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Nectin-3 modulates the structural plasticity of dentate
granule cells and long-term memory
X-X Wang1, J-T Li2, X-M Xie2, Y Gu3, T-M Si2, MV Schmidt4 and X-D Wang1

Nectin-3, a cell adhesion molecule enriched in hippocampal neurons, has been implicated in stress-related cognitive disorders.
Nectin-3 is expressed by granule cells in the dentate gyrus (DG), but it remains unclear whether nectin-3 in DG modulates the
structural plasticity of dentate granule cells and hippocampus-dependent memory. In this study, we found that DG nectin-3
expression levels were developmentally regulated and reduced by early postnatal stress exposure in adult mice. Most importantly,
knockdown of nectin-3 levels in all DG neuron populations by adeno-associated virus (AAV) mimicked the cognitive effects of
early-life stress, and impaired long-term spatial memory and temporal order memory. Moreover, AAV-mediated DG nectin-3
knockdown increased the density of doublecortin-immunoreactive differentiating cells under proliferation and calretinin-
immunoreactive immature neurons, but markedly decreased calbindin immunoreactivity, indicating that nectin-3 modulates the
differentiation and maturation of adult-born DG granule cells. Using retrovirus to target newly generated DG neurons, we found
that selective nectin-3 knockdown in new DG neurons also impaired long-term spatial memory. In addition, suppressing nectin-3
expression in new DG neurons evoked a reduction of dendritic spines, especially thin spines. Our data indicate that nectin-3
expressed in DG neurons may modulate adult neurogenesis, dendritic spine plasticity and the cognitive effects of early-life stress.
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INTRODUCTION
Repeated exposure to adverse life events markedly increases the
risk for major psychiatric disorders.1–3 Severely stressful experi-
ences during the postnatal stage may suppress the developmental
trajectory of hippocampal principle neurons,4 and induce persis-
tent abnormalities in hippocampal plasticity and function.5–7 The
dentate gyrus (DG) serves a critical role in cognitive and emotional
information processing.8,9 During the early postnatal period, DG
cells undergo orchestrated developmental events ranging from
the proliferation and migration of new neurons to synaptic
formation and circuit integration.10,11 Exposure to stressors during
this critical time window disrupts developmental and adult
neurogenesis as well as synaptic plasticity in DG neurons, and
impairs cognitive performance later in life.12–15

A deeper understanding of the molecular substrates underlying
the reprogramming effects of early-life stress on DG neurons will
provide insight into the regulatory mechanisms of DG develop-
ment and the pathophysiology of stress-related disorders. The
roles of stress mediators, especially glucocorticoids and
corticotropin-releasing hormone (CRH), as well as nutritional and
immune factors in the negative consequences of early-life stress
on DG structure and function have been unraveled,6,10,16,17 which
are also dependent on genetic background to exert effects.18

Recent evidence suggests that augmented hippocampal CRH–
CRH receptor 1 (CRHR1) signaling mediates the enduring effects of
early postnatal stress, leading to dendritic simplification, spine

elimination, synaptic impairment and cognitive deficits.4,19,20

Notably, early-life stress reduces the expression levels of nectin-
3, a cell adhesion molecule primarily localized at adherens
junctions, in the neonatal and adult hippocampus via CRH–CRHR1
signaling.21–23 Moreover, nectin-3 knockdown in the CA3 region
mimics the effects of early-life stress on spine remodeling and
cognitive performance, whereas nectin-3 overexpression in CA3
attenuates stress-evoked spine loss and cognitive deficits.21 These
findings highlight nectin-3 as an important molecule associated
with early-life stress and a promising target to treat stress-related
cognitive disorders.
So far, the effects of stress on nectin-3 expression in the CA3 or

