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Candidate gene networks and blood biomarkers of
methamphetamine-associated psychosis: an integrative
RNA-sequencing report
MS Breen1, A Uhlmann2, CM Nday3, SJ Glatt4, M Mitt5, A Metsalpu5, DJ Stein2 and N Illing3

The clinical presentation, course and treatment of methamphetamine (METH)-associated psychosis (MAP) are similar to that
observed in schizophrenia (SCZ) and subsequently MAP has been hypothesized as a pharmacological and environmental model of
SCZ. However, several challenges currently exist in diagnosing MAP accurately at the molecular and neurocognitive level before the
MAP model can contribute to the discovery of SCZ biomarkers. We directly assessed subcortical brain structural volumes and
clinical parameters of MAP within the framework of an integrative genome-wide RNA-Seq blood transcriptome analysis of subjects
diagnosed with MAP (N= 10), METH dependency without psychosis (MA; N= 10) and healthy controls (N= 10). First, we identified
discrete groups of co-expressed genes (that is, modules) and tested them for functional annotation and phenotypic relationships to
brain structure volumes, life events and psychometric measurements. We discovered one MAP-associated module involved in
ubiquitin-mediated proteolysis downregulation, enriched with 61 genes previously found implicated in psychosis and SCZ
across independent blood and post-mortem brain studies using convergent functional genomic (CFG) evidence. This module
demonstrated significant relationships with brain structure volumes including the anterior corpus callosum (CC) and the nucleus
accumbens. Furthermore, a second MAP and psychoticism-associated module involved in circadian clock upregulation was also
enriched with 39 CFG genes, further associated with the CC. Subsequently, a machine-learning analysis of differentially expressed
genes identified single blood-based biomarkers able to differentiate controls from methamphetamine dependents with 87%
accuracy and MAP from MA subjects with 95% accuracy. CFG evidence validated a significant proportion of these putative MAP
biomarkers in independent studies including CLN3, FBP1, TBC1D2 and ZNF821 (RNA degradation), ELK3 and SINA3 (circadian clock)
and PIGF and UHMK1 (ubiquitin-mediated proteolysis). Finally, focusing analysis on brain structure volumes revealed significantly
lower bilateral hippocampal volumes in MAP subjects. Overall, these results suggest similar molecular and neurocognitive
mechanisms underlying the pathophysiology of psychosis and SCZ regardless of substance abuse and provide preliminary
evidence supporting the MAP paradigm as an exemplar for SCZ biomarker discovery.
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INTRODUCTION
Methamphetamine (METH) is an N-methyl derivative of amphe-
tamine and a highly addictive psychostimulant severely affecting
the central nervous system.1 METH use is at epidemic levels in
several areas of the world and its global prevalence is estimated at
15–16 million people with several pockets of increased use in the
USA, Europe and Africa.2,3 Recent evidence ranked METH fourth
out of 20 of the most harmful drugs due to self-harm to the user.4

One reason for this is that METH provokes psychotic reactions in
an estimated 72–100% of all abusers.5,6

Methamphetamine-associated psychosis (MAP) has been con-
sidered a pharmacological and environmental model of schizo-
phrenia (SCZ) due to similarities in clinical presentation (that is,
paranoia, hallucinations, disorganized speech and negative
symptoms), response to treatment (neuroleptics) and presumed

neuromechanisms (central dopaminergic neurotransmission).7–9 It
is hypothesized that a better understanding of the molecular
mechanisms underlying SCZ may be accelerated via examination
of human models related to the disease. In this context, the MAP
model could quicken the discovery of risk biomarkers, screening
for subclinical disease, prognostics, diagnostics or disease staging.
However, several challenges currently exist in terms of accurately
diagnosing MAP on a molecular and cognitive level before the
MAP model can contribute to the discovery of SCZ biomarkers.
Genome-wide blood transcriptome profiling coupled with

