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Brain antibodies in the cortex and blood of people with
schizophrenia and controls
LJ Glass1,2, D Sinclair1,2,3, D Boerrigter1,2, K Naude1,2, SJ Fung1,2,3, D Brown4,5, VS Catts1,2,3, P Tooney6, M O’Donnell3, R Lenroot1,2,3,
C Galletly7,8, D Liu7,9, TW Weickert1,2,3 and C Shannon Weickert1,2,3

The immune system is implicated in the pathogenesis of schizophrenia, with elevated proinflammatory cytokine mRNAs found in
the brains of ~ 40% of individuals with the disorder. However, it is not clear if antibodies (specifically immunoglobulin-γ (IgG)) can
be found in the brain of people with schizophrenia and if their abundance relates to brain inflammatory cytokine mRNA levels.
Therefore, we investigated the localization and abundance of IgG in the frontal cortex of people with schizophrenia and controls,
and the impact of proinflammatory cytokine status on IgG abundance in these groups. Brain IgGs were detected surrounding blood
vessels in the human and non-human primate frontal cortex by immunohistochemistry. IgG levels did not differ significantly
between schizophrenia cases and controls, or between schizophrenia cases in ‘high’ and ‘low’ proinflammatory cytokine subgroups.
Consistent with the existence of IgG in the parenchyma of human brain, mRNA and protein of the IgG transporter (FcGRT) were
present in the brain, and did not differ according to diagnosis or inflammatory status. Finally, brain-reactive antibody presence and
abundance was investigated in the blood of living people. The plasma of living schizophrenia patients and healthy controls
contained antibodies that displayed positive binding to Rhesus macaque cerebellar tissue, and the abundance of these antibodies
was significantly lower in patients than controls. These findings suggest that antibodies in the brain and brain-reactive antibodies in
the blood are present under normal circumstances.
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INTRODUCTION
There is increasing evidence of immune abnormalities in people
with schizophrenia. In the blood, increased concentration of
cytokines, particularly interferon (IFN)-γ, interleukin (IL)-1β, soluble
IL-2 receptor (sIL-2R), IL-6, IL-12, transforming growth factor (TGF)-
β and tumor necrosis factor (TNF)-α, are found in people with
schizophrenia when compared to controls.1,2 In the brain,
specifically dorsolateral prefrontal cortex (DLPFC), increased mRNA
expression of IL-6, IL-1β and IL-8 cytokines can be found in some
people with schizophrenia.3–6 Transcript levels of various immune
regulators and their chaperone proteins are also altered in the
prefrontal cortex of subjects with schizophrenia.7,8 Antipsychotic
medications can have immunomodulatory effects,9–11 often low-
ering cytokine levels in addition to alleviating positive symptoms
of schizophrenia. However, blood levels of IL-1β, IL-6, IL-12, IFN-γ,
TNF-α, sIL-2R and TGF-β have been found to be elevated in
unmedicated first-episode psychosis1,9,12 and chronically medi-
cated patients,13,14 indicating that antipsychotic treatment neither
solely explains, nor completely remediates, immune activation in
schizophrenia.
To date, it is unclear whether antibodies play a role in immune

dysregulation in schizophrenia. The T-cell-produced cytokines
activate B cells to switch from producing weakly binding
immunoglobulin-μ to the highly specified immunoglobulin-γ

(IgG). Playing an integral part in the secondary immune response,
IgG antibodies bind complement, facilitate phagocytosis through
opsonization, and direct cytotoxic activities of natural killer cells.15

In peripheral blood, elevated B-cell and reduced T-cell popula-
tions have been found in schizophrenia.16–18 In fact, mature
B cells numbers appear to normalize in some schizophrenia
patients whose clinical state has improved with antipsychotic
treatment.17,19 These observations suggest that immune dysregu-
lation in schizophrenia may include an underlying component of
B-cell pathology.
Antibodies in schizophrenia pertaining to brain pathology are

likely to recognize brain antigens (brain-reactive) and should be
present within the brain itself. Brain-reactive antibodies are known
to be present in the blood in health20 and psychiatric disease,20–26

and may reflect antibody-related immune pathology in schizo-
phrenia. Antibodies from blood have been shown to bind to
monkey and human brain tissue antigens.21,22 More specifically,
antibodies targeting N-methyl-D-aspartate receptors (NMDAR) are
found in the cerebrospinal fluid and serum of people with NMDAR
encephalitis, who exhibit schizophrenia-like symptoms including
psychosis and cognitive impairments,27,28 and in some people
experiencing first-episode psychosis.29 In people with schizophre-
nia, there are serum antibodies targeting other neurotransmitter
receptors (for example, muscarinic cholinergic receptor 1, opioid
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receptor-μ and serotonin receptor-1A receptors),23–25 heat-shock
proteins30–32 and glyceraldehyde 3-phosphate dehydrogenase26