CA1 region have been investigated.21,24,25 However, it remains
unclear whether stress dysregulates nectin-3 levels in DG neurons
and whether impaired nectin-3-mediated cell adhesion contri-
butes to the stress effects on DG structure and function. In this
study, we used adeno-associated virus (AAV) to suppress nectin-3
protein expression in both immature and mature DG neurons, and
assessed the influences of DG nectin-3 knockdown on anxiety-
related behavior and memory. Subsequently, we used retrovirus
(RV) to specifically target nectin-3 expressed in newly generated
dentate granule cells, and examined its impact on dendritic spine
density and behavior. Our findings indicate that nectin-3 knock-
down in either old or young DG neurons may compromise
hippocampus-dependent spatial memory, which may further
contribute to the adverse effects of early-life stress.
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MATERIALS AND METHODS
Animals and housing
Adult male and female C57BL/6N mice (12 weeks old; Vital River
Laboratories, Beijing, China) were used for breeding in Experiment 1. Each
female was housed with one male for 2 weeks and then single-housed.
Pregnant females were monitored daily, and the day of delivery was
defined as postnatal day 0. Only male offspring were used. In Experiments
2 and 3, adult male mice (8 weeks old) were single-housed after
habituation. All animals were held under standard conditions (12:12 h
light/dark cycle, lights on at 0800 hours, temperature 22± 2 °C) with free
access to food and water, and were randomly assigned to each group. The
experiments were approved by the Animal Advisory Committee at
Zhejiang University and were performed in compliance with the National
Institute of Health’s Guide for the Use and Care of Laboratory Animals.

Experimental design
Experiment 1 examined the effects of early-life stress on nectin-3 protein
expression and spine density in adult DG neurons. Mice were killed at
12 weeks of age. Experiment 2 used AAV to assess the effects of nectin-3
knockdown in all DG neuron populations on adult neurogenesis, anxiety-
related behavior and hippocampus-dependent memory. Experiment 3
used RV to specifically target adult-born granule cells and evaluated the
effects of nectin-3 knockdown in young DG neurons on dendritic spine
plasticity and behavior. In Experiments 2 and 3, mice (12 weeks old) were
killed 24 h after behavioral testing, and their brains were processed for
further analysis. Mice used to validate the knockdown efficiency of RV-
short hairpin RNA against nectin-3 (shNEC) were killed at 8 weeks of age.

Early-life stress procedure
The limited nesting and bedding material paradigm was performed as
detailed previously.4,26 On the morning of P2, control dams were provided
with a sufficient amount of nesting material (4.8 g of Nestlets, Indulab,
Gams, Switzerland) and 500 ml of sawdust bedding. In the ‘stress’ cages,
the dams were provided with a limited quantity of nesting material (1.2 g
of Nestlets), which was placed on an aluminum mesh platform (McNichols,
Tampa, FL, USA). The stress procedure ended on the morning of P9. Male
mice were weaned on P28 and group-housed in three to four per cage.

Virus-mediated in vivo nectin-3 knockdown
We used AAV2/8 and RV vectors (Obio Technology, Shanghai, China) to
suppress nectin-3 expression in DG neurons. The short hairpin RNA
(shRNA) sequence (5′-TGTGTCCTGGAGGCGGCAAAGCACAACTT-3′) target-
ing nectin-3 has been validated previously.21 AAV-shSCR (AAV2/8-U6-
scrambled.shRNA-terminator-CAG-EGFP-WPRE-BGH-polyA, 3.5 × 1012 viral
genomes per ml), AAV-shNEC (AAV2/8-U6-Nectin-3.shRNA-terminator-
CAG-EGFP-WPRE-BGH-polyA, 3.9 × 1012 viral genomes per ml), RV-shSCR
(RV-EF1A-EGFP-U6-scrambled.shRNA-terminator-CAG-WPRE-BGH-polyA,
1.8 × 1010 viral genomes per ml) and RV-shNEC (RV-EF1A-EGFP-U6-Nectin-
3.shRNA-terminator-CAG-WPRE-BGH-polyA, 4.2 × 1010 viral genomes per
ml) were generated and purified by Obio Technology.
Stereotaxic surgery and microinjection were performed as previously

described.27 Briefly, 0.5 μl of AAV or 0.75 μl of RV was delivered bilaterally
to the dorsal DG (1.8 mm posterior to bregma, 1.2 mm lateral from midline
and 1.65 mm dorsoventral from dura) of 8-week-old adult mice over a 15-
min period. The micropipette was left in the site for additional 5 min. Mice
were given a 4-week recovery period before behavioral testing to allow
sufficient viral infection.
To validate the knockdown efficiency of RV-shNEC, 0.1 μl of RV-shSCR or

RV-shNEC was delivered bilaterally to the dorsal hippocampus of male
pups (1 mm anterior to lambda, 1.2 mm lateral from midline and 1.25 mm
dorsoventral from dura) on P2, when hippocampal neurogenesis is more
active than adulthood. Mice were killed at 8 weeks of age.