network analyses provide a platform for identifying functionally
relevant biological markers of disease, permitting multi-scale data
integration.10 This is a critical point as acute and chronic effects of
MAP are widespread across the body and an integrative technique
determining relationships of biological markers with magnetic
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resonance imaging (MRI), life events (that is, stress, culture) and
psychometric measurements could provide key insights towards
cognitive and molecular mechanisms of MAP, and the versatility of
the MAP model in molecular psychiatry research. Complimentary,
machine learning provides a useful tool for in silico prediction of
candidate biomarkers.11 Further confirmation and validation of
these biomarkers may be accomplished by utilizing convergent
functional genomics (CFG) evidence. The CFG approach has
proven highly successful for moderately sized psychiatric cohorts
in reducing false positives and false negatives by drawing on
multiple disparate yet ‘convergent’ sources of external functional
genomic information across independent human studies.12–20

Collectively, these techniques hold great promise for the
prioritization and validation of candidate genes for MAP and their
relatedness to SCZ.
We present a preliminary integrative RNA-sequencing report

exploring peripheral blood gene expression among subjects
diagnosed with METH-associated psychosis (MAP), METH depen-
dency without psychotic symptoms (MA) and healthy control
subjects. The primary goal of this analysis was to best characterize
the molecular signatures defining MAP at the systems level and
again at the individual gene level to reveal a novel panel of MAP
blood biomarkers. An unbiased weighted gene co-expression
network analysis (WGCNA) was first used to identify co-expression
modules that were subjected to functional annotation and multi-
scale data integration collected from the same subjects. Subse-
quently, a multi-class machine-learning approach was used to
identify candidate blood biomarkers able to differentiate between
MA, MAP and healthy control subjects. CFG information was used
to validate the role of candidate gene networks and blood
biomarkers in the pathophysiology of MAP and confirm their
shared association to psychotic disorders and SCZ in independent
studies with the absence of METH.

MATERIALS AND METHODS
Participants
A total of 10 MAP subjects, 10 subjects with METH dependence without
developing psychotic symptoms (MA), and 10 healthy control subjects
were enrolled in this study. Gender (male) and age-matched (25.8 ± 6
years) right-handed subjects were recruited from drug rehabilitation
facilities, hospitals and communities in Cape Town, South Africa where all
the subjects were provided detailed study information and gave written
consent. Each subject underwent two assessment sessions. The first
session consisted of a detailed psychiatric interview and demographic and
substance variables were recorded. During the second session, approxi-
mately 1 week later, the patients were asked to fast and refrain from
smoking overnight, before blood was collected between 0900 and 1100 h.
This was followed by a brain scan. Clinical assessment was performed
using the Structured Diagnostic Interview for DSM-IV Axis I Disorders21 and
the patients completed a battery of self-report questionnaires including
the Life Events Questionnaire,22 Kessler Psychological Distress Scale
(K10),23 the Beck Depression Inventory,24 behavioural inhibition system/
behavioural activation system scale,25 Eysenck Personality Questionnaire—
Revised short scale26 (For detailed information regarding each of these
measures, see Supplementary File). Positive and negative symptoms within
the MAP group were rated using the PANSS (Positive and Negative
Syndrome Scale):27 PANSS positive subscale (14.5 ± 6.1), negative subscale
(22.0 ± 11.5) and total score (66.8 ± 26.1). Exclusion criteria comprised the
following: (1) additional substance dependencies other than nicotine and
METH for the MA and MAP groups, and any substance dependence other
than nicotine in the control group; (2) lifetime and current diagnosis of any
psychiatric disorders (other than MA dependence and MAP in the MA and
MAP groups); (3) a history of psychosis before MA abuse; (4) a medical or
neurological illness or head trauma; (5) a seropositive test for HIV; (6) MRI
incompatibilities or known claustrophobia. All the participants in the MAP
group were on treatment with neuroleptic medication (haloperidol) at the
time of testing. Polysubstance use was allowed to facilitate participant
recruitment including nicotine, cannabis and alcohol for all the study
groups. This study was approved (HREC REF 340/2009) by the University of
Cape Town Faculty of Health Sciences Human Research Ethics Committee.