(GAPDH). However, whether the human brain has an appreciable
amount of IgGs, and whether their abundance is altered in
schizophrenia, is unknown.
The presence of IgGs in the brain, particularly the healthy brain,

is more plausible if mechanisms exist in the brain to allow their
influx and efflux. The Fc fragment neonatal receptor (FcRN) is
found in the choroid plexus and microvascular endothelial cells33

and facilitates the transit of IgG across the luminal surface.34 It is
composed of a heavy chain, Fc region of IgG-targeting receptor
transporter (FcGRT), and a light chain, β-2-microglobulin.35 Acting
in a pH-dependent manner, FcRN binds to IgG at an acidic pH and
releases it at a neutral pH.36,37 As a result, the expression of FcGRT
may influence the abundance of antibodies in the brain in
psychiatric disease.
Therefore, in this study we aimed to (1) determine the presence

of IgGs in the postmortem brains of people with schizophrenia
and controls with a focus on the DLPFC and orbitofrontal cortex
(OFC); (2) compare IgG levels between people with schizophrenia
and controls previously categorised as ‘high inflammation’ or ‘low
inflammation’ based on proinflammatory cytokine levels;3–5 (3)
compare the abundance of FcGRT mRNA and protein between the
aforementioned groups; and (4) assess the prevalence of brain-
reactive antibodies in the plasma of a cohort of living
schizophrenia patients and controls.

MATERIALS AND METHODS
Tissue and blood
Human brain tissue. Post-mortem brain tissue samples (n= 79 individuals)
were obtained from the New South Wales Tissue Resource Centre. OFC
tissue from the medial gyrus rectus to include BA11 (between the branches
of the orbital sulcus)38 was obtained from individuals with schizophrenia
(n=38) and controls (n= 38) and was cryostat sectioned in the coronal
plane with sections mounted onto glass slides (Supplementary Table S1).
Chunks of pulverized DLPFC gray matter (40 mg) from BA46 (middle
frontal gyrus)39 was obtained from individuals with schizophrenia (n= 37)
and controls (n=37; Supplementary Table S2). Sample sizes were chosen
based on variance observed in previous studies, with a sample size of
n= 74 expected to have 480% power to detect an effect size d=0.25.39,40

This study was carried out in accordance with the latest version of the
Declaration of Helsinki after review by the Human Research Ethics
Committee at the UNSW (HREC #12435).

Rhesus macaque brain tissue. Fresh frozen frontal perfused rhesus
macaque (Macaca mulatta, n=7) cortex (containing the principal sulcus)
was cryostat sectioned in the coronal plane. All research procedures with
non-human primates from the National Institutes of Mental Health (NIMH,
USA) and were carried out in adherence to the regulations of the U.S.
Animal Welfare Act (USDA, 1990) and Public Health Service Policies (PHS,
2002), in accordance with the ILAR ‘Guide for the Care and Use of
Laboratory Animals’, and are described in Fung et al.41 The study was
performed under an Animal Study Protocol approved by the NIMH Animal
Care and Use Committee.

Human serum and plasma. Samples were obtained from a living cohort of
controls (n= 73) and people with schizophrenia (n= 94)42 (Supplementary
Table S3). Patients were matched to healthy controls based on gender and
age within 5 years. Informed consent was obtained in accordance with a
protocol approved by the University of New South Wales (UNSW) and the
South Eastern Sydney, Illawarra Area Health Service Human Research Ethics
Committees (HREC #07259, HREC #07121), and the Queen Elizabeth
Hospital Human Ethics Committee (SA; HREC # 8222 6841). To prepare
serum, whole blood was collected in SST tubes (BD Biosciences, Franklin
Lakes, NJ, USA), incubated at room temperature (RT) for 30 min,
centrifuged at 2000 g for 5 min at 4 °C. To prepare plasma, whole blood
was collected in EDTA tubes (BD Biosciences), centrifuged at 1200 g for
15 min at 4 °C. The resulting serum, or plasma, was transferred to low
binding tubes and stored at − 80 °C.

Immunohistochemistry
Immunohistochemistry to detect endogenous IgG in human OFC and rhesus
macaque PFC. Human postmortem OFC sections from schizophrenia
cases and controls, or rhesus macaque PFC, were thawed (RT for 20 min),
fixed with 4% paraformaldehyde, washed (3 × PBS, 5 min) and submerged
in 3:1 100% methanol in 3% H2O2 for 20 min at RT to block endogenous
peroxidases. For human OFC, tissue was washed and blocked overnight
with 10% normal rabbit serum (S-5000, Vector Laboratories, Peterborough,
UK). For rhesus macaque PFC, tissue was blocked for 1 h at RT with 10%
normal goat serum (S-1000, Vector Laboratories) and incubated overnight
with mouse anti-monkey IgG primary (1:500, 4700-01, Southern Biotech,
Birmingham, AL, USA). The next day, tissue was washed as above and
incubated for 1 h at RT with (for human OFC) biotinylated rabbit anti-
human IgG ‘secondary’ antibody preabsorbed against mouse (1:200,
Ab7159, Abcam, Cambridge, UK) or (for rhesus macaque PFC) biotinylated
goat anti-mouse IgG (1:500, BA9200, Vector Laboratories). After washing
again, the tissue was incubated for 1 h at RT with avidin-biotin-peroxidase
complex (VectaStain ABC kit, PK-4000, Vector Laboratories). Then 3’3-
diaminobenzidine (DAB, 12 mM final concentration in PBS with 3% H2O2)
was applied to the tissue for 3 min, before Nissl counterstaining (3 min
exposure with 0.002% thionin). Images were taken with a Nikon Eclipse i80
microscope (Nikon, Tokyo, Japan) using a × 20 objective, and with contrast
enhanced with ImageJ (v1.50.e, NIH, Bethesda, MD, USA).