Behavioral testing
Behavioral tests were performed between 0900 and 1600 hours and
scored by ANY-maze 4.98 (Stoelting, Wood Dale, IL, USA) as detailed
previously.21,28,29

Open field test. Mice were placed in the open field arena (50 × 50 ×
50 cm3) made of gray polyvinyl chloride and were evenly illuminated at

10 lux. The time in the center zone (25 × 25 cm2) and total distance
traveled were analyzed for 10 min.

Light–dark box test. Mice were placed in the dark chamber (15 × 20 ×
25 cm3, 10 lux), facing the brightly illuminated chamber (30 × 20× 25 cm3,
650 lux). The two chambers were connected by a 4-cm-long tunnel. During
the 5-min test, the time spent in the light chamber was measured.

Elevated plus maze test. The elevated plus maze was made of gray
polyvinyl chloride with two opposing open arms (30 × 5× 0.5 cm3, 40 lux)
and two opposing enclosed arms (30 × 5× 15 cm3, 10 lux) connected by a
central platform (5 × 5 cm2). Mice were placed in the center of the maze
and allowed to explore for 5 min. The time spent in the open arms was
recorded.

Y-maze test. The Y-maze apparatus was made of gray polyvinyl chloride
with three symmetrical arms (30 × 10 × 15 cm3) and illuminated at 10 lux.
Prominent extra-maze spatial cues were provided. Mice were placed in the
end of one arm and allowed to freely explore for 5 min. Three consecutive
choices of all three arms were counted as an alternation. The percentage of
spontaneous alternation was determined by dividing the total number of
alternations by the total number of choices minus 2.

Spatial object recognition test. The test was performed in the open field
arena under low illumination (10 lux). Prominent spatial cues were
provided. On 1 day before testing, the mice were habituated to the
testing environment for 10 min on two trials separated by an intertrial
interval of 60 min. The testing procedure consisted of two sessions
separated by an intertrial interval of 60 min. In the sample phase, mice
were presented with two identical circular cones and allowed to explore
for 10 min. During the 10-min retrieval trial, mice were presented with a
non-displaced (known) object and a relocated (novel) one, and the time
spent exploring each object was measured. The discrimination index (DI)
was calculated as follows: DI = 100%× (time with the novel object− time
with the known object)/time with both objects.

Temporal order memory test. The test was performed in the open field
arena under low illumination (10 lux). No spatial cue was provided. On
1 day before testing, mice were habituated to the testing environment for
10 min on three consecutive trails separated by 60 min of intertrial
intervals. The testing procedure consisted of three sessions separated by
60 min of intertrial intervals. In sample phases 1 and 2 (10 min each), two
cubes and two cylinders were presented, respectively. In the retrieval
phase (10 min), one cube (the ‘remote’ object) and one cylinder (the
‘recent’ object) were presented. DI was calculated as: 100%× (time with
the remote object− time with the recent object)/time with both objects.

Immunostaining and image analysis
Mice were anesthetized with sodium pentobarbital (200 mg kg− 1) and
transcardially perfused with 0.9% saline followed by 4% buffered
paraformaldehyde. Following post fixation and cryoprotection, serial
coronal sections were prepared through the dorsal hippocampus (Bregma
− 1.22 to − 2.92 mm) at 30 μm thickness and 300 μm intervals using a
cryostat (Leica, Wetzlar, Germany). The following primary antibodies were
used for immunohistochemistry and immunofluorescence: rabbit anti-
nectin-3 (1:1000; ab63931, Abcam, Cambridge, UK), rabbit anti-
minichromosome maintenance complex component 2 (MCM2; 1:1000;
4007, Cell Signaling, Danvers, MA, USA), rabbit anti-doublecortin (1:1000;
4604, Cell Signaling), rabbit anti-calretinin (1:5000; 7697, Swant, Marly,
Switzerland), rabbit anti-calbindin D-28k (referred to as calbindin hereafter;
1:20 000; CB-38, Swant) and rabbit anti-green fluorescent protein (GFP;
1:5000; sc-8334, Santa Cruz Biotechnology, Santa Cruz, CA, USA).
For immunohistochemistry, free-floating sections were simultaneously

treated with 3% hydrogen peroxide (10 min) followed by 1% normal goat
serum (1 h), and were then labeled with primary antibodies overnight at
4 °C. The next day, sections were rinsed and incubated with a biotinylated
goat anti-rabbit secondary antibody (Zhongshan Golden Bridge Biotech-
nology, Beijing, China) for 2 h at room temperature. After rinsing, the 3,3′-
Diaminobenzidine Horseradish Peroxidase Color Development Kit (Zhong-
shan Golden Bridge) was used for staining. Finally, the sections were
transferred onto slides and coverslipped.
For immunofluorescence, the sections were treated with 1% normal

donkey serum for 1 h and labeled with the rabbit anti-GFP antibody
overnight at 4 °C. The next day, the sections were rinsed and labeled with
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Alexa Fluor 488-conjugated donkey anti-rabbit secondary antibody (1:500;
Invitrogen, Carlsbad, CA, USA) for 3 h at room temperature. After rinsing,
the sections were transferred onto slides and coverslipped with
Vectashield containing 4′,6-diamidino-2-phenylindole (Vector Laboratories,
Burlingame, CA, USA).
To quantify the immunoreactivity of nectin-3 and calbindin, images from

six sections per animal were acquired at × 100 using the Olympus
BX61 microscope and analyzed by ImageJ (National Institute of
Health, Bethesda, MD, USA) as described previously.22 Relative protein
levels were determined by the differences in optical density values
between the region of interest (Supplementary Figure S1A) and corpus
callosum from the same section, which generally lacks staining and was
considered as the background. Results were normalized by taking the
mean value of the control group as 100%.
To quantify the density of MCM2-, doublecortin- and calretinin-

immunoreactive cells in the subgranular zone of dorsal DG, cells were
counted at × 400 using an Olympus BX61 microscope (Olympus, Tokyo,
Japan) by an investigator blind to the experimental conditions.
Doublecortin-positive cells were further classified into six categories
(Supplementary Figure S1B) based on dendritic morphology as described
previously.30 For each animal, both hemispheres on six sections (300 μm
apart) were analyzed. The cell counts were multiplied by 10 (series
number) to estimate the total number of immunoreactive cells in the
dorsal DG. To estimate the volume of the granule cell layer (GCL) of dorsal
DG, images were captured at × 100 using a DP72 camera (Olympus) fitted
to the microscope. The GCL was outlined and its area was measured using
the ImageJ Software. The area of GCL was multiplied by 10 and then by the
thickness of the sections (30 μm) to calculate dorsal DG GCL volume. Cell
counts were presented as the number of immunoreactive cells per mm.3

To analyze the dendritic spines of RV-infected young DG granule cells,
images (800 × 800 pixel2) covering the medial molecular layer (ML) of
dorsal DG were obtained with an Olympus IX81-FV1000 laser-scanning
confocal microscope (Olympus). Dendritic segments (30–70 μm in length,
eight dendrites per mouse sampled from both suprapyramidal and
infrapyramidal blades) were scanned at 0.1-μm intervals along the z axis
using a × 60 oil-immersion objective (numerical aperture 1.35) with a × 2.6
digital zoom, yielding a voxel size of 0.1 × 0.1 × 0.1 μm3. The z stack images
were deconvolved using the AutoQuant X3 software (Media Cybernetics,
Silver Spring, MD, USA) and analyzed with the NeuronStudio software
(http://research.mssm.edu/cnic/tools-ns.html) by an investigator blind to
the experimental conditions. Dendritic spines were categorized as thin,
mushroom and stubby subtypes based on established criteria.28,31 Spine
density was expressed as the number of spines per 10 μm of dendrite.

Golgi–Cox staining and the analysis of dendritic spines
Brains were immersed in the Golgi–Cox solution for 14 days and
transferred to the 30% sucrose solution for 2–5 days in the dark at room
temperature. Coronal sections (120 μm) were prepared using a vibratome
(Microm HM 650V, Thermo Scientific, Walldorf, Germany) and processed as
described previously.28 Bright-field z-series images of fully impregnated DG
granule cells were acquired at × 600 using the DP72 camera fitted to the
Olympus BX61 microscope equipped with a ProScan motorized stage
(Prior Scientific, Rockland, MA, USA; z-step= 1 μm). Dendritic segments
(40–70 μm in length, four from the suprapyramidal blade and four from
the infrapyramidal blade for each mouse) in the medial ML of DG were
reconstructed and dendritic spines were analyzed using NeuronStudio as
described above.

Western blot
Western blot was performed as described previously.22 Hippocampi from
both hemispheres were dissected. For Experiment 2, DG and CA1–3
regions were further separated according to an established protocol.32

Hippocampal tissues were homogenized in ice-cold lysis buffer and
centrifuged at 10 000 r.p.m. for 20 min at 4 °C. Protein concentrations were
determined using a bicinchoninic acid protein assay kit (Pierce, Rockford,
IL, USA). Samples containing 20 μg of protein were resolved by 10%
sodium dodecyl sulfate-polyacrylamide gels, and transferred onto
polyvinylidene difluoride membranes (Millipore, Bedford, MA, USA).
Membranes were labeled with rabbit anti-nectin-3 (1:2000; Abcam), mouse
anti-actin (1:10 000; E021020-01, EarthOx, Millbrae, CA, USA) or mouse anti-
GFP (1:20 000; sc-9996, Santa Cruz) overnight at 4 °C. Following incubation
with horseradish peroxidase-conjugated secondary antibodies (1:2000,
Sigma-Aldrich, St Louis, MO, USA) for 3 h at room temperature, bands were

visualized using an enhanced chemiluminescence system (Pierce) and
quantified with densitometry (Quantity One 4.2, Bio-Rad, Hercules, CA,
USA). All results were normalized by taking the value of the control group
as 100%. Each assay was repeated for at least three times.

Statistical analysis
SPSS 16.0 (SPSS, Chicago, IL, USA) was used to perform statistical analyses.
Nectin-3 protein levels across developmental stages were analyzed by one-
way analysis of variance (ANOVA) followed by Tukey’s post hoc test when
appropriate. For the analysis of time exploring the objects during the
acquisition phase(s) of the spatial object recognition and temporal order
memory tasks, two-way ANOVA and two-way repeated measures ANOVA
were performed, respectively. The two-tailed Student’s t-test was used to
compare pairs of means. For dendritic spine analysis, statistics were
performed by averaging the eight dendrites selected from each mouse,
followed by averaging the mice in each group.33 Statistical outliers with
values that fell beyond two s.d.'s from the mean were excluded from
analysis. Data are reported as mean± s.e.m. Statistical significance was
defined at Po0.05.

RESULTS
Early-life stress reduces DG nectin-3 levels in adulthood
We first analyzed nectin-3 expression levels in the dorsal DG under
basal conditions on P2, P9 and P90 to evaluate the temporal
expression profile of nectin-3 in the developing and adult DG
(Supplementary Figure S2A). One-way ANOVA revealed a sig-
nificant effect of developmental stage on nectin-3 expression in
GCL (F2, 6 = 13.049, P= 0.007), hilus (F2, 6 = 35.654, P= 0.00047) and
the whole dorsal DG (F2, 6 = 150.408, P= 0.000007). Post hoc
analyses showed that nectin-3 levels in DG, especially in GCL and
hilus, peaked on P9 (GCL: P9 versus P2, Po0.05, P9 versus P90,
Po0.01; hilus: P9 versus P2, Po0.001, P9 versus P90, Po0.01;
total: P9 versus P2, Po0.001, P9 versus P90, Po0.001; Tukey’s
test). We then examined adult mice with or without postnatal
stressful experiences (Supplementary Figure S2B), and found that
stress significantly reduced DG nectin-3 levels (ML, t14 = 2.564,
P= 0.023; hilus, t14 = 3.316, P= 0.005; total, t14 = 2.42, P= 0.03;
independent t-test). This indicates that early-life stress may
lastingly reduce nectin-3 levels in DG neurons.

Nectin-3 knockdown in both old and young DG neurons mildly
increases anxiety and impairs hippocampus-dependent memory
To examine the consequences of dorsal DG nectin-3 knockdown
on anxiety and cognition in adult mice, we used the AAV-shNEC
virus to suppress nectin-3 expression in both old and young DG
neurons (Figures 1a and b). AAV-shNEC significantly reduced
nectin-3 protein levels in the dorsal DG but not in the CA1–3
regions (DG, t10 = 3.193, P= 0.0096; CA1–3, t10 =− 0.003, P= 0.998;
independent t-test; Supplementary Figures S3A and B). In addi-
tion, DG nectin-3 protein levels were comparable between mice
injected with the control virus (AAV-shSCR) and mice without viral
injection (Supplementary Figure S3C). For mice that underwent
behavioral testing, the suppression of DG nectin-3 protein levels
was validated (ML, t21 = 3.563, P= 0.002; hilus, t21 = 2.745, P= 0.012;
total, t21 = 2.872, P= 0.009; independent t-test; Supplementary
Figure S3D). Compared with mice injected with AAV-shSCR, those
with decreased DG nectin-3 levels exhibited comparable explora-
tion time in the center zone (control (CT): 47.82 ± 7.5 s, knockdown
(KD): 71.36 ± 16.4 s; t15.41 = 1.306, P= 0.211; independent t-test)
and total distance traveled (Figure 1c) in the open field arena, but
spent less time to explore the anxiogenic and brightly lit
compartment (t22 = 2.125, P= 0.045; independent t-test;
Figure 1d). In the elevated plus maze test, no difference was
found between groups (Figure 1e). In the Y-maze spontaneous
alternation task, which evaluates spatial working memory and
depends on multiple brain regions including the hippocampus,34

the two groups performed similarly, indicating that DG nectin-3
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knockdown did not alter short-term spatial memory (Figure 1f).
However, in the hippocampus-dependent spatial object recogni-
tion test, nectin-3 knockdown mice showed impaired object
discrimination, indicative of long-term spatial memory deficits

(t22 = 2.853, P= 0.009; independent t-test; Figure 1g). Moreover,
nectin-3 knockdown mice had impaired temporal order memory
that involves the hippocampus and several neocortical
regions35,36 (t22 = 2.744, P= 0.012; independent t-test; Figure 1h).
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In addition, in the acquisition phase(s) of the spatial object
recognition and temporal order memory tests, both groups of
mice performed similarly (Supplementary Figure S4). Taken
together, these results suggest that nectin-3 knockdown in the
dorsal DG specifically impairs long-term hippocampus-dependent
memory and mildly increases anxiety.

Nectin-3 knockdown hampers the differentiation and maturation
of adult-born DG granule cells
We have reported that nectin-3 knockdown in the adult
hippocampus reduces dendritic spine density in CA3, CA1 and
DG principal neurons.21 It is therefore conceivable that nectin-3 is
important for spine remodeling in mature hippocampal neurons.
However, as AAV also infects dividing cells and non-dividing
immature neurons,37 it is possible that nectin-3 knockdown
disrupts the development and maturation of adult-born dentate
granule cells, which may contribute to cognitive deficits. To test
this possibility, we used various markers to label DG neurons
undergoing proliferation (MCM2), differentiation (doublecortin) or
maturation (calretinin and calbindin).38,39 The volume of dorsal
GCL was comparable between groups (Figure 2a). Nectin-3
knockdown did not affect cell proliferation as indicated by
unaltered density of MCM2-immunoreactive cells in the adult

DG (Figure 2b). In nectin-3 knockdown mice, although the average
density of doublecortin-immunoreactive cells remained relatively
unchanged (t6.806 = 2.116, P= 0.073; independent t-test), the
number of category B and categories A+B cells significantly
increased (category B, t10 = 2.606, P= 0.026; categories A+B,
t10 = 2.476, P= 0.033; independent t-test; Figure 2c), indicating
that nectin-3 may modulate neuronal differentiation and initial
dendritic growth. Moreover, nectin-3 knockdown increased the
number of calretinin-expressing immature DG neurons in the
subgranular zone (t7.009 = 2.618, P= 0.034; independent t-test;
Figure 2d), but markedly reduced calbindin levels in all DG
subregions (GCL, t10 = 2.45, P= 0.034; ML, t10 = 2.356, P= 0.04; hilus,
t10 = 2.585, P= 0.027; total, t10 = 2.483, P= 0.032; independent t-
test; Figure 2e). These data suggest that impaired nectin-3-
mediated cell adhesion disrupts the differentiation and matura-
tion of adult-born DG neurons.

Nectin-3 knockdown in adult-born DG granule cells impairs
memory and reduces spine density
As new DG granule cells are continuously generated in the adult
hippocampus, we used RV to examine whether specific knock-
down of nectin-3 in young DG neurons disrupts hippocampus-
dependent memory (Figures 3a and b). The knockdown efficiency
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Figure 2. Effects of nectin-3 knockdown on the proliferation, differentiation and maturation of adult-born DG granule cells. (a) The volume of
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calretinin-positive immature DG neurons. (e) Nectin-3 knockdown significantly reduced the levels of calbindin, a marker of mature granule
cells, in all DG subregions. Insets show magnified images of calbindin-positive mature DG neurons. All scale bars= 100 μm. *Po0.05. CT,
control; DG, dentate gyrus; GCL, granule cell layer; KD, nectin-3 knockdown; MCM2, minichromosome maintenance complex component 2.

Nectin-3, dentate granule cells and memory
X-X Wang et al

5

Translational Psychiatry (2017), 1 – 9



of RV-shNEC was validated as shown by significantly reduced
hippocampal nectin-3 protein levels in adult mice with intrahip-
pocampal RV-shNEC injection on P2 (t8 = 4.501, P= 0.002; inde-
pendent t-test; Supplementary Figure S5). In the open field test, no
difference in the time spent exploring the center zone (CT:

19.69 ± 4.16 s, KD: 19.62 ± 5.15 s; t17 = 0.01, P= 0.992; independent
t-test) or total distance traveled was found (Figure 3c). In the light–
dark box and elevated plus maze tests, the two groups of mice
also performed similarly, indicating that reducing nectin-3 levels in
newly generated DG neurons do not alter anxiety (Figures 3d and
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e). Short-term spatial working memory was not affected by nectin-
3 knockdown in new DG neurons (Figure 3f). However, in the
spatial object recognition test, mice with nectin-3 downregulated
in new DG neurons showed memory impairments as indicated by
significantly reduced object DI (t29 = 2.157, P= 0.039; independent
t-test; Figure 3g). By contrast, in the temporal order memory test,
mice with nectin-3 knockdown in new DG neurons had intact
memory (Figure 3h). In addition, both groups of mice explored the
two presented objects similarly in the acquisition phase(s) of the
spatial object recognition and temporal order memory tests
(Supplementary Figure S6).
We further examined the impact of nectin-3 downregulation on

spine density in new DG granule cells (Figure 4), and observed
that nectin-3 knockdown evoked a reduction of spines, especially
thin spines, in the medial ML (thin: t10 = 2.441, P= 0.035; total:
t10 = 2.318, P= 0.043; independent t-test). In comparison, consis-
tent with our previous findings,19 spine density in the medial ML
of DG remained unchanged in adult mice with early-life stress
exposure (Supplementary Figure S7).

DISCUSSION
The cell adhesion molecule nectin-3 is implicated in chronic stress-
induced synaptic abnormalities and cognitive deficits.21,24,25 In this
study, we showed that nectin-3 expression levels in DG could be
reduced in adult mice with neonatal stressful experience. Most
importantly, DG nectin-3 knockdown in either all neuron popula-
tions or newly generated granule cells impaired hippocampus-
dependent memory. Furthermore, weakened nectin-3-mediated
cell adhesion disrupted the maturation and structural plasticity of
adult-born DG neurons. These results provide further evidence on
the role of nectin-3 in structural plasticity, memory and stress-
related disorders.
During the early postnatal period, nectin-3 is observed in both

synaptic sites and adherens junctions in CA3 neurons; however, it
selectively localizes at adherens junctions from P14 onwards.40

Nectin-3 is essential for the establishment of axon–dendrite
contacts,41 and conventional knockout of nectin-3 reduces the
number of adherens junctions and induces abnormal axonal
targeting of DG granule cells.42 Here we noticed that the protein
expression of nectin-3 in DG was developmentally regulated, and
DG nectin-3 levels peaked on P9 when the neonatal hippocampus
and neocortex are highly sensitive to severe stress challenge.4,28

Although further evidence on the subcellular localization of
nectin-3 in immature and mature DG neurons is needed, we found
that nectin-3 levels were significantly reduced by early-life stress
in the adult DG, indicative of its potential role in the development
of DG neurons.
Elevated hippocampal CRH–CRHR1 signaling has been hypothe-

sized to mediate the effects of early-life stress on cognition.
Recently, we have reported that CRH–CRHR1 signaling impairs
hippocampus-dependent memory through reducing nectin-3
protein levels in the CA3 region,21 indicative of nectin-3 as a
downstream molecule of CRHR1. In the present study, we further
showed that the suppression of nectin-3 in both immature and
mature DG neurons impaired spatial object recognition memory
that is specifically dependent on the hippocampus, and temporal
order memory that depends on the neuronal networks among the
hippocampus, medial prefrontal cortex and perirhinal cortex.35,36

These results indicate that nectin-3 in the DG region may also be a
target of early-life stress and CRHR1 signaling. In addition,
consistent with our previous findings,21 spatial working memory
as evaluated by the Y-maze spontaneous alternation task was not
altered by DG nectin-3 knockdown. This suggests nectin-3 as a
molecular substrate for long-term instead of short-term memory.
A main feature of DG is the continuous generation of new

granule cells from subgranular zone throughout life. Adult
neurogenesis in DG has been shown to modulate memory and
anxiety-related behavior.38,39 A large body of evidence demon-
strates that early-life stress reprograms DG neurogenesis, with
stress effects varying depending on species, sex, age, genetic
background and stress paradigms.6,10,16–18 Neonatal and adult
neurogenesis in the early-life stress model we used has been
intensively characterized by a recent study.12 Such postnatal
manipulation transiently increases neuronal proliferation and
differentiation in the neonatal DG, but lastingly inhibits the
survival of neonatal- and adult-born DG neurons. Our data
revealed that DG nectin-3 knockdown did not affect cell
proliferation, but increased the density of differentiating cells as
shown by doublecortin-immunoreactive categories A and B cells.
In addition, the density of differentiated and immature DG
neurons expressing calretinin was increased, whereas the
immunoreactivity of calbindin, which marks mature DG granule
cells that have integrated into neuronal circuits, was decreased in
nectin-3 knockdown mice. Collectively, these results suggest that
nectin-3 contributes to the differentiation and maturation of
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adult-born DG neurons, and its reduction may partially contribute
to early postnatal stress-induced effects on neurogenesis. More-
over, in line with our previous results that hippocampal nectin-3
knockdown reduces spine density in the outer ML of DG,21 we
found that nectin-3 knockdown specifically in newly generated
neurons also reduced the density of spines, especially thin spines
in the medial ML, highlighting the importance of nectin-3 in
dendritic spine plasticity. Taken together, these data suggest that
nectin-3 modulates the development of young DG neurons and
remodels the structure of old DG neurons. Reduced nectin-3 levels
impair the structural integrity of DG neurons, which in turn
contributes to early-life stress-induced memory loss. In future
studies, more detailed analyses are needed to dissect the
involvement of nectin-3 in different stages of developmental
and adult neurogenesis as well as dendritic growth and spine
formation/elimination, so that a better understanding on nectin-3-
mediated cell adhesion in the structural plasticity of DG neurons
could be obtained.
It should be noted that, on the one hand, although nectin-3

knockdown in either all DG neurons or adult-born neurons alone
mimicked early-life stress-induced long-term spatial memory
deficits, it did not reproduce every aspect of the stress effects.
On the other hand, nectin-3 knockdown resulted in molecular and
morphological phenotypes that were not prominent in neonatally
stressed adult mice. For instance, as shown in this study and
previously,19,21 spine density in the ML of DG was altered in
nectin-3 knockdown but not in postnatally stressed mice. This may
be ascribed to the constellations of molecular and cellular changes
evoked by early-life stress,43,44 including neurexins,19 neuroligins45

and other cell adhesion molecules that may exert compensatory
effects. Alternatively, as adherens junctions are present in 33% of
dendritic spines in CA1 pyramidal neurons,46 nectin-3 knockdown-
induced effects may be only responsible for the reduction of a
small fraction of spines.
We observed a mild anxiogenic effect of nectin-3 knockdown in

all DG neurons. Considering the limitations in the microinjection
procedure, this phenotype may be explained by the spreading of
AAV-shNEC to part of the ventral DG that modulates anxiety.8,9 In
addition, mice injected with AAV-shNEC exhibited anxiety-related
behavior only in the light–dark box test but not in the open field
or elevated plus maze test. This may be ascribed to the sensitivity
of different tests and/or the intra-individual variations in
emotionality.47 In future studies, it would be interesting to
investigate whether specific nectin-3 knockdown in ventral DG
neurons indeed increases anxiety.
In summary, our data indicate that nectin-3 modulates the

development and plasticity of DG granule cells, which in turn
contribute to hippocampus-dependent memory. These findings
may shed light on the importance of nectin-3-mediated synaptic
and cell adhesion in neuronal development and plasticity, learning
and memory, and stress-related psychiatric disorders.
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