MRI acquisition and image processing
The subjects in this study form part of a larger project investigating fronto-
temporal cortical and subcortical grey matter structures in MA and MAP.
The images were acquired on a 3 T Magnetom Allegra scanner (Siemens,
Erlangen, Germany) at the Cape Universities Brain Imaging Centre. A high-
resolution, T1-weighted, three-dimensional multi-echo MPRAGE sequence
(scan parameters: repetition time=2530 ms; graded echo time=1.53, 3.21,
4.89, 6.57 ms; flip angle = 7°; field of view=256 mm) produced 160 sagittal
images of 1 mm thickness. By acquiring four separate structural scans with
graded echo times and averaging those into a final high contrast image,28

the MEMPRAGE method creates structural images with low distortion and
high signal-to-noise ratio.
The MRI scans were analysed using the FreeSurfer software package v5.1

(http://surfer.nmr.mgh.harvard.edu/). Regional estimates of subcortical
volumes were assessed with a specialized surface-based reconstruction
and automatic labelling tool, which is described in detail elsewhere.29 In
summary, FreeSurfer processing includes motion correction, skull-strip-
ping, Talairach transformation, segmentation of subcortical white matter
and deep grey matter volumetric structures, intensity normalization,
tessellation of the grey matter/white matter boundary, automated
topology correction and surface deformation.

RNA isolation, library preparation and data availability
Blood was collected using PAXgene RNA tubes (Qiagen, Valencia, CA, USA)
and total RNA was extracted and purified in accordance with the PAX gene
RNA kit per manufacturer’s instructions. Globin mRNA was depleted from
samples using the GLOBINclear—Human Kit (Life Technologies, Carlsbad,
CA, USA). Subsequently, the quantity of all purified RNA samples was
measured on a nanodrop (56.6 ± 16.7 ng μl− 1) and the quality and
integrity measured with the Agilent 2100 Bioanalyzer (Agilent, Santa Clara,
CA, USA). All RNA integrity numbers were greater than 7 (8.4 ± 0.7).
The Illumina TruSeq Stranded Total RNA kit (Ilumina, San Diego, CA, USA)

was used for library preparation accordingly to manufacturer instructions
without any modifications. The 30 indexed RNA libraries were pooled and
sequenced using long paired-end chemistry (2x93 bp) on seven lanes
using the Illumina HiSeq2500. All the replicates were run for 2 × 40 million
reads per sample and all the reads were primary processed using Casava
v1.8.2 to transform primary base call files into fastq files. These raw RNA-
sequencing fastq data have been submitted to Gene Expression Omnibus
(http://www.ncbi.nlm.nih.gov/geo/) under accession number GSE74737.

Read trimming, mapping and quantification of gene expression
All the fragmented RNA-Seq reads were trimmed to 90 bp and low quality
reads were discarded using Trimmomatic30 options SLIDINGWIN-
DOW:90:10 MINLEN:90 CROP:90. Subsequently, all high-quality trimmed
reads were mapped to UCSC Homo sapiens reference genome (build hg19)
using TopHat v2.0.0.31 We used the estimated mean inner distance and
standard deviation between mate paired-ends as the -r and --mate-std-dev
parameters, respectively. TopHat calls Bowtie v1.1.132 to perform align-
ment with no more than two mismatches. We used the pre-built index files
of UCSC H. sapiens hg19, downloaded from the TopHat homepage (https://
ccb.jhu.edu/software/tophat/igenomes.shtml). Samtools33 was used to
convert bamfiles to samfiles and HTseq v0.6.034 was used to count all of
the mapped reads by htseq-count using parameters –stranded= reverse –q.