Human OFC fluorescent immunohistochemistry. Fresh frozen OFC sections
from people with schizophrenia (n= 9) and healthy controls (n=9) were
fixed, washed and blocked with 10% normal goat serum and 10% donkey
serum (Jackson Immunoresearch Laboratories, Baltimore, MD, USA) in
diluent for 1 h at RT. Tissue was then incubated overnight at 4 °C with
rabbit anti-collagen IV (1:5000, AB6586, Abcam), biotinylated goat anti-
human IgG (1:200, AB97168, Abcam), and mouse anti-neuronal nuclei
(1:1000, mAB377, Chemicon International, Australia) primary antibodies.
The following day tissue was washed as above and incubated in the dark
with goat anti-rabbit IgG AlexaFluor 405 preabsorbed against chicken, cow,
horse, human, mouse, pig and rat (1:500, AB175654, Abcam), streptavidin
AlexaFluor 647 (1:1000, S21374, Life Technologies, Eugene, OR, USA) and
donkey anti-mouse IgG AlexaFluor 488 preabsorbed against chicken, cow,
goat, human, rabbit, rat, and sheep (1:500, AB150109, Abcam) for 1 h at 4 °
C. Tissue was washed twice in PBS and then for 5 min in 10 μM acridine
orange hemi(zinc chloride) (Ab146348, Abcam) in PBS at RT. Slides were
washed twice in 5 mM cupric sulfate and 50 mM ammonium acetate
solution for 15 min at RT to quench autofluorescence. Tissue was then
mounted with fluorescent-friendly immersion oil (Citifluor AF1 anti-fadent,
ProSciTech, Thuringowa, QLD, Australia) and slide edges were sealed with
nail polish. Z-stack spectral images were captured using a Nikon Eclipse 90i
laser-scanning microscope and subjected to blind unmixing. Images were
taken at × 40 and contrast and brightness enhanced using ImageJ.

Immunohistochemistry using human serum from living people as a ‘primary’
antibody. Pooled serum from live individuals with schizophrenia (n= 10),
or pooled serum from healthy controls (n= 10) was diluted (1:150, 1:300,
1:700) to be used as ‘primary’ antibodies. Perfused Rhesus macaque
cerebellar sections43 were used to so that brain-reactive IgG in the blood
could be detected without IgG in the blood vessels and/or brain
confounding the results. Sections were treated the same as the Rhesus
macaque PFC above except that pooled serum was used as the ‘primary’
antibody and the secondary antibody was goat anti-human (1:250).

Quantitative real-time PCR
RNA was extracted and cDNA synthesized from DLPFC tissue of people
with schizophrenia (n=37) and healthy controls (n=37) as previously
described in Weickert et al.39 Transcript levels were measured by qPCR
using Applied Biosystems’ Prism 7900HT Real-time PCR system (Foster City,
CA, USA). A pre-designed Taqman gene expression assay from Applied
Biosystems (Foster City, CA, USA) was used for FCGRT (Hs01108967_m1),
normalized to the geometric mean of four housekeeper genes; β-actin
(Hs99999903_m1), GAPDH (Hs99999905_m1), TATA box binding protein
(Hs00427620_m1), and ubiquitin C (Hs00824723_m1) that did not vary in
expression between diagnostic groups.39

