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INTRODUCTION
Schizophrenia is a severe psychiatric disorder characterized by
significant genetic heterogeneity and is commonly referred to as a
polygenic disorder.1 This polygenicity was most recently high-
lighted in the largest genome-wide association study (GWAS) of
schizophrenia that identified 128 single-nucleotide polymorph-
isms (SNPs) at 108 loci associated with the disorder,2 although
there are likely thousands of SNPs that contribute to its liability,
many of which are population-specific. Thus, identifying
schizophrenia-associated SNPs that are generalizable to diverse
populations of people with the disorder is unlikely and suggests
alternative approaches at identifying genetic markers of schizo-
phrenia liability are needed.
One such approach is to examine SNPs within the biological

pathway(s) in which they reside. Underlying this approach is the
notion that schizophrenia is a pathway(s) disorder,3 whereby one
or a number of SNPs within a pathway could result in an increased
liability to schizophrenia by altering sensitivity to environmental
insults and/or disruption of brain development. In the context
of schizophrenia, this pathway approach has been applied in a
variety of forms ranging from pathway clustering analysis,4 where

SNPs in key genes within a single pathway are examined, to post-
hoc pathway enrichment analyses of candidate SNP-sets using the
SNP ratio test5 or bioinformatics resources (for example, Ingenuity
Pathway Analysis).6–8 These approaches undoubtedly have a
pathway focus but provide an incomplete examination of the
compendium of known human biological pathways. Our primary
aim was to conduct a comprehensive pathway-wide association
study (PWAS) of schizophrenia. Here, we report results of that
analysis in which we tested 255 biological pathway-based SNP-
sets for their association and potential function in schizophrenia in
three ancestral distinct populations.

MATERIALS AND METHODS
Data sources
GWAS data from individuals with schizophrenia (n= 5033) and healthy
controls (n= 5332) across three distinct ethnic populations; European-
American (EA) (2455 schizophrenia, 2826 controls), Han Chinese (CH) (1625
schizophrenia, 1527 controls) and African-American (AA) (953 schizophre-
nia, 979 controls) were obtained (Table 1; Supplementary Table S1). EA and
AA GWAS data were collected by the Genetic Association Information
Network (GAIN) and nonGAIN projects and were obtained through the
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database of Genotypes and Phenotypes (dbGaP, phs000021.v1.p1 and
phs000167.v1.p1)9 with ethics approval by The University of Melbourne
Human Ethics Committee (#1340723). CH GWAS data were collected from
multiple collaborating hospitals included in the Chinese Schizophrenia
Collaboration Group (see Supplementary Materials for details).10 For the EA
and CH cohorts two independent datasets were available. One was used as
a discovery dataset (EA: 1215 schizophrenia cases and 1442 healthy control
subjects; CH: 1159 schizophrenia cases and 1089 healthy control subjects)
and the other a validation dataset (EA: 1240 schizophrenia and 1384
controls; CH: 466 schizophrenia and 438 controls).

Quality control and population stratification
We adhered to a previously published quality control protocol11 with the
exception of procedures related to identity by descent and population
stratification (see Supplementary Materials for details). Population strati-
fication was mitigated using spatial ancestry analysis (SPA).12 The SPA
European model was used for the analysis of the EA data, whereas the SPA
worldwide model was used for the AA and CH datasets. We used all
available genotypes to calculate the geographic coordinates of latitude
and longitude and set inclusion boundaries (Supplementary Figure S1).
The final sample sizes and SNPs available for analysis following quality
control are presented in Table 1 (see Supplementary Table S1 for details on
the number of individuals and SNPs removed at each quality control step).

Mapping SNPs to genes and pathways
SNPs surviving quality control were mapped to gene loci using the
annotation provided by the National Center for Biotechnology Information
(see Supplementary Methods for details). Genes were then mapped to
pathways curated by the Kyoto Encyclopedia of Genes and Genomes
(KEGG, Release 76.0, 1 October, 2015),13 which includes 301 human
pathways from six main categories (metabolism, genetic Information
processing, environmental information processing, cellular processes,
organismal systems and human diseases). A mega KEGG pathway
(metabolic pathways, hsa01100) that encompasses several other pathways
was excluded, leaving 300 pathways available for further analysis.

Pathway-wide association analysis
The analysis pipeline used to assess each of the 300 KEGG pathways for
their association with schizophrenia is depicted in Figure 1, evolving from
our previously published pathway analysis pipeline.14 For each pathway
the discovery dataset for the EA and CH cohorts as well as the single
dataset available for the AA cohort were randomly split (maintaining the
case:control ratio of the full dataset) 100 times into two subsets, a SNP
(that is, feature) selection set (80% of the participants) and a test set (20%
of participants). Within each SNP selection set, 80% of participants were
randomly selected 10 times (maintaining the case:control ratio of the full
dataset) and the resulting subsets were subjected to the maximum
relevance minimum redundancy (mRmR) feature selection procedure (blue
box, Figure 1).15 The mRmR procedure was chosen as an alternative to
P-value-based feature selection procedures that are dependent on sample
size and do not necessarily result in feature sets that maximize relevance

and minimize redundancy (that is, increase mutual information; see
Supplementary Materials and Supplementary Figure S2 for details and a
comparison of the two feature selection methods in our datasets). This
procedure resulted in 300 SNP sets, one for each of the KEGG pathways
(Supplementary Table S2). Among these 300 SNP sets, 45 sets containing
less than two features (SNPs) at one or more of the 100 iterations were
excluded from further analysis, as our algorithm requires two or more
features to fit a model.
The 255 SNP sets were then used to build 255 classifiers, one for each

KEGG pathway, via a random forest algorithm with default parameters (R
package: ‘randomForest’) using 80% of the discovery dataset followed by
testing of the classifiers in the remaining 20% of the discovery dataset. To
address inherent imbalances in the case:control ratios of our datasets,
under-sampling of the majority class (cases or controls) of each dataset
was employed before running the random forest algorithm, as this strategy
has previously been shown to be useful for classification in the presence of
imbalanced classes.16,17

To assess the overall performance of each pathway classifier, the
random forest model derived from the selected SNPs for each pathway
within the 80% discovery set was applied to the 20% test set as well as the
independent validation dataset, with the exception of the AA cohort for

Table 1. Sample size and SNPs available for analysis following quality control procedures

Ancestry Cases Controls Platform SNPs Source

N Age (s.d.) Male/female N Age (s.d.) Male/female

European-American
Discovery 972 43.71 (11.29) 681/291 1248 50.61 (17.05) 570/678 Affymetrix 6.0 691 822 GAIN
Replication 879 42.26 (11.93) 609/270 1132 49.91 (15.77) 569/563 Affymetrix 6.0 691 822 Non-GAIN

Han Chinese
Discovery 1125 35.97 (7.82) 555/570 1034 36.60 (10.35) 476/558 Illumina Zhonghua 8 800 509 CSCG
Replication 454 36.48 (7.98) 262/192 411 36.40 (8.16) 187/224 Illumina Zhonghua 8 800 509 CSCG

African-American 896 43.30 (10.12) 558/338 906 45.16 (13.03) 344/562 Affymetrix 6.0 818 941 GAIN

Abbreviations: CSCG, Chinese Schizophrenia Collaboration Group; GAIN, Genetic Association Information Network; SNPs, single-nucleotide polymorphisms.

Figure 1. Pathway-wide association analysis pipeline. *Only the
European American population and the Han Chinese population
have independent validation dataset. MRMR, maximum relevance
minimum redundancy; RF, random forest.
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which an independent validation dataset was not available. In addition,
within the 20% test set and independent validation dataset, case–control
labels of all individuals were randomly permuted and the random forest
model for each pathway derived from the 80% discovery set was applied,
with the exception of the AA cohort. Point estimates and 95% confidence
intervals for five performance metrics (accuracy, sensitivity, specificity, area
under the receiver operating characteristic curve (AUC) and odds ratio
(OR)) were calculated for each of the pathways using the independent
validation dataset for EA and CH cohorts, and the 20% test set for the AA
cohort. P-values for each of the 255 pathways were generated by
comparing the mean OR (based on 100 iterations) from the independent
(validation for AA) dataset with the corresponding mean OR from the
permutation dataset using a t-test. The Benjamini–Hochberg (BH)
procedure was used to adjust for multiple comparisons.18 Furthermore,
using the independent validation dataset for the EA and CH cohorts, we
calculated the Nagelkerke R2 (see Supplementary Materials for details) to
estimate the variance in schizophrenia liability explained by each of the
255 SNP sets used to construct the pathway classifiers. The complete
annotated computer script used to conduct the pathway-wide association
analysis is available upon request.
To further evaluate our pathway analysis pipeline, we selected 129

previously identified gene ontology (GO) pathways associated with
schizophrenia and applied our pipeline to each of the 129 pathways in
all three populations.

Functional analysis of SNPs in candidate pathways
To assess whether the mRmR feature selection approach was capable of
selecting informative features and to evaluate the potential functional
relevance of selected features, we utilized the brain expression quantita-
tive trait loci (eQTLs) dataset obtained from the genotype-tissue expression
(GTEx) portal v6.0,19 as well as the functional annotation information

obtained from the RegulomeDB, a database that annotates SNPs with
known and predicted regulatory elements.20 We hypothesized that the
selected features with greater appearance rates within significant
schizophrenia liability pathways would be enriched for functional SNPs
compared with SNP sets derived from non-significant pathways.

eQTL analysis. SNP sets representing pathways associated with schizo-
phrenia in all three cohorts were further assessed as potential cis-eQTLs
using genotype and gene expression data derived from human post-
mortem frontal cortex (Brodmann area 9) of 92 donors included in the
GTEx portal.19 For each of the three cohorts, SNPs within each of our
candidate pathways was assigned an appearance rate based on the
number of times (out of 100 iterations) the SNP represented the candidate
pathway during our feature selection procedure (that is, mRmR) described
above. SNPs were then grouped into quartiles based on their appearance
rate (that is, 0–25%; 26–50%; 51–75% and 76–100%) and the proportion of
SNPs within each quartile associated (alpha threshold= 0.05) with
expression of its corresponding gene was calculated. For comparison,
the same analysis was conducted on 152, 181 and 168 non-significant
pathways in the EA, CH and AA population, respectively. A one-sample t-
test was used to determine if the proportion of eQTLs observed in our
overlapping pathway SNP sets differed from the SNP sets derived from
non-significant pathways.

Regulome analysis. To investigate the potential functional significance of
selected features beyond eQTLs, including DNA–protein interaction (TF-
binding motif, DNase footprint) and DNA–RNA interaction (microRNA-
binding motif, long non-coding RNA), we utilized the RegulomeDB (http://
www.regulomedb.org).20 Similar to the eQTL analysis, SNPs were grouped
into quartiles based on their appearance rate and a weighted Regulome
score was computed for each quartile group as well as SNP sets derived

Figure 2. (a) Venn diagram showing the degree of overlap in pathways identified as a liability for schizophrenia across the three ancestrally
distinct populations. (b–f) Relative contribution (measured by appearance rate in our feature selection procedure) of genes within the five
common schizophrenia liability pathways by ancestry. Only genes with appearance rates summing to 20% or greater across the three
populations are shown for each pathway (see Supplementary Table S6 for appearance rates of all single-nucleotide polymorphisms (SNPs) in
each of the five pathways). Each gene’s appearance rate is normalized to the number of haplotype-tagging SNPs (threshold R2= 0.50) within
the gene.
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from non-significant pathways. A one-sample t-test was used to determine
if the weighted Regulome score in our candidate SNP sets differed from
SNP sets derived from non-significant pathways (see Supplementary
Materials for details).

RESULTS
Pathway-wide association analysis
Of the 255 pathways examined, 103, 74 and 87 pathways were
significantly associated with schizophrenia liability in the EA, CH
and AA cohorts, respectively (Supplementary Figure S3;
Supplementary Table S3–5). Examination of the overlap between
the cohorts showed 55, 25 and 39 pathways were uniquely
associated with schizophrenia liability in the EA, CH and AA
cohorts, respectively (Figure 2a). Five pathways (serotonergic
synapse, ubiquitin mediated proteolysis, hedgehog signaling,
adipocytokine signaling and renin secretion) were shared across
all three cohorts (Figure 2a). However, the relative contribution of
the SNPs and genes within these five pathways differed consi-
derably by ancestry (Figures 2b–e; Supplementary Table S6) and a
small subset of genes were shared across two or three common
pathways (Supplementary Figure S4). Sensitivity, specificity, AUC,
accuracy and ORs were modest for each of the five pathways and
no pathway explained more than one percent (R2 = 0.03–0.57%) of
the variance in the liability to schizophrenia (Table 2). Combining
the selected features from the five shared pathways had minimal
impact on the variance explained (R2 = 0.31–0.57%), although
when features from all significant pathways were assessed the
variance explained ranged from 0.66% in the EA cohort to 2.46%
in the CH cohort. Furthermore, among the 129 previously
identified schizophrenia-associated GO pathways our analysis
pipeline replicated 45, 20 and 56 of these pathways in the EA, CH
and AA populations (Supplementary Table S7).

Functional analysis of SNPs in candidate pathways
Analysis of SNPs selected to represent the five pathways that
overlapped in the three populations showed SNPs with greater
appearance rates had a greater probability of being an eQTL or
having some other regulatory function (Figure 3; Supplementary
Figures S5 and S6). SNPs that appeared 450% of the time during
our feature selection procedure were more likely to be functional
compared with 100 random SNP sets of equal size, with the
exception of the serotonergic synapse SNPs in EAs. Likewise, SNPs
with appearance rates 475% also had a higher probability to be
functional, although for six of the pathway-population pairs
(Figure 3) our feature selection procedure did not identify SNP sets
enriched for functional SNPs.

DISCUSSION
The notion that schizophrenia is a pathway disease has only
recently been proposed3 and as such empirical testing of this
notion is limited. We conducted a PWAS of schizophrenia in three
ancestrally distinct cohorts. We found evidence of pathway
heterogeneity in schizophrenia liability, identified five pathways
conferring liability across populations and showed that the SNP
sets representing these five pathways were enriched for SNPs with
regulatory functions.
Pathway heterogeneity has only recently been discussed in the

context of schizophrenia4 but has been well characterized in other
diseases such as cancer.21,22 Pathway heterogeneity builds on and
encompasses the concept of genetic heterogeneity in that it
postulates a disorder is a result of one or more perturbations in
one or more of a multiple number of pathways. Supporting this
notion, we found that nearly half (47%) of the pathways we tested
were uniquely associated with schizophrenia liability in only one
of the three populations we examined—raising the possibility thatTa
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schizophrenia is not only a polygenic but also a poly-pathway
disorder. In fact, all pathways had an ORo1.35, suggesting
multiple pathways of small effect collectively contribute to
schizophrenia liability.
Furthermore, our results suggest disruption of certain pathways

may be necessary (but perhaps not sufficient) for the develop-
ment of schizophrenia across populations. About one-fourth (27%)
of the pathways we tested were associated with liability to
schizophrenia in two or more of the populations, among which
five pathways were associated with schizophrenia liability in all
three cohorts. These pathways included the serotonergic synapse,
ubiquitin mediated proteolysis, hedgehog signaling, renin secre-
tion and adipocytokine signaling, all of which have been
implicated in schizophrenia and/or related phenotypes.
A number of post-mortem, functional neuroimaging and

peripheral biomarker studies have implicated the serotonergic
system in the pathophysiology of schizophrenia (for review see:
ref. 23) and many atypical antipsychotic agents (for example,
clozapine, olanzapine) are potent serotonin receptor 2A
antagonists.24 Thus, identification of the serotonergic synapse
pathway in the current study is perhaps not surprising. In fact, the
largest schizophrenia GWAS to date found SNPs in three genes
(CACNA1C, ITPR3 and CYP2D6) within the serotonergic synapse
pathway reached GWAS significance (Po5 × 10− 8) and SNPs in
another 17 genes within this pathway were nominally significant
(Po1 × 10− 5).2 Furthermore, a recent gene-set enrichment
analysis of the SZGene database25 identified 24 pathways
significantly enriched for schizophrenia candidate genes among
which the serotonin receptor signaling pathway was ranked
second.7

The ubiquitin mediated proteolysis pathway (UPP), a critical
system for the removal of damaged/toxic proteins in the cell, has
been shown to be dysregulated at the transcript26–29 and protein
levels30 in both peripheral and central tissue among individuals
with schizophrenia. In addition, peripheral transcript levels within
the UPP have been associated with positive symptom severity31

and a recent copy number variant meta-analysis in schizophrenia,
autism and intellectual disability revealed that two ubiquitin-
related gene-ontologies were highly enriched with schizophrenia-
associated copy number variants.32 Furthermore, animal studies
have suggested that UPP has an important role in regulating
synaptic growth and neural circuits,33,34 and demand on the UPP
at pre-synaptic and post-synaptic terminals may in part link
dysfunction of the UPP to increased schizophrenia liability.35

The hedgehog signaling pathway is a key regulator of oligo-
dendrocyte production,36,37 dopaminergic neuron development,38

and promotes brain expression of disc1, a candidate gene in
schizophrenia.39 The pathway’s most well characterized ligand,
sonic hedgehog, regulates the generation of functional synaptic
contacts,40,41 and is abundant in the adult human central nervous

system.42,43 Furthermore, hedgehog signaling interacts with the
UPP44 and has been implicated in the ‘two-hit’ hypothesis of
schizophrenia by which disruption of the pathway during brain
development primes the central nervous system for a pathologic
response to a second hit in later life.45

The renin secretion pathway is typically associated with
regulation of arterial blood pressure, thirst and thermoregulation
via the kidney secreted enzyme renin and its interaction with the
renin–angiotensin–aldosterone system. Epidemiological studies
have reported up to 25% of schizophrenia have polydipsia
(excessive thirst)46 and in general exhibit dysregulation of body
temperature.47 Rodent studies have demonstrated renin is also
synthesized in the brain48 and has considerable effects on anxiety-
related behaviors and cognition (for example, memory).49 In the
brain, renin is proposed to enzymatically process angiotensinogen
to angiotensin, which is then further processed by angiotensin-
converting enzyme (ACE).50 ACE activity has been shown to
modulate dopamine turnover51 and abnormal levels of ACE in
cerebrospinal fluid have been reported in individuals with
schizophrenia,52,53 albeit potential neurotropic and length of
illness effects have been noted.54,55 The interaction between
angiotensin II (AT II), a neuropeptide substrate for ACE, and central
dopamine has also been associated with schizophrenia.56,57

Moreover, numerous genetic studies suggested polymorphisms
in ACE are associated with susceptibility to schizophrenia and
major depression.58–62

The adipocytokine signaling pathway is a collective destination
of cytokines secreted by the adipose tissue. Since the first
adipocytokine leptin was discovered in 1994,63 hundreds of
adipocytokines have been found, such as adiponentin, tumor
necrosis factor-alpha and members of the interleukin family.
Increased expression of tumor necrosis factor-alpha and a number
of interleukins have recently been proposed as markers of
schizophrenia in brain64 and blood.65 Furthermore, adipocytokines
are recognized not only as regulators of energy metabolism, but
also as factors that may be associated with mental disorders.
Decreased serum levels of adiponectin have been identified in
major depressive disorder and schizophrenia,66–68 and serum
levels of leptin correlate with less severe positive symptoms in
schizophrenia patients69 and may regulate the mesolimbic
dopamine system.70