Data pre-processing
Raw count data measured 23 345 transcripts across 30 subjects. Unspecific
filtering removed lowly expressed genes that did not meet the
requirement of a minimum of 20 reads in at least 10 subjects. A total of
12 281 transcripts were retained, then subjected to edgeR VOOM
normalization,35 a variance-stabilization transformation method. Normal-
ized data were inspected for outlying samples using unsupervised
hierarchical clustering of subjects (based on Pearson coefficient and
average distance metric) and principal component analysis to identify
potential outliers outside two standard deviations from these averages. No
outliers were present in these data and resulting normalized values were
used as input for downstream analyses.

Gene co-expression network construction and module detection
Signed co-expression networks were built using WGCNA10 in R, as
previously described.36,37 A total of 12 281 transcripts were used to
construct a global network of all 30 subjects. To construct a network, the

Blood biomarkers of MAP
MS Breen et al

2

Translational Psychiatry (2016), 1 – 11

http://surfer.nmr.mgh.harvard.edu/
http://www.ncbi.nlm.nih.gov/geo/
https://ccb.jhu.edu/software/tophat/igenomes.shtml
https://ccb.jhu.edu/software/tophat/igenomes.shtml


absolute values of Pearson correlation coefficients were calculated for all
the possible gene pairs and resulting values were transformed using a β-
power of 9 so that the final correlation matrix followed an approximate
scale-free topology.10 The WGCNA cut-tree hybrid algorithm was used to
detect sub-networks, or co-expression modules, within the global network
optimizing minimum module size to 15, deep split of 2 and a tree-cut
height of 0.2 to merge neighbouring network modules with similar
expression profiles. For each identified module, we ran singular value
decomposition of each module’s expression matrix and used the resulting
module eigengene (ME), equivalent to the first principal component, to
represent the overall expression profiles for each module. Differential
expression of MEs was performed using a Bayes analysis of variance38

(parameters: conf = 12, bayes = 1, winSize = 5) testing between groups and
P-values were corrected for multiple comparisons (post hoc Tukey
correction). Subsequently, to determine which modules were most
associated to recorded clinical parameters and potential confounding
variables in this study, MEs for all modules were correlated to external
subjective and objective data using a Pearson correlation and a Student’s
asymptotic P-value for significance. MEs were also used to determine
module membership (kME) values for each gene in a specified module,
defined as the correlation between gene expression values and ME
expression. Genes with the highest intramodular kME were labelled as hub
genes and predicted to be essential to the function of the module.

Differential gene expression analyses
A moderated t-test, implemented through the limma39 package, assessed
differential gene expression between the three groups in a group-wise
manner across 12 281 transcripts. Significance threshold was set to a
nominal P-value o0.01 to permit sufficient enough genes to move
forward with functional characterization and supervised classification
methods. Differentially expressed genes corresponding to WGCNA
modules which were significantly associated with polysubstance abuse
were excluded and removed from functional annotation and supervised
classification methods, as a robust and complimentary strategy of
adjusting for confounding factors.

Functional enrichment analyses
All differentially expressed genes passing a P-value o0.01 and all network
modules with genes passing a kME40.50 were subjected to functional
annotation. First, the ToppFunn module of ToppGene Suite software40

(https://toppgene.cchmc.org/) was used to assess enrichment of GO
ontology terms relevant to cellular components, molecular factors,
biological processes, metabolic pathways and well-annotated drug
compounds from the comparative toxicogenomics database41 using a
one-tailed hyper-geometric distribution with a Bonferroni correction.
A minimum of a two-gene overlap per gene-set was necessary to be
allowed for testing. The human cell-specific gene expression database
from the cell type enrichment42 analysis web-based tool was used to
predict the involvement of key cell types within candidate gene lists.
For each supplied gene list, the significance of cell type-specific
expression are determined using the one-tailed Fisher’s exact test with a
Bonferroni correction across all the available cell/tissue types. For
information pertaining to curating haloperidol gene signatures, see
Supplementary File.