Western blotting
Human DLPFC western blotting. For endogenous IgG detection, DLPFC
tissue from schizophrenia cases (n= 37) and controls (n= 37) was
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homogenized in buffer (50% 0.1 M Tris Buffer pH7.5, 50% glycerol, protease
inhibitor cocktail 1:100 and aprotinin 1:1 600) and 10 μg of each sample
electrophoresed for 75 min at 120 V on a 10% bis-tris polyacrylamide gels
alongside a molecular weight ladder (Precision Plus, BioRad Laboratories,
Hercules, CA, USA) and a pooled internal control (IC) sample. Proteins were
transferred onto nitrocellulose membranes (BioRad) at 100 V for 2 h, and
then blocked for 2 h at 4 °C in 5% skim milk in Tris-buffered saline (TBS)
containing 0.1% Tween-20 (TBST). As this assay was to detect IgG in the
brain blots were left in TBS at 4 °C for 1–2 nights without a primary. Blots
were incubated with horse radish peroxidase (HRP) conjugated goat anti-
human IgG secondary antibody (1:5000; #PA1-28829, Pierce antibodies,
Rockford, IL, USA) for 1 h at RT. Immunoreactive bands were detected
using the enhanced chemiluminesence (ECL) detection kit (Amersham
Biosciences, Piscataway, NJ, USA) and were exposed to ECL Hyperfilm
(Amersham Biosciences). Membranes were then stripped (stripping buffer
25 mM glycine, 1.5% SDS, pH2.0) and reprobed with mouse anti-β-actin
primary antibody (1:10 000; MAB1501, Merck Millipore, Billerica, MA, USA)
and HRP conjugated goat anti-mouse secondary antibody (1:5000; AP124P,
Merck Millipore). Immunoreactive band intensities were normalized to the
intensity of the β-actin band in the same lane and the IC (27.75% interblot
variability) from the same gel. Samples were run in duplicate, in separate
experimental runs and averaged, and quantified with Image J.
FcGRT protein was quantified by western blot as described above but

using Odyssey detection (LI-COR Biosciences, Lincoln, NE, USA). Proteins
were transferred onto Immobolin-FL PVDF membrane (IPFL20200, Merck
Millipore), blocked with LI-COR TBS blocking buffer and probed with rabbit
anti-FcGRT IgG primary antibody (H-274; 1:200, sc-66892, Santa Cruz,
Dallas, TX, USA) and the same mouse anti-β-actin as above, and paired
with IRDye 800 CW donkey anti-rabbit IgG (1:15 000, 925-32213, LI-COR)
and IRDye 680 RD donkey anti-mouse (1:10 000, 925-68072, LI-COR)
secondary antibodies respectively. Bands were visualized using the
Odyssey scanner (LI-COR) and quantified with Image Studio Lite software
(LI-COR).

Western blotting using pooled human serum as the ‘primary’ antibody.
Brain-reactive IgG in the serum of living schizophrenia cases (n=10) and
controls (n=10) was detected by Western blot using the ECL detection kit
(Amersham Biosciences) and 10 μg of protein from homogenized rhesus
macaque cerebellar tissue. Blots were incubated overnight with the serum
‘primary’ antibody (1:200 1% skim milk in TBST). The following day, blots
were incubated with HRP conjugated goat anti-human secondary (1:5000;
#PA1-28829, Pierce) before ECL detection as above.

Indirect immunofluorescence for plasma brain-reactive antibodies. Plasma
samples from living people with schizophrenia (n=94) and living healthy
controls (n= 72) were diluted 1:10 in PBS containing 0.1% Tween-20 (PBST)
and applied to BIOCHIP Slides (EuroImmun, Lübeck, Germany) using the
titerplane technique for 30 min at RT. BIOCHIP Slides contained 10 reaction
fields each with 4 substrates, one of which was primate cerebellum.
BIOCHIP Slides were rinsed and then immersed in PBST for 5 min before
incubation with fluorescein labeled anti-human globulin for 30 min at RT.
BIOCHIP Slides were rinsed and immersed again in PBST for 5 min and then
mounted so that reaction fields were embedded in glycerol/PBS, as per
manufacturer’s instructions. A Nikon Eclipse 90i laser-scanning microscope
with × 20 objective lens and NIS Elements software were used to examine
and image BIOCHIP Slides. An IC (reaction field with pooled plasma
from 10 controls and 10 schizophrenia patients) and manufacturer
supplied negative control (1:10 in PBST) were included for each round
of analysis. Brain-reactive IgGs were considered present in the plasma
if the pixel intensity of primate cerebellar staining was greater than
two standard deviations from the mean pixel intensity of the negative
controls.

Data analyses
All analyses were performed using the Statistical Package for Social
Sciences (version 22, IBM, Armonk, NY, USA) or GraphPad Prism (version
6.04 La Jolla, CA, USA). To achieve normal distribution average IgG levels
were square root transformed (postmortem brain and plasma cohorts), and
brain FcGRT mRNA/protein levels were log transformed. Grubbs tests
yielded no outliers for brain IgG, FcGRT protein or FcGRT mRNA or blood
IgG. Inflammatory subgroups were previously classified based on the
mRNA expression of four inflammatory cytokines identified through two-
step recursive clustering as described in Fillman et al.3 Due to low sample
size (n=4) the control high inflammation subgroup was excluded for the

analysis according to inflammatory subgroups. Demographic variables
(age at death, freezer months, pH, postmortem interval (PMI) and mRNA
integrity number) were included as covariates in analyses of group
differences if they were significantly correlated with the variable of
interest, as determined by Pearson’s correlation. In the absence of such
correlations, Student’s t-tests or one-way ANOVAs were used, followed by
Fischer’s LSD post hoc tests if Po0.05. Levene’s test was used to determine
homogeneity of variance between groups and when required the statistic
adjusted for unequal variances (n= 1 test) reported. To determine whether
inflammatory history in the week before death, or cause of death,
influenced IgG abundance in the cortex of schizophrenia cases or controls,
factorial ANOVAs with diagnosis and inflammatory history (yes/no) or
cause of death (cardiac complications—yes/no) were used. For cause of
death, individuals who died of cardiac complications were compared to
those who died of other causes because sample sizes for other causes of
death (respiratory (n= 3), suicide (n= 0), other (n= 4)) within diagnostic
groups were too small for meaningful comparison. Chi-squared test was
used to compare the incidence of plasma brain-reactive IgG positivity in
schizophrenia and control groups.

RESULTS
IgG is present in the orbitofrontal cortex of controls and people
with schizophrenia
IgG was detected by immunohistochemistry in the OFC of people
with schizophrenia (n= 38, Figure 1a, b, d and e) and controls
(n= 38, Figure 1g and h) as indicated by a diffuse brown DAB
reaction product. A darker halo of brown reaction product was
often visible surrounding many blood vessels (Figure 1a–i
arrowheads). The immunoreactivity appeared to radiate outwards
from the blood vessel. The degree of signal extension into the
brain parenchyma varied between individuals irrespective of
diagnosis and even from blood vessel to blood vessel within the
same brain (Figure 1a–i).
To exclude the possibility that IgG immunoreactivity in the

human OFC was artifact arising from tissue degradation or
diffusion of residual blood components into the tissue with
prolonged PMI, we performed the same immunohistochemistry
using saline perfused PFC of Rhesus macaques and an anti-rhesus
IgG antibody (n= 7, Figure 1c, f, and i). As with the human OFC,
the DAB signal from the IgG immunoreactivity was found in and
surrounding various blood vessels, dissipating into the brain
parenchyma. Immunoreactivity was absent in the “no secondary”
human, and primate no primary, control sections (Supplementary
Figure S1).

IgG associates mainly with blood vessels
Immunoreactivity (red) indicating presence of endogenous IgGs
(Figure 1j and n) was closely associated with collagen IV-positive
(blue) blood vessels (Figure 1k and o) in both controls (n= 9) and
people with schizophrenia (n= 9, Figure 1j-m and n-q respec-
tively). A diffuse halo of IgG staining radiated from some, but not
all, blood vessels. IgG signal varied in intensity in the parenchyma
between individuals. Cell bodies (green) of neurons (Figure 1l and
p), did not appear to be directly associated with IgG signal,
however the halo of IgG appeared to overlap with the processes
of some neurons. These processes were often adjacent to IgG
positive blood vessels. None of the no primary control slides had
immunoreactive signal (Supplementary Figure S2).

IgG levels in human prefrontal cortex do not differ significantly
between diagnostic or inflammatory groups
An immunoreactive band at the weight consistent with that of the
IgG heavy chain (50kDa) was detected in all humans tested
(n= 74). The abundance of IgG was not different when comparing
schizophrenia cases and controls (t(72) =− 0.991, P= 0.325), or
those with high inflammation (n= 18) compared with low
inflammation regardless of diagnosis (n= 56; t(72) = -1.541,

Brain antibodies in the cortex and blood
LJ Glass et al

3

Translational Psychiatry (2017), 1 – 9



P= 0.128). Similarly, comparisons between controls (n= 33), high
inflammation schizophrenia cases (n= 14), and low inflammation
schizophrenia cases (n= 23) were not significant (one-way ANOVA:

F(2,67) = 1.767, P= 0.179). There was no main effect of history of
inflammation before death (Supplementary Table S2) on levels of
IgG (factorial ANOVA, F(1,70) = 0.57, P= 0.45), nor an interaction of

Figure 1. Endogenous IgG antibodies are present in low (a, b), medium (d, e) and high levels of (g, h) intensity in both the white (a, d, g) and
gray matter (b, e and h) of the orbitofrontal cortex (OFC) of people with schizophrenia (rabbit anti-human IgG (a, b, d, and e)) and healthy
controls (anti-human IgG (g, h)). No obvious qualitative differences were seen between diagnostic groups. IgG antibodies were also detected
in the prefrontal cortex (PFC) of perfused Rhesus macaques (mouse anti-monkey IgG (c, f, and i)). Arrowheads indicate the extent of IgG signal
surrounding blood vessels (closed arrowheads a - i). Images taken with a 20x objective. Colocalization of endogenous IgG (goat anti-human
IgG; open arrows, red (j and n) pink (m and q),) surrounding blood vessels (rabbit anti-collagen IV; closed arrowheads; blue (k, m, o, and q))
and neurons (mouse anti-NeuN; arrow demarcate some cell bodies, green (l,m, p, and q)) in the orbitofrontal cortex of healthy controls (j, k, l,
and m) and people with schizophrenia (n, o, p, and q). Despite no colocalization of endogenous IgG with neuronal cell bodies, the diffusing
halo (open arrows) from blood vessels overlaps with processes of some neurons. Scale bars are 50 μm. Images were subjected to blind spectral
unmixing and taken with a 40x objective.
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history of inflammation before death with diagnosis (P= 0.74).
Similarly, there was no main effect of cause of death (cardiac
complications) on levels of IgG (factorial ANOVA, F(1,70) = 0.001,
P= 0.97), nor an interaction of cause of death with diagnosis
(P= 0.94).

FcGRT levels in human dorsolateral prefrontal cortex do not differ
between diagnostic or inflammatory groups
FcGRT mRNA (Figure 2c) and protein (Figure 2d and e) in the
DLPFC were investigated by qPCR and western blotting respec-
tively. FcGRT mRNA expression significantly correlated with PMI
(r=− 0.281, P= 0.015), but not brain tissue pH. Normalized FcGRT
mRNA levels did not differ between individuals with schizophrenia
and controls (ANCOVA, covarying for PMI, F(1,71) = 0.213,
P= 0.646), between high inflammation and low inflammation
groups overall (ANCOVA, covarying for PMI, F(1,71) = 2.985,
P= 0.88) or among high inflammation schizophrenia cases, low
inflammation schizophrenia cases and controls (Figure 2c;
ANCOVA, covarying for PMI, F(2,66) = 0.745, P= 0.478].
Probing for FcGRT protein by western blot, we detected a

prominent immunoreactive band at approximately 50 kDa, slightly
larger than the expected molecular weight of FcGRT at 40 kDa
(Figure 2d). Intensity of this FcGRT immunoreactive band did not
correlate with any demographic variables, and the intensity of
FcGRT (FcGRT/ β-actin) did not differ between diagnostic groups
(t(72) =− 1.43, P= 0.159) or inflammatory groups (t(72) = 0.99,
P= 0.32). We did not detect a significant difference in FcGRT
protein levels among high inflammation schizophrenia cases,
low inflammation schizophrenia cases and controls (Figure 2e;
F(2,67) = 0.93, P= 0.40).

Brain-reactive IgG are present in the serum of living schizophrenia
patients and living healthy controls
Brain-reactive IgG were detected using pooled serum samples
from a cohort of living healthy controls (Figure 3a-c and g) and
living people with schizophrenia (Figure 3d–f and h) as a primary
antibody to Rhesus macaque cerebellum sections processed for
DAB IHC. The DAB signal product decreased in a serum
concentration-dependent manner (Figure 3a–f and h). Immuno-
reactivity observed at a 1:700 serum dilution (Figure 3c and f)
was indistinguishable from the control slide (Supplementary
Figure S3). Purkinje neurons apical dendrites were visible at
higher serum concentrations, 1:150 (Figure 3a and d, arrows in
Figure 3g and h) and 1:300 (Figure 3b and e). Dendrites were not
always distinguishable due to the diffuse molecular layer staining.
The Purkinje neuron cell bodies (Figure 3a–f arrows) were visible
in all sections. Consistent staining of blood vessels was seen in all
sections (Figure 3a–f arrowheads) including the no serum control
(Supplementary Figure S3). Cross reactivity of monkey tissue with
the anti-human secondary antibody alone was also evident in
light brown fibrous staining throughout the tissue (Supplementary
Figure S3). We did not find any qualitative difference in staining
intensity obtained with control (Figure 3a-c and g) or patient
(Figure 3d–f and h) serum.

Brain-reactive serum IgG from living people recognize unique
proteins
A western blot in which Rhesus macaque cerebellar protein was
probed with serum from individual controls and schizophrenia
cases confirmed the presence of brain-reactive IgG in serum from
living people. For each serum sample, multiple immunoreactive
bands of molecular weights from 25 to 4150 kDa were identified
(Figure 3i). Immunoreactive bands recognized by serum from each
individual displayed a unique pattern and intensity.

Figure 2. An anti-IgG immunoreactive band of 50 kDa (a) was found
using western blotting on dorsolateral prefrontal cortex homo-
genate of all humans studied (n= 74). The intensity of the IgG varied
from one human brain to another while the level of β-actin (at
42 kDa) was of similar abundance. IgG abundance did not differ by
diagnosis of inflammatory subgroup (b) Horizontal bars represent
group means. Expression of FcGRT mRNA was comparable between
high and low inflammation schizophrenia cases and controls (c)
Representative western blot probed for FcGRT protein in the human
DLPFC (d) Protein levels of FcGRT in the DLPFC did not differ
between high inflammation schizophrenia cases, low inflammation
schizophrenia cases or controls (e) Horizontal bars represent
group means.
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Brain-reactive IgGs are present in the plasma from living people
and differ between people with schizophrenia and controls
The Euroimmun Indirect Immunofluorescence Test was used to
assess the abundance, and brain tissue binding, of brain-reactive
IgG in plasma from people with schizophrenia and controls
(n= 166). Six non-mutually exclusive patterns of immunofluores-
cence—(1) ubiquitous, (2) Purkinje neurons, (3) blood vessel (4)
fibrous, (5) punctate and (6) granular cells were evident in the
primate cerebellum (Figure 4a–f, green signal), which were distinct
from the pattern in the negative controls (Supplementary
Figure S4). Homogenous staining across the molecular layer,
granular layer and white matter was seen in most individuals
(63%). In 29% of individuals, this staining was accompanied by
Purkinje neuron signal (pattern 1, Figure 4a), while in 34% the

Purkinje neurons appeared unlabeled (pattern 2, Figure 4b). A
small number of individuals (6%) clearly show blood vessel
immunoreactivity throughout the cerebellar tissue (pattern 3,
Figure 4c). When fibrous staining was detected (pattern 4) it was
most consistently found around the Purkinje neurons (14% of
individuals; Figure 4d). Punctate molecular layer cell staining
(pattern 5) was typically accompanied by intensely immunoreac-
tive Purkinje cell bodies (10% of individuals; Figure 4e), whereas
cellular staining in the granular layer (pattern 6) was consistent
with darker Purkinje neurons (7% of individuals; Figure 4f).
There was no difference in the incidence of schizophrenia cases

(62.77%, 59/94) and controls (68.06%, 49/72) which were clearly
positive for brain-reactive antibodies (χ2 = 0.5, P= 0.479). Using
mean fluorescence pixel intensity as a semi-quantitative measure

Figure 3. Brain-reactive IgG was identified in the serum of healthy controls and people with schizophrenia. Immunohistochemistry using
pooled human serum from controls as the primary antibody on rhesus macaque cerebellar tissue sections (a-c). Immunohistochemistry as
above, using pooled serum from people with schizophrenia on rhesus macaque cerebellar sections (d–f). Serial dilutions of serum are as
indicated in the above images (a, d: 1:150; b, e: 1:300; c, f: 1:700). Structures which have IgG-reactive brain antigens are stained brown. Nissl
stained nuclei are blue. Filled arrowheads indicate blood vessels. Arrows indicate Purkinje neurons. Enlargement of boxes in 3a and 3b (g, h).
Scale bars are 50 μm. Western blot of protein from an adolescent rhesus macaque cerebellum using serum from two representative
schizophrenia patients and one control as primary antibodies (i). Immunoreactive bands indicate a unique array of proteins targeted by serum
IgGs for each individual. CON, control; SCZ, chizophrenia.

Brain antibodies in the cortex and blood
LJ Glass et al

6

Translational Psychiatry (2017), 1 – 9



of IgG abundance, plasma from live schizophrenia patients
contained slightly, but significantly, lower brain-reactive IgG levels
than that of healthy living controls (Figure 4g; t(128.6) =− 2.377,
P= 0.019 adjusting for unequal variance). IgG abundance did not
correlate with plasma storage freezer time (n= 166, r= 0.103,
P= 0.189), or schizophrenia patient daily chlorpromazine equiva-
lent dose (n= 94, r=− 0.59, P= 0.572).

DISCUSSION
In this study, we found evidence for IgGs in the adult human
cortex, particularly in diffuse patterns surrounding blood vessels
but extending into brain parenchyma in both controls and people

with schizophrenia. To our knowledge, we are the first to find
evidence of, and to quantify, IgG within the normal human brain.
In support of the human brain’s capacity for IgG movement across
the blood brain barrier (BBB), we detected the IgG transporter
(FcGRT), in brain at both the mRNA and protein levels. Contrary to
our expectations, we failed to detect differences in the abundance
of IgGs, FcGRT protein or FcGRT mRNA in the brains of people with
schizophrenia compared with healthy controls. This suggests that
IgG is normally present in, and actively effluxed from, the brain.
Brain-reactive antibodies were also detected in serum of living
people, and appeared to target a range of neural proteins. We did
not observe differences in the incidence of plasma brain-reactive
antibody-positivity between schizophrenia cases and controls
from a cohort of living people, but semi-quantitative analysis
suggested decreased levels of plasma brain-reactive IgGs in
schizophrenia. Overall, we found that all individuals had IgG in the
brain, with equivalent abundance in schizophrenia cases and
controls, even when taking elevated proinflammatory cytokines4

into account.
One main limitation of our study is that many results are

derived from postmortem brain (Figures 1, 2, 3, 4). However it is
unlikely that the patterns of IgG in the brain observed in this study
are artifacts associated with long PMI or the presence of residual
blood components in cortical blood vessels. The diffuse pattern of
IgG staining around the blood vessel in the cortex of humans was
also seen in saline perfused rhesus macaques with very short PMI.
This pattern is consistent with that observed in the saline perfused
rodent brain,44,45 as is the endothelial cell immunoreactivity we
observed.46 These results from three mammalian species supports
our use of immunohistochemical methods to investigate IgG in
the brain of people with schizophrenia and controls, and indicate
the suitability of monkeys and rodents as animal models for future
studies.
IgG may enter the mammalian brain from the blood by crossing

the BBB, or be produced by B cells that have transmigrated from
the blood into the brain perivascular space.28,47,48 Transient
hypertension from elevated adrenalin49 or stress-induced proin-
flammatory cytokines, which compromise endothelium junction
integrity50 can also facilitate IgG entrance from the blood. Thus,
we hypothesized that individuals with schizophrenia with
increased peripheral and brain proinflammatory cytokines (high
inflammation)1,4 may have elevated endogenous brain IgG due to
changes in the BBB.51 Contrary to this hypothesis, we were unable
to detect a difference in brain IgG levels between high and low
inflammation subgroups, or schizophrenia cases compared to

Figure 4. Plasma brain-reactive antibodies from a live patient cohort
of people with schizophrenia (n= 94) and controls (n= 72) resulted
in six different patterns of fluorescence (green) when applied to the
primate cerebellar tissue of the Euroimmun Indirect Immunofluor-
escence Test: equivalent intensity in Purkinje neurons and molecular
and granular layers (29%, 48/166) (a) low Purkinje neuron intensity
(34%, 56/166) (b), distinctive blood vessels (6%, 10/166) (c), bright
ring around Purkinkje neurons with fibers throughout (14%, 23/166)
(d), bright Purkinje neurons with punctate molecular layer cells
(10%, 17/166) (e) and granular layer cells and bright molecular layer
(7%, 12/166) (f). Images taken at 20x magnification. Scale bars are
50μm. Antibody fluorescence intensity was lower in people with
schizophrenia than controls, t(128.6)=− 2.377, P= 0.019 when
adjusted for unequal variance (Levene’s test: F(1,164)= 5.877,
P= 0.016) as denoted by asterisk (g). Solid horizontal bars represent
group means. Dashed line indicates the average IgG intensity across
the no plasma controls (g). Brain-reactive IgG was considered
present if intensity of staining with plasma was greater than two
standard deviations (dotted lines, g) above the average negative
controls (dashed line; g). Arrows indicate Purkinje neurons. Mol,
molecular layer; Gr, granular layer.
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controls. Instead, our results suggest that there is a quantifiable
level of IgG in the healthy brain where they may contribute to
normal functioning. Further testing of this idea could include
assessing the impact of changing brain IgG levels on Fcγ-receptor
abundance and function.
In our study, we found that over 60% of plasma from living

people meet our criteria for positive immunostaining of brain
tissue regardless of diagnosis, adding further support to the
hypothesis that brain-reactive antibodies are ubiquitously found
in human blood regardless of disease.20,52 Such a high rate of
antibody-positivity contrasts with prior reports of relatively lower
incidence of brain-reactive antibodies in schizophrenia studies. An
underlying cause of discrepancy may be that these studies focus
on antibodies targeting certain pre-selected antigens in the
blood22,24 and therefore fail to analyze the plethora of other brain-
reactive antibodies that may be present. That being said, unlike
previous studies, ours did not rule out the binding of antibodies to
antigens common to other organs. Future studies should consider
preabsorbing samples to remove IgGs which target peripheral
antigens53,54 as this would circumvent this issue.
Although our study does not provide evidence of widespread

antibody dysregulation in the schizophrenia brain, there is
compelling evidence for deleterious effects caused by antibodies
in the brain. Anti-NMDAR antibodies in NMDAR encephalitis and
brain-reactive antibodies in neuropsychiatric SLE, play a causative
role in psychiatric symptoms of both disorders.55,56 Cultured cells
treated with cerebrospinal fluid IgG from NMDAR encephalitis
patients displayed decreased numbers of NMDARs on postsynap-
tic dendrites in vitro,28 but only impair behavior in mice with BBB
dysfunction.27 Since comparable levels of anti-NMDAR antibodies
are seen in the blood of schizophrenia patients and healthy
controls,27 coincident BBB dysfunction may be required for
antibody mediated pathology in schizophrenia. Importantly, while
we did not detect widespread antibody-related abnormalities in
the postmortem schizophrenia brain, or blood from living people
with schizophrenia, our methods were inappropriate to investi-
gate subtle dysregulation caused by antibodies targeting parti-
cular proteins.
Our work indicates that IgGs may be found in the brain under

normal conditions. Measurement of the relative abundances of
structurally different IgGs in the blood and brain of control cases
would aid in determining the normal composition of the brain IgG
population and provide initial insights into their actions. A focus
on the origin, regulation, and function of brain IgG in future
studies could aid in establishing the effects of IgG in the brain.
Finally, the possibility of greater access to the brain of IgGs
suggests that the psychiatric and neurological consequences of
monoclonal antibody therapies may be more extensive than
currently anticipated, and this requires further consideration.
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