Despite the novelty and many strengths of our study, our
findings should be interpreted in the context of several limitations.
First, the detection of population differences in schizophrenia
liability at the pathway level may, in part, be a result of sampling,
allelic frequency and/or linkage disequilibrium differences across
the populations studied. These potential confounding factors may
also explain why we only identified five overlapping pathways
rather than the expected 10 overlaps given the number of
significant pathways identified in each population. Although we

Figure 3. Summary of the functional analysis performed on single-nucleotide polymorphisms (SNPs) with an appearance rate of 450% and
475% during feature selection in the five shared pathways across the three populations. Red boxes indicate the proportion of functional
SNPs (based on GTEx or RegulomeDB data) was significantly greater compared with SNP sets derived from non-significant pathways within
that population. Blue boxes indicate the proportion of functional SNPs was significantly lower compared with SNP sets derived from non-
significant pathways within that population.
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attempted to reduce these confounding influences by selecting
features independently in each population using an mRmR
approach, complete restraint of these confounds is not possible
and as such our results should be interpreted with caution.
Second, an independent validation dataset was not available for
the AA population and as such all estimates were based on the
20% holdout dataset derived from the discovery dataset. This may
have resulted in over-estimation of associations within this
population, although the random forest algorithm we employed
internally mitigates this potential bias via the out-of-bag error
estimate mechanism.71 Third, the dopamine hypothesis of
schizophrenia is an enduring, widely accepted, idea but among
the three populations we studied the dopaminergic synapse
pathway was only a significant liability pathway in the EA
(OR= 1.108, 95% CI = 1.088–1.127; B-H P= 8.18E− 13) and CH
(OR= 1.054, 95% CI 1.027-1.08; B-H P= 0.050) populations.
Although, we failed to detect this pathway in the AA population,
the expected trend was evident (OR= 1.056, 95% CI = 1.011–1.102;
B-H P= 0.429) and is likely a result of the smaller sample size
available for this population. Fourth, our analysis did not look at
potential clinical subtypes of schizophrenia based on symptom
profiles, despite recognition that schizophrenia is a broader
spectrum disorder including a range of symptoms. A PWAS of
clinical subtypes may lead to stronger associations by reducing
the noise associated with the broad schizophrenia phenotype.
However, the clinical symptom data available for this study was
inconsistent or minimal across the three cohorts inhibiting such an
analysis. Fifth, SNPs eligible for inclusion in our analysis were
limited to those that were within a gene using a narrow ‘5 and 3’
intergenic window (2 and 0.5 kbp, respectively). Intergenic SNPs
are known to play functional regulatory roles on genes72 and as
such exclusion of more distal intergenic SNPs may have biased our
results. In the most recent schizophrenia GWAS,2 45% (57) of the
128 SNPs identified were intergenic but 52% (30) of these
intergenic SNPs are in linkage disequilibrium (R2⩾ 0.50) with one
or more SNPs within a gene according to our intergenic window.
Thus, our intergenic window was capable of capturing a majority
(79%, n= 101) of the 128 SNPs, suggesting the bias conferred by
our SNP inclusion criteria are likely modest. Finally, our feature
selection procedure (mRmR) resulted in the loss of many pathways
containing smaller SNP pools. In total, 45 pathways cataloged
within KEGG were not included in our pathway association study
as the number of SNPs selected to represent these pathways was
fewer than the required number of SNPs (that is, 2) to run our
random forest algorithm.
In conclusion, our results empirically support the notion that

schizophrenia is a pathway disorder and further suggest that there
is a considerable amount of pathway heterogeneity within and
across different ethnic populations. We also identified five
pathways that may serve as harbors of genotypic markers for
schizophrenia across populations. However, future application of
our pathway-wide association approach in larger cohorts as well
as among ethnic groups not examined here are required before
firm conclusions can be drawn.
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