Construction of diagnostic blood classifier for MAP
BRB-Array Tools11-supervised classification methods were used to con-
struct gene expression classifiers. Two models were specified: (1) controls
vs METH dependents and (2) MA vs MAP subjects. Each model consisted of
three steps. First, to ensure a fair comparison and to decrease
computational time, all genes with Po0.01 were subjected to classifier
construction. This heuristic rule of thumb approach was used to cast a
wide net to catch all potentially informative genes, while false positives
would be pared off by subsequent optimization and cross-validation steps.
Second, classifiers composed of different numbers of genes were
constructed by recursive feature elimination. Recursive feature elimination
provided feature selection, model fitting and performance evaluation via
identifying the optimal number of features with maximum predictive
accuracy. Third, the ability for recursive feature elimination to predict
group outcome was assessed by diagonal linear discriminant analysis and
compared with three different multivariate classification methods (that is,
support vector machine, nearest centroid, three-nearest neighbours)
in a leave-one-out cross-validation approach. In addition, a permutation

P-value, based on 1000 random permutations, for the cross-validated
misclassification error rate for each classification method was implemen-
ted. This P-value indicates the proportion of the random permutations that
gave as small a cross-validated misclassification rate as was obtained with
the real class labels.

Converging functional genomic scoring
CFG represents a translational methodology that integrates multiple lines
of external evidence from human and animal model studies in a Bayesian-
like manner. This approach increases the ability to distinguish signal from
noise in limited size cohorts and is routinely applied to support the
identification of blood biomarkers across neuropsychiatric disorders.12–20

The principal aim of the CFG approach is to increase the likelihood that
findings will prove reproducible and have predictive power in independent
cohorts. Our CFG scoring paradigm for prioritization of MAP biomarkers is
an adaptation of previous techniques, representing a two-step process
(Supplementary Figure 6) as given below.
Internal lines of evidence: All genes assigned a P-value o0.05 were

included in the CFG scoring. These liberal criteria were used to cast a wide
net of all potentially informative genes, which may be involved in the
pathophysiology of MAP, while false positives would be pared off by
subsequent CFG scoring and optimization steps. Each gene was given
three P-values (based on three group-wise differential expression analyses).
Subsequently, a score of 1 was given to genes passing Po0.001, a score of
0.5 was given to genes passing 0.0014Po0.01, and a score of 0.2 was
given for genes passing 0.014Po0.05, permitting a maximum score of 3
and a minimum score of 0.2. A bonus point of 0.5 was awarded for genes
passing Po0.01 occurring in both MAP vs controls and MAP vs MA
comparisons, as well as genes found to be members of MAP-associated
modules. Thus, a max score of 4 is attainable (3+0.5+0.5).
External lines of evidence: CFG evidence was scored for a gene if there

were published reports of human data including post-mortem brain
expression, peripheral blood expression and/or genetic evidence (associa-
tion and linkage) utilizing two large databases. One database represents a
recently built in-house database specific to human blood transcriptome
studies using PubMed (http://www.ncbi.nlm.nih.gov/pubmed) search
queries and combinations of key words (e.g. blood transcriptome and
psychosis).43 To consider functional support across divergent technological
platforms and human post-mortem brain samples, we accessed
DisGenNet,44 a comprehensive database of human gene–disease associa-
tions from various expert curated databases and text-mining-derived
associations. These database searches included gene–disease relationships
focusing specifically on psychosis, SCZ, depression/stress and neurocog-
nitive impairment to consider comorbid effects of MAP in our study.
Importantly, studies containing a METH component were excluded in
order to validate MAP biomarkers in drug-free (METH) models. For the CFG
analysis and scoring, external cross-validating lines of evidence were
weighted such that findings in human peripheral blood specific to
psychosis were given an additional 1 point. A maximum of five external
lines of evidence were allowed. Thus, the total maximum CFG score that a
candidate biomarker gene could have was 10 (4 for threshold+5 for
external evidence+1 blood presence in psychosis). Like other studies using
this approach,12–20 we appreciate there are other ways of scoring blood
biomarkers based on CFG which may give slightly different results in terms
of prioritization.12–20 Given the past utility of this approach, we and others
believe that this empirical scoring system allows for advantageous
separation of genes based on our focus for identifying human MAP blood
biomarker and by default, biomarkers of psychosis and SCZ.

RESULTS
We conducted a preliminary integrative RNA-sequencing study
profiling peripheral blood gene expression from a primary cohort
of 10 MA, 10 MAP and 10 healthy controls (Table 1 and
Supplementary Figure 1). To identify and prioritize diagnostic
blood biomarkers of MAP, a multimodal translational approach
was used (Figure 1). A global gene co-expression network was first
constructed using all the available subjects and identified 24
co-expression modules, which were functionally annotated to
molecular factors, biological processes, cellular compartments,
metabolic pathways, well-characterized drug compounds and cell
type specificity (Supplementary Table 1).
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Differential analysis of ME values and brain structure volumes
To reduce the number of multiple testing corrections and false
positives arising from standard differential gene expression
analyses, we calculated differences in module expression using
ME values (See Materials and methods for complete description of
ME). All the ME values were subjected to a Bayes analysis of
variance32 testing to compare the extent of module expression
between the groups and the P-values were corrected for multiple
comparisons. MAP-associated findings included significant
decreases of ME expression in modules specific to ‘ubiquitin-
mediated proteolysis’ (767 genes) and ‘RNA degradation’ (1156
genes) in MAP subjects compared with controls (P= 0.01, P= 0.03,
respectively; Figures 2a and b). Further, an increase of ME
expression in a module annotated as ‘circadian clock’ (332 genes)
was observed in MAP compared with controls (P= 0.04; Figure 2c).
MA-associated findings included the increase of ME expression in
modules specific to ‘chloride transporter activity’ (106 genes),
‘interferon signalling’ (263 genes) and ‘cytokine signalling’ (186
genes), and a decrease of ME expression in modules associated to
‘generic transcription’ (48 genes) and ‘ribosome pathway’ (281
genes) in MA subjects relative to healthy controls (Supplementary
Figure 2). The same methodology was extended to compare the
brain structural volumes (mm3) across the three groups, which
revealed bilaterally reduced hippocampus volumes in MAP
subjects (left, P= 0.04; right, P= 0.02; Table 2).

Phenotypic characterization of MAP modules
The ME values for MAP-specific modules were correlated with all
phenotypic traits in this study (brain structural volumes, life history
and psychometric measures) to gain insight into the role that each
module may have in the pathophysiology of the disorder
(Supplementary Figure 3). The P-values o0.002 pass the most
conservative multiple comparison correction (Bonferroni). The ME

of a ‘ubiquitin-mediated proteolysis’ module was negatively
associated to MAP status (r=− 0.45, P= 0.01) as well as K10 total
score (r=− 0.43, P= 0.02). Interestingly, this module was also
negatively associated with brain structure volumes in areas of the
anterior CC (r=− 0.55, P= 0.002), right accumbens area (r=− 0.40,
P= 0.03) and positively associated to areas in the left caudate
(r= 0.37, P= 0.04) and left ventral diencephalon (DC, r= 0.48,
P= 0.007). The ‘RNA degradation’ module was negatively asso-
ciated with the CC anterior (r=− 0.48, P= 0.008) and left
accumbens (r= 0.50, P= 0.005), while positively associated with
the left ventral DC (r= 0.37, P= 0.04). The ‘circadian clock’ module,
was positively correlated with EPQRS measure of psychoticism
(r= 0.43, P= 0.02) and negatively associated to extraversion
(r=− 0.36, P= 0.04).

Phenotypic characterization of MA modules
A similar strategy was chