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ORIGINAL ARTICLE

An interaction network of mental disorder proteins in neural

stem cells

MJ Moen', HHH Adams™*, JH Brandsma'*, DHW Dekkers? U Akinci', S Karkampouna'>, M Quevedo', CEM Kockx®, Z Ozgur®,

WFJ van lJcken3, J Demmers? and RA Poot’

Mental disorders (MDs) such as intellectual disability (ID), autism spectrum disorders (ASD) and schizophrenia have a strong genetic
component. Recently, many gene mutations associated with ID, ASD or schizophrenia have been identified by high-throughput
sequencing. A substantial fraction of these mutations are in genes encoding transcriptional regulators. Transcriptional regulators
associated with different MDs but acting in the same gene regulatory network provide information on the molecular relation
between MDs. Physical interaction between transcriptional regulators is a strong predictor for their cooperation in gene regulation.
Here, we biochemically purified transcriptional regulators from neural stem cells, identified their interaction partners by mass
spectrometry and assembled a protein interaction network containing 206 proteins, including 68 proteins mutated in MD patients
and 52 proteins significantly lacking coding variation in humans. Our network shows molecular connections between established
MD proteins and provides a discovery tool for novel MD genes. Network proteins preferentially co-localize on the genome and
cooperate in disease-relevant gene regulation. Our results suggest that the observed transcriptional regulators associated with ID,
ASD or schizophrenia are part of a transcriptional network in neural stem cells. We find that more severe mutations in network
proteins are associated with MDs that include lower intelligence quotient (IQ), suggesting that the level of disruption of a shared

transcriptional network correlates with cognitive dysfunction.
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INTRODUCTION

Mental disorders (MDs) are categorized by Diagnostic and Statistical
Manual of Mental Disorders, Fifth Edition to include neurodevelop-
mental disorders such as intellectual disability (ID) and autism
spectrum disorders (ASD), as well as psychiatric disorders such as
schizophrenia.' ID, ASD and schizophrenia were shown to have a
strong genetic component?™ Recently, many de novo gene
mutations in patients with these MDs have been identified by
high-throughput sequencing approaches>™ A substantial fraction
of such potentially MD-associated mutations are in genes encoding
proteins involved in the functionally related processes of transcrip-
tional regulation or chromatin modification.>”'%"" For example,
out of 40 genes that were recently found to be de novo mutated in
multiple ASD patients,®” which are therefore strong ASD gene
candidates, 22 genes encode transcription factors or chromatin
modifiers. It is unclear to what extent MD-associated transcriptional
regulators act together in the same gene regulatory networks and
molecular pathways. Such information is important to appreciate
the level of shared etiology within a clinically defined MD.
If cooperating transcriptional regulators are associated with
different MDs, it may indicate a molecular relation between these
MDs. One important predictor of cooperation between transcrip-
tional regulators is their physical interaction. We and others
previously showed that physically interacting transcriptional
regulators co-localize on the genome, depend on each other for
genome-binding and regulate overlapping gene sets,'*"'® suggest-
ing their cooperation in gene regulation.

Transcriptional regulators associated with ASD or ID were
shown to often have their highest expression early in human brain
development, overlapping with stages of neural stem cell (NSC)
proliferation and early neuronal differentiation.'® This observation
suggests that NSC biology is highly relevant for MDs and that
NSCs may be a good source to mine for MD-relevant transcrip-
tional networks and regulators. Here we purified transcriptional
factors Tcf4, Olig2, Npas3 and Sox2, which are highly expressed in
NSCs, identified their co-purifying interaction partners by mass
spectrometry and assembled the first transcription factor interac-
tion network in NSCs. Their high expression in NSCs suggested
that these transcription factors are relevant for NSC biology and
indeed Olig2, Npas3 and Sox2 were shown to be essential for NSC
identity."””~'® On an MD-level, TCF4 haploinsufficiency causes Pitt
Hopkins syndrome, which features severe ID, lack of speech,
microcephaly and breathing abnormalities.?®?' Several single-
nucleotide polymorphisms in the TCF4 locus are genetic risk
factors for developing schizophrenia.*?? OLIG2 is triploid in Down
syndrome patients. Restoring diploid gene dose for Olig2 and
Olig1 in a mouse model for Down syndrome showed recovery of
the normal balance of inhibitory and excitatory neuronal activity.?*
NPAS3 mutations co-segregate with schizophrenia in two
families,***> but its overall relevance for schizophrenia has
remained unclear. SOX2 mutations cause an Anophthalmia
syndrome with associated cognitive defects in about half of the
cases.’®?” The resulting interaction network of these four starting
transcription factors and their interaction partners contains 206
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proteins. We find that the network contains 68 proteins mutated
in patients with ID, ASD or schizophrenia, as well as 52 proteins
significantly lacking coding variation in the human population. We
provide evidence that proteins associated with ID, ASD or
schizophrenia can be part of the same transcription network
and that within this network, mutation severity correlates with the
level of cognitive dysfunction.
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MATERIALS AND METHODS

Transcription factor purification and interaction partner
identification

The NS-5 NSCs were derived from 46C embryonic stem cells®® and
cultured, as described®® and regularly tested for mycoplasma contamina-
tion and for authenticity by expressed NSC markers Pax6, Sox2 and
Nestin.'> The NSCs derived and cultured in this way have the capacity to



differentiate into neurons and astrocytes,>® and still respond to signals to
induce reversible quiescence.>® The NSC lines with stable expression of
FLAG-V5-tagged Tcf4, Olig2 or Npas3 were created by electroporation with
pCAG promoter-driven plasmids containing the appropriate ¢cDNAs and
puromycin selection for individual clones with moderate expression of the
tagged proteins, as compared with endogenous levels."”” FLAG-tagged
Tcf4, Olig2 or Npas3 were each purified from 1.5 ml nuclear extract,
equivalent to 2 x 10 NSCs, by FLAG-affinity purification, as described.'>'®
Two or three biologically independent purifications of each FLAG-tagged
protein from separate NSC cultures and control purifications from separate
parental NSC cultures were performed by the same experimentor(s). No
samples of the above experiments were excluded. ldentification of
proteins by mass spectrometry was as described.'? Peptide spectra of
purifications of Tcf4, Olig2, Npas3 and previous purifications of Sox2 (ref.
15) were searched against UniProt release 2012-2011 for protein
identification. Interaction partner identification criteria are as described
and applied in our previous publications.'>'® In short, a protein is included
as interaction partner of a FLAG-tagged transcription factor if present in at
least two of its purifications with a Mascot score of 50 or higher and at
least threefold enriched by Mascot score over control purifications.'*'® The
emPAl score, an estimate of the quantity of the identified protein in the
purified protein sample, based on the number of peptide spectra identified
by MS, normalized for the number of peptides that theoretically should be
identifiable for that protein,®’ is indicated for each identified protein in
each experiment and average emPAl score is used to indicate the thickness
of the edges in the interaction network in Figures 1a and 2a. Interaction
network graphics were made with Cytoscape.> Large-scale immunopre-
cipitations from 1 ml of nuclear extracts from NSCs or HEK293T cells were
performed as described,'? using 10 pug Olig2 antibody (AB9610, Merck,
Darmstadt, Germany, RRID:AB_10141047), 10 ug Sox2 antibody (Y-17, sc-
17320) or 10 pg Npas3 antibody (HPA002892, Merck, RRID:AB_1079403).
Each specific immunoprecipitation was performed once. The resulting
western blots were probed with the same antibodies and Ep400 antibody
(ab70301, Abcam, Cambridge, UK).

Chromatin immunoprecipitations

A total 1.5%x10% NSCs were used per chromatin immunoprecipitation
(ChIP). For Olig2 ChIP, NSCs were washed three times with phosphate-
buffered saline, crosslinked with 1/10 volume of fresh 11% buffered
formaldehyde solution for 12 min, quenched with 1/20 volume of 2.5m
glycine for 5 min, washed with ice-cold phosphate-buffered saline and the
cell pellets frozen with N, () and resuspended and washed two times in
ice-cold cell lysis buffer (10 mm Tris-Cl pH 7.5, 10 mm NaCl, 3 mm MgCl,,
0.5% NP40). The cell pellets were resuspended in lysis buffer with 1 mm
CaCl, and 4% NP40 and sonicated, as described.>* ChIP was performed, as
described®® using 15pg of Olig2 antibody (AB9610, Merck, RRID:
AB_10141047) or rabbit IgG for the control ChIP. For Tcf4 ChIP, FLAG-V5-
Tcf4 expressing NSCs were crosslinked with 2 mm disuccinimidyl glutarate
(Thermo Fisher Scientific, Waltham, MA, USA) and 1% formaldehyde, nuclei
isolated, chromatin prepared and ChIP performed, as described®*3® with
20 pyl V5-antibody agarose beads (Merck). DNA was eluted from the
V5-beads, as described.>> The NSCs not expressing FLAG-V5-Tcf4 were
used as a control. For Npas3 ChIP, NSCs were crosslinked with
disuccinimidyl glutarate and formaldehyde and ChIP performed as
described®* with 15 ug of Npas3 antibody (HPA002892, Merck, RRID:
AB_1079403) or rabbit IgG as control, and 60 pl prot-G beads (GE
Healthcare, Eindhoven, The Netherlands), without crosslinking the anti-
body to the beads. Smad4 ChIP was on NSCs crosslinked with
disuccinimidyl glutarate and formaldehyde,®*3> with 15 g of Smad4
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antibody (R&D Systems, Minneapolis, MN, USA, AF2097, RRID:AB_355150)
or goat IgG and 150 pl prot-G Dynabead solution (Life Technologies,
Waltham, MA, USA), without crosslinking the antibody to the beads. Each
ChlIP-seq for a transcription factor was performed once. ChIP DNA library
preparation and ChIP sequencing on lllumina GAIl or HiSeq2500 (San
Diego, CA, USA) platforms was performed at the Erasmus MC Center for
Biomics, as described.*®

The ChIP-seq data sets were processed and mapped to the NCBIM37.61
(mm9) reference genome, as described.®® The published ChiP-seq data sets
for Ascl1, Sox2, Brn2, H3K4me1 and H3K27ac in NSCs were retrieved from
the Gene Expression Omnibus with accession codes GSE48336, GSE35496,
GSE11172 and GSE24164.377*° The published ChIP-seq data sets for Ep300
and Max in NSCs were retrieved from European Nucleotide Archive with
accession codes ERP002084 and ERP004644.'7*° MACS 1.4.2 was used for
peak calling and for the generation of binding profiles*' using default
settings and the corresponding control ChIP as a control data set. The 5000
most significant peaks (genome-wide binding sites) for each transcription
factor were used to determine the percentage of overlap between two
transcription factors. Two binding sites were considered overlapping if
their summits were within 250 bp. The corresponding figures were
generated using R. ChIP-seq tracks were generated in the IGV browser.*?
The ChIP sequencing data are available through the Gene Expression
Omnibus (NCBI), accession code GSE70872.

Gene regulation experiments

The pSuper-puro constructs encoding Tcf4 short hairpin RNA (shRNA
sequence: 5-GCACTGCCGACTACAACAG-3'), Tcf4 shRNA2 (5-GGGTA
CGGAACTAGTCTTC-3’), Smad4 shRNA (5'-GCTCTGCAGCTCTTGGATG-3') or
Sox2 shRNA'® were electroporated into NSCs, as described,'® puromycin
(2 ug ml~") was added after 18 h and NSCs were collected for analyses at
44 h after electroporation. Three biologically independent electroporations
were performed per condition. RNA-seq of untreated NSCs and NSCs
transfected with Tcf4 shRNA construct or control shRNA (Dharmacon,
Eindhoven, The Netherlands) construct was performed in biologically
independent triplicates. poly(A) RNA was isolated using the RNeasy kit
(Qiagen, Hilden, Germany), tested for quality with the Bioanalyzer and
prepared using the TruSeq RNA sample prep kit v2, as described.*® RNA-
seq was performed at the Erasmus MC Center for Biomics on a HiSeq2500
sequencer (lllumina) according to manufacturer’s instructions. The RNA
samples were sequenced for 36 bp. RNA-seq was mapped against mouse
reference NCBIM37.67 (mm9) using Tophat50 v2.0.11 with default settings
and a segment length of 20. The aligned exon reads were normalized and
differential expression was calculated using Bioconductor DESeq2 package
in R* The Tcf4 target genes were defined as having at least a 1.5-fold
change in expression (adjusted P-value <0.01) upon Tcf4 knockdown, at
least one significant Tcf4 binding site (P-value <1x 107" within 100 kb
of its transcription start site and at least 0.1 RPKM expression in untreated
NSCs. The RNA sequencing data are available through the Gene Expression
Omnibus (NCBI), accession code GSE70872. DAVID (May 2016 gene set
update) was used for Gene Ontology analysis*® on Tcf4 target genes,
Bonferroni-corrected P-value was used for ranking Gene Ontology terms.
For gene expression analysis, total RNA was isolated from cells using the
RNAeasy protocol (Qiagen). cDNA was made with Superscript Il reverse
transcriptase and RT-PCR was performed on a DNA engine Opticon2/
CFX96 (Bio-Rad, Hercules, CA, USA) and normalized on CalR expression.
Each gene expression analysis consisted of three biologically independent
experiments. The s.e.m. of these three experiments is shown in Figures 3d,
4b, d and Supplementary Figures 3a-c. No samples were excluded from
experiments in this paragraph.

<
Figure 1.

Protein interaction network in neural stem cells. (a) Interaction network representing proteins present in two or more purifications of

FLAG-tagged Tcf4, Olig2, Npas3 or Sox2 from neural stem cells. Protein complexes are larger circles, thickness of the edges (black lines) gives
an indication of protein quantity in samples of FLAG-tagged transcription factor with thickest edges; average emPAl > 0.6, medium thick
edge; average emPAl < 0.6 and > 0.2, thin edge; average emPAl < 0.2. Red color indicates network protein or protein complex subunit(s)
encoded by a known ID gene. Orange, yellow and blue color indicate de novo mutation(s) in patients with ASD-lowlQ, ASD-normIQ and
schizophrenia, respectively. (b) Percentage MD-associated proteins among interaction partners of Tcf4, Olig2, Npas3 and Sox2. MD-categories
ID, ASD-lowlQ, ASD-normlQ and schizophrenia are indicated by red, orange, yellow and blue color, respectively. Fisher’s exact tests showed no
significant differences between the interactomes of Tcf4, Olig2, Npas3 and Sox2 in the percentages of proteins associated with ID, ASD-lowlIQ,
ASD-normlIQ or schizophrenia, P-values are indicated. (c) Percentage loss-of-function (LOF) mutations in genes mutated in patients with the
indicated MD. Network protein genes have the equivalent mouse protein present in the interaction network. Total number of mutations in
each category is between brackets. ASD, autism spectrum disorder; ID, intellectual disability; 1Q, intelligence quotient; MD, mental disorder.
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Figure 2.

Overlap protein interaction network with constrained human genes. (a) Protein interaction network in neural stem cells. Green color

indicates overlap of network protein or protein complex subunit(s) with a set of 1003 constrained genes in humans. (b) Percentage overlap of
the indicated categories with constrained genes. Between brackets is the number of human genes equivalent to network proteins in each
category (network protein genes) or total number of genes in each category (all genes). ASD, autism spectrum disorder; ID, intellectual

disability; 1Q, intelligence quotient; MD, mental disorder.
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Figure 3.

Nrxn1 =

Network transcription factor co-localization on the genome of neural stem cells. (@) Percentage overlap of genome-wide binding

sites of pairs of transcription factors (TF pairs). Network transcription factors and percentage overlap of TF pair are indicated. (b) Transcription
factors are both in the network (left) or one is in the network and one is not (right). Each TF pair is indicated by a black dot, average overlap in
each category is indicated by black bar. (c) Transcription factors are interacting (left) or not interacting (right). Each TF pair is indicated by a
black dot, average overlap in each category is indicated by black bar. (d) Relative mRNA levels by RT-PCR of indicated genes in NSCs treated
with the indicated shRNAs, s.e.m. of three independent experiments is indicated. (e) Binding site profile of indicated transcription factors and
indicated histone modification profiles at Nrxni. Ep300, H3K4mel mark enhancers, H3K27ac marks active enhancers, arrows mark
transcription factor co-localization. mRNA, messenger RNA; NSC, neural stem cell; shRNA, short hairpin RNA.

Data analysis

Known ID genes (528 genes), mutated in five or more ID patients were
categorized in Gilissen et al,,> Supplementary Table 10. Genes with de novo
non-synonymous mutations in patients with ASD with lower intelligence
quotient (IQ; <90) and patients with ASD with normal 1Q (>90)
were published in lossifov et al,® Supplementary Table 7. Likely
gene-disrupting mutations® were classified as loss-of-function (LOF)
mutations. Genes with LOF mutations in unaffected siblings and genes
with only missense (not LOF) mutations in ASD patients and missense
mutations in unaffected siblings were removed, as these are less likely to
be relevant for ASD pathology, resulting in a list of 1584 genes. Males with
ASD and lower IQ (<90) and females with ASD (which nearly always have

lower 1Q)®*¢ were classified as ASD with lower 1Q (ASD-lowlQ). Males with
ASD and normal 1Q (>90) were classified as ASD-normlQ. Genes with de
novo LOF and missense mutations in schizophrenia patients (662 genes,
Supplementary Table 10) were categorized from literature.®#*4”*® Frame-
shift mutations, nonsense mutations and splice-site mutations (within two
nucleotides) from the splice donor site or splice acceptor site’ were taken
as LOF mutations. LOF mutations were calculated as a percentage of all
de novo coding mutations (LOF+missense) in patients with ASD-lowlQ,
ASD-normlQ or schizophrenia, either in genes with the equivalent mouse
protein in the interaction network (network protein genes) or in the total
mutation data sets (all genes). For known ID genes with the equivalent
mouse protein in the interaction network, the type of mutation in the

Translational Psychiatry (2017), 1-12
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microcephaly genes by Tcf4 (b) or by Smad4 (d), Relative mRNA levels by RT-PCR of indicated genes in NSCs treated with the indicated shRNAs, s.
e.m. of three independent experiments is indicated. (c) Interaction network of Tcf4 with network transcription factors that are associated with
microcephaly. (e) Binding site profile of indicated transcription factors and indicated histone modification profiles at Mcph1 (upper panel) or
Wdr62 (lower panel). Angpt2, internal to Mcph1 and not regulated by Tcf4, is not indicated. Ep300, H3K4me1 mark enhancers, H3K27ac marks
active enhancers, arrows mark transcription factor co-localization. mRNA, messenger RNA; NSC, neural stem cell; shRNA, short hairpin RNA.
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Table 1. Network proteins with mutations in the equivalent human gene in patients with a mental disorder

Human homolog
of network protein

ID

ASD-lowlQ

ASD-normIQ

Schizophrenia

Constrained
gene

Severity mutation
vs IQ in MD

TCF4
ZEB2
SMC1A
SATB2
SOX2
CHD7
RFX3
HCFC1
CuL3
SALL1
MLL2
EHMT1
SOX5
KANSL1
EP300
TWIST1
KDM6A
NFIA
SKI

NFIX
SMAD4
ARID1A
SMARCE1
SMARCB1
SMARCA4
CcuL4B
ADNP
AHDC1
SETD2
TBL1XR1
UBAP2L
UBR5
BRCA1
CNOT3
ILF2
NFIB
CDC23
NACC1
SOX6
ZNF219
TRRAP
CHD4
EP400
NCOR1
NR2F1
ZHX3
ZNF462
KDM1A
RUVBL1
HDAC1
MBD2
CNOT1
RCOR2
SMC3
TCF3
ETV6
ZEB1
SMARCC2
ANAPC5
Wiz
KDM3B
ZFR
MAML2
QSERT1
RIF1
NCOR2
ZBTB45
PBX1

LOF
LOF
Missense
LOF
LOF
LOF
LOF
Missense
LOF
LOF
LOF
LOF
LOF
LOF
LOF
LOF
LOF
LOF
Missense
LOF
Missense
LOF
Missense
Missense
Missense
LOF

Missense

LOF

Missense

LOF

Missense

LOF 2x

LOF, missense
LOF

LOF, missense
LOF

LOF

LOF

LOF

LOF

LOF
Missense
Missense
Missense 2 x
Missense

Missense
Missense
Missense
Missense
Missense

Missense

Missense

Missense

Missense

LOF
LOF

Missense

Missense

Missense

Missense

Missense

Missense

Missense
Missense

Missense

Missense

Missense

Missense

Missense

Missense

LOF

LOF

Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense
Missense

> xX X XX X X X X

XX X X X X >

xX X

VvV

Abbreviations: ASD, autism spectrum disorder; ID, intellectual disability; 1Q, intelligence quotient; LOF, loss of function; MD, mental disorder. Human equivalent
genes of network proteins with mutations in patients with the indicated mental disorders are listed. Predominant type of gene mutations, LOF or missense, in
ID patients is listed. Type and number (if more than one) of gene mutations in patients with ASD-lowlQ, patients with ASD-normlQ or patients with
schizophrenia are listed. Overlap with a list of 1003 constrained genes in the human population is indicated. Network proteins with a missense mutation in the
human equivalent gene in patients with ASD-normIQ or schizophrenia and a LOF mutation in patients with ID or ASD-lowlQ are marked by >. The opposite
pattern is not observed.
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majority of patients was assessed per gene and assigned in Table 1 as LOF
or missense.

Enrichment in the network of ID genes equivalent to network proteins
was calculated over the expected value in case of a random overlap, which
was corrected for protein length and expression in our NSCs by using
average protein length from Ensembl genes of network proteins over NSC-
expressed genes. Protein length was calculated from ensembl GRCm38 by
counting the number of amino acids for each protein. A gene was
regarded as expressed in our NSCs, if its expression was equal or above
that of Zeb1 (0.127 RPKM in our RNA-seq data set), which is the network
protein with the lowest messenger RNA (mRNA) expression in our NSCs.
Genes significantly devoid of coding variants in the human population
(1003 genes), also called constrained genes, were reported.49 Enrichment
in the network of network proteins encoding constrained genes was
calculated over the expected value in case of a random overlap, which was
corrected for expression in our NSCs. Network-enrichment P-values for
network proteins encoding known ID genes or constrained genes are
obtained from two-sided binomial tests on the observed and expected
values. Enrichments and enrichment P-values of de novo non-synonymous
mutations in ASD patients, their healthy siblings or schizophrenia patients
in human genes equivalent to network proteins were calculated by
dnenrich,’ corrected for gene length, sequence context and expression of
the mouse homolog in our neural stem cells. Equivalent human genes of
network proteins were provided to the dnenrich program as ‘Gene set’ and
human equivalents of genes expressed in mouse NSCs were provided as
‘Background list'.

Significance of differences in the percentages of proteins associated
with ID, ASD-lowlQ, ASD-normIQ or SZ in the interactomes of Tcf4, Olig2,
Npas3 and Sox2 and significance of differences in percentages LOF
between network protein mutations in patients with ASD-lowlQ, ASD-
normlQ or schizophrenia were calculated using Fisher’s exact test, as some
of the expected counts in the contingency tables were below 5. To
determine whether the percentages LOF in network protein mutations in
patients with ASD-lowlQ, ASD-normlQ or schizophrenia were differently
distributed than equivalent percentages LOF in the total mutation sets, we
performed a permutation test by sampling 10 000 random subsets of 60
mutations; the number of mutations in patients with ASD or schizophrenia,
identified in our interaction network. The resulting permutation P-value
was calculated by dividing the number of observed P-values that were
more significant than the P-value (0.002) for our interaction network (34
observations) by the total number of observations (10 000). Significance of
differences in LOF percentages in mutations in ASD-lowlQ, ASD-normIQ
and schizophrenia categories between network proteins and the total
mutation data sets were calculated by Fisher's exact test.

Thirteen human primary microcephaly genes (MCPH1, WDR62, ASPM,
CASC5, CENPJ, CENPE, CDK5RAP1, CEP135, CEP152, STIL, CDK6, ZNF533, PHCT)
are known,”**" which were overlapped with Tcf4 target genes (see below).
Microcephaly genes were retrieved from the Online Mendelian Inheritance
in Man (http://www.omim.org) database by scoring for genes in which
mutations cause human monogenic conditions or syndromes that include
microcephaly.

RESULTS
Identification of a protein interaction network in NSCs

We recently improved the FLAG-tag affinity protocol to purify
transcription factors and their interacting proteins with high
efficiency and low background.*'® The accuracy of interaction
partner identification by this protocol was extensively validated by
independent immunoprecipitations.'*'> Importantly, many iden-
tified interactions were shown by us (Supplementary Table 1) and
others (Supplementary Table 2) to be biologically relevant and
uncover novel functions of the target protein or provide insight
into the molecular cause of malformations associated with human
syndromes.'® Here, we applied this protocol to purify transcription
factors Tcf4, Olig2 and Npas3 from mouse NSCs. Tcf4, Olig2 and
Npas3 have relatively high endogenous expression levels, as
compared with the median expression level in our NSCs,
determined by RNA-seq (Supplementary Table 3). NSC lines with
stable expression of FLAG-tagged Tcf4, Olig2 or Npas3
(Supplementary Figure 1) were grown to large scale and two or
three independent purifications of the FLAG-tagged proteins were
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performed. Interacting proteins, identified by mass spectrometry,
present in at least two purifications of the target protein were
included (Supplementary Tables 4, see the ‘Materials and
methods’ section for inclusion criteria) and combined with the
interaction partners of previously purified Sox2 (ref. 15;
Supplementary Table 7). This resulted in a protein interaction
network of 206 proteins and 401 protein—protein interactions
(Figure 1a, Supplementary Tables 8 and 9), including 13 protein-
protein interactions that were previously shown to be biologically
relevant (Supplementary Table 9). The interaction network
contains multiple chromatin modifying complexes, such as NuRD,
SWI-SNF and Ncor, and transcription factors such as Rfx3 and Sall3
that interact with all four purified transcription factors (Figure 1a).
However, other identified interaction partners were found to be
specific for one purified transcription factor, such as Ascl1,
Neurod1, Kdmé6a (Tcf4), Satb2, Yy1, Adnp (Olig2), Arnt2, Lmo7
(Npas3) and Xpo4 (Sox2) (Figure 1a). We confirmed by immuno-
precipitations the interaction of endogenous Olig2 with Sox2
(Supplementary Figure 2a) and the interaction of endogenous
Npas3 with Sox2 and Ep400 (Supplementary Figure 2b).

The interaction network is enriched for proteins mutated in
patients with ID, ASD or schizophrenia and proteins significantly
lacking coding variation in humans

We investigated whether the proteins in our interaction network
are associated with ID, ASD or schizophrenia. To our knowledge,
the most extensive and best validated list of genes associated with
(often syndromic) ID is a list of 528 ‘known ID genes’,5 which are
mutated in at least five ID patients. We find 26 network proteins
encoded by ID genes (Figure 1a, Table 1). Taking into account only
genes expressed in our NSCs and correcting for protein length, a
random overlap would give 9.6 proteins encoded by ID genes in
the network. We therefore find a 2.7-fold enrichment of proteins
encoded by ID genes in the network, over the expected value
(enrichment P-value 7.2x 10~9).

To probe for genes in which mutations are unambiguously
associated with (non-syndromic) ASD or schizophrenia is a difficult
task as few such genes are currently identified. Therefore, as a
source for candidate ASD genes, we used a recent large exome
sequencing study in 2500 ASD families,® which has the additional
benefit to separate ASD patients by low 1Q (<90, ASD-lowlQ) or
normal 1Q (>90, ASD-normlQ). The study identified de novo LOF
(frameshift, nonsense, splice-site) mutations or missense muta-
tions in 1584 genes specifically in patients with ASD-lowlQ or ASD-
normlQ® We find that the interaction network contains 38
proteins encoded by such putative ASD-associated genes with,
in total, 42 mutations (Figure 1a, Table 1). A random overlap with
the network, corrected by dnenrich® for gene length, sequence
context and expression in neural stem cells, would expect 31.5 of
such mutations in the network (enrichment P-value 0.04).
Mutations in unaffected siblings (24 mutations observed in the
network, 22.5 expected, P-value 0.40) are not enriched in the
network. To overlap with schizophrenia candidate genes, we
merged mutation data from four exome sequencing studies®®4748
and curated a list of 662 genes with LOF or missense de novo
mutations in schizophrenia patients (Supplementary Table 10). We
find 18 network proteins encoded by putative schizophrenia-
associated genes with 18 mutations (Figure 1a, Table 1), where the
corrected expectation would be an overlap of 12.2 mutations
(enrichment P-value 0.07). In total, the network contains 68
proteins mutated in patients with ID, ASD and/or schizophrenia
and these 68 MD-associated proteins have 260 interactions with
other proteins in the network (Figure 1a, Table 1, Supplementary
Tables 4). We identified 47 interactions between ID-associated
network proteins and network proteins mutated in patients with
ASD or schizophrenia (Figure 1a, Supplementary Table 11). We do
not find significant differences in the percentages of proteins
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associated with ID, ASD or schizophrenia between the inter-
actomes of starting transcription factors Tcf4, Olig2, Npas3, Sox2
(P-value >0.2 for all MD categories, Figure 1b). Together, our
results show that the network is enriched for MD-associated
proteins and that the different categories of MD-associated
proteins appear homogenously distributed in the network.

To have an indication of the potential of our interaction
network to contain yet undiscovered MD proteins, we overlapped
our network with a recently reported list of 1003 genes that are
significantly devoid of missense variants in the human
population®® (Figure 2a). These genes are likely to be evolutiona-
rily constrained and intolerant to mutation. Indeed, highly
constrained genes were found to be far more often associated
with dominant Mendelian disease than genes with an average
constraint.** Mutations in the above set of 1003 constrained genes
were found to be overrepresented in ASD patients.** Accordingly,
we find that genes mutated in patients with ID, ASD-lowlQ, ASD-
normlQ or schizophrenia are between two- and fourfold enriched
for this set of constrained genes (Figure 2b). We find that a quarter
(52 proteins) of the proteins in our interaction network overlap
with the set of constrained genes (Figures 2a and b,
Supplementary Table 8), a 4.3-fold enrichment over an NSC
expression-corrected random  expectation (12.2  proteins,
enrichment P-value 1.9x 10~ '8). Proteins encoded by constrained
genes are still enriched in the network after removal of MD-
associated proteins (21 observed, 7.9 expected, P-value 6.7 x 10>,
Figure 2b). Remarkably, in each of the four MD categories, around
50% of the network proteins with mutations in MD patients are
encoded by constrained genes (Figure 2b, Supplementary Table
8). The observed enrichments suggest that network proteins, in
particular, those encoded by constrained genes, would be good
candidates for mutation screening in patients to identify novel
MD genes.

Mutation severity in network proteins correlates with cognition
levels in the associated MD

Cognitive ability is more affected in patients with ASD-lowlQ than
in patients with ASD-normlQ or schizophrenia. We were interested
whether mutation severity in network proteins would correlate
with cognitive ability, with LOF mutations, on average, affecting
gene function more severely than missense mutations. We used
mutations from our data sets on patients with ASD-lowlQ, ASD-
normlQ and schizophrenia, which are three comparable de novo
mutation data sets derived from whole-exome sequencing of the
respective patients and their parents. We find that 43% of the
network protein mutations in patients with ASD-lowlQ are LOF
mutations, which is 2.5-fold higher than in network protein
mutations in ASD-normlQ patients (17% LOF) and nearly fourfold
higher than in network protein mutations in schizophrenia
patients (11% LOF; Figure 1c, Table 1). The differences in %LOF
in network protein mutations between the three MD categories
are significant (P-value =0.002). %LOF in the total mutation data
sets were also different between ASD-lowlQ (24% LOF), ASD-
normlQ (18% LOF ) and schizophrenia (15% LOF, Figure 1¢) but
the fold differences were less distinct. Indeed, we find that
percentages LOF in our network are differently distributed than
percentages LOF in equally sized subsets from the total mutation
sets (P=0.0034, 10 000 permutations). The difference in mutation
distribution between the network and the total data sets is mostly
due to the different LOF percentages in ASD-lowlQ (Figure 1c). We
find that LOF mutations are significantly overrepresented in the
ASD-lowlQ category in our network, as compared with the total
mutation set (odds ratio 4.2, P-value 1.5x 10™%), whereas this is
not the case for ASD-normlQ (odds ratio 0.94, P-value 1) and
schizophrenia (odds ratio 0.72, P-value 1).

One explanation for the exaggerated fold differences in
percentages LOF between MD categories within the network
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could be that mutations in network protein genes more likely
contribute to the MD, as supported by the high overlap of
mutated network proteins with constrained genes (Figure 2b), a
category of genes in which mutations more often cause disease.*
In this scenario, the total sets of mutations in the different MD
categories (Figure 1c) would contain higher frequencies of non-
contributing mutations, which by definition will not have a
severity bias between the different MD categories. We also find a
mutation bias in network proteins with multiple de novo
mutations, associated with different MDs; six network proteins
have missense mutations in patients with ASD-normIQ or
schizophrenia and LOF mutations in patients with ID or ASD-
lowlQ, whereas the opposite pattern is not observed (Table 1).
Together, this suggests that particularly in network proteins, the
severity of mutations increases in MDs with a low 1Q.

Network transcription factors preferentially co-localize on the
genome and cooperate in disease-relevant gene regulation

Having identified an interaction network containing MD-related
proteins, we investigated whether network proteins preferentially
overlap in their genome-wide binding sites, as a proxy for their
cooperation in gene regulation."”>*> We determined the
genome-wide binding sites in NSCs for network transcription
factors Tcf4, Olig2, Smad4 and Npas3 by ChIP-seq and added
published data for Chd7, Sox2, Ascl1 and Ep300. We also included
published data on Brn2 and Max, two transcription factors with
NSC expression levels similar to the tested network transcription
factors (Supplementary Table 3) but not part of our interaction
network. We find that overlaps in the top 5000 binding sites
between transcription factors within the network are on average
higher than with Max or Brn2 (Figures 3a and b). Overlaps
above 30% are only observed within the network (Figures 3a
and b) and overlaps above 35% are only observed between
network transcription factors that interact with each other
(Figures 3a, ¢ and 1a).

We subsequently explored whether the interaction network can
provide gene regulatory explanations for disease overlap. We
performed RNAi-mediated knockdown of Tcf4 in NSCs, shortly
followed by RNA sequencing. Identified Tcf4 target genes, which
are misregulated on Tcf4 knockdown and bound by Tcf4
(Supplementary Table 12), include 71 ID genes, 210 genes de
novo mutated in ASD patients and 85 genes de novo mutated in
schizophrenia patients and include well-known MD genes Foxp2,
Shank3 and Syngap1 (Supplementary Table 13). We find that Tcf4
maintains the expression of Nrxn1 and binds to several active
enhancers in the Nrxn1 gene (Figures 3d and e, Supplementary
Table 12). Patients with compound heterozygous mutations in
NRXN1 suffer from Pitt Hopkins-like syndrome.>® Regulation of
Nrxn1 by Tcf4 provides a mechanistic explanation for the strong
phenotypic overlap in patients with mutations in any of these two
genes. Tcf4 and its interactor Sox2 regulate and co-localize on ID
genes Gpr56, Tgfbr2 and Gli2 (Supplementary Figures 3a-d).
Disruption of the regulation of GPR56 by RFX proteins causes
cerebral cortex patterning defects and ID.>* Rfx proteins interact
with Tcf4 and Sox2 (Figure 1a), suggesting their cooperative
regulation of Gpr56.

Congenital or acquired microcephaly occurs in the majority of
patients with Pitt Hopkins syndrome, caused by TCF4 mutations.>
We found that target genes activated by Tcf4 have the highest
Gene Ontology term enrichments for gene categories such as Cell
cycle, M-phase, Chromosome centromeric region and Cell division
(Figure 4a), related categories that are often affected in primary
microcephaly.®® Indeed, Tcf4-activated target genes include 6 of
the 13 known primary microcephaly genes (Supplementary Table
13, Figure 4b) and we find that Tcf4 also maintains the expression
of primary microcephaly genes Cenpj and Cdk5rap2 (Figure 4b).
Moreover, Tcf4 protein interacts with 10 transcriptional regulators
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associated with microcephaly, including Smad4 (Figures 1a and
4c). Smad4, like Tcf4, regulates primary microcephaly genes
(Figure 4d). Tcf4 binds together with microcephaly-associated
transcription factors Smad4, Sox2, Chd7 and Ep300 to active
enhancers at primary microcephaly genes Mcphl and Wdr62
(Figure 4e). In conclusion, we identified a regulatory network in
NSCs related to microcephaly, which may explain the association
of this condition with the participating proteins.

DISCUSSION
A transcription factor interaction network in NSCs enriched for
MD-associated proteins
Here we believe we describe the first transcription factor
interaction network in a neural system. We find that the network
is enriched for proteins associated with ID, ASD or schizophrenia.
Accordingly, we provide a description of the molecular environ-
ment of such proteins, often for the first time, in a cell type highly
relevant for neurodevelopment and its diseases. We carried out
our studies in mouse NSCs, as the necessary scale of our
proteomics and ChlIP-seq experiments would be difficult to
perform using human NSCs. Nevertheless, a recent comprehensive
comparison of transcriptional networks and transcription factor
target genes in mouse and human shows high inter-species
conservation,® making our work relevant for the human situation.
The enrichment in the network was highest for a set of
established ID proteins.” Enrichments were lower for ASD-
associated and schizophrenia-associated mutations, which is
possibly due to their origin from sets of de novo mutations in
ASD or schizophrenia patients, where causality is less certain.
Protein mutations in these sets that do not contribute to disease
would not be enriched in the network but would increase the
expected mutation score, reducing the observed enrichments. The
network is highly enriched for proteins encoded by genes
significantly lacking coding variation in the human population, a
set of ~ 1000 constrained genes that is more frequently associated
with disease, including ASD.** The enrichment for constrained
genes would suggest that the network has an above-average
content of yet-to-be-discovered MD proteins. Indeed, recently
three additional bonafide ID genes were discovered, RLIM, ZBTB20
and JMJD1C, 7% that are encoding network proteins and can be
added to 26 ID proteins in the network from the overlap with the
2014 ID gene list

Genome co-localization and cooperation in gene regulation by
proteins in the network

Transcription factors that interact are more likely to cooperate in
gene regulation. Another proxy for cooperation in gene regulation
is co-localization on the genome.'**? For example, we previously
showed that Sox2 and its interaction partner Chd7 have a high
binding-site overlap on the genome and indeed Sox2 and Chd7
have a large overlap (50%) in regulated genes.” Accordingly, to
have an additional indication that network proteins preferentially
cooperate with each other in gene regulation, we showed
that eight network transcription factors have, on average, more
overlap in binding sites with each other than with two
transcription factors, Brn2 and Max, that are expressed in NSCs
but are not part of the network. Tcf4 binds with a number of its
interaction partners to primary microcephaly genes and (at least)
Tcf4 and Smad4 also regulate such genes, providing an
explanation for their shared microcephaly phenotype. In conclu-
sion, our interaction network shows features of a transcriptional
network, where proteins can cooperate to regulate disease-
relevant genes.
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Mutation severity in network proteins correlates with 1Q levels in
the associated MD

We wondered why in our interaction network some mutations occur
in patients with ASD-lowlQ, whereas others occur in patients with
ASD-normlQ or schizophrenia, MDs without obligatory loss of IQ.
One hypothesis would be that severe mutations disrupt the network
more and have a worse outcome for IQ levels. Mutation severity
within a network of interacting proteins has not been analyzed yet in
relation to cognition levels. We find that %LOF rates in our
interaction network of transcriptional regulators increase several
fold from schizophrenia or ASD-normlQ, two MDs without 1Q loss, to
ASD-lowlQ, a significantly different distribution than in the total
mutation data sets from which they originate (Figure 1c). In addition,
in network proteins with multiple mutations across different MDs,
mutation severity follows MD severity. A recent data analysis® using
de novo mutations across all genes in severe ID patients
(1Q < 50),°™%% ASD patients®*¢* and schizophrenia patients’ showed
an increase in %LOF from 15% in schizophrenia patients, to 17% in
ASD patients, to 24% in severe ID patients. These LOF percentages
for ASD and schizophrenia do not deviate much from those in the
total mutation data sets that we used, suggesting that also here %
LOF increase with lower cognition is more modest than in the
network. Interestingly, %LOF for network proteins associated with
ASD-lowlQ is nearly twice the %LOF value in the set of de novo
mutations in severe ID patients,®"®? a group with a more severe
cognitive deficit. One has to take here into account that in these
studies severe ID patients were counter selected for the co-
occurrence of congenital anomalies,®"? which likely impacts on
the set of detected de novo gene mutations and %LOF. We argued
above that the exaggerated increase of average mutation severity
with lower 1Q in the network may be caused by mutations often
being in network proteins encoded by constrained genes and
therefore more likely to be causal. This would imply that network
mutations and their LOF percentages provide a better reflection of
the real mutation spectra associated with the different MD categories
than can currently be obtained from the total mutation data sets.

There are a number of limitations to our study. We investigated
only the 68 proteins mutated in MD patients present in our network,
whereas it is estimated that mutations in several hundreds of
proteins may contribute to mental disorders.5> Therefore, our protein
set represents only a fraction of the estimated number of MD genes.
For ASD and schizophrenia, most of the included proteins are not
necessarily causally linked to disease, as they were observed in a
single patient. Although most MD-mutated transcriptional regulators
are highest expressed in NSCs, we cannot exclude that they are
relevant for disease in other stages of brain development, such as
neuronal maturation, where our network may be less relevant.

Our data are consistent with a scenario where the level of
in vivo disruption of a shared transcriptional network correlates
with the level of cognitive dysfunction in the associated MDs. Our
interaction network contains only a fraction of the total number of
transcriptional regulators believed to be associated with ID, ASD
or schizophrenia, but there is no a priori reason to assume that its
principles would not apply to a larger network of MD-related
transcriptional regulators. A shared underlying transcriptional
network is in line with the significant comorbidity observed
between ID, ASD and schizophrenia.®®%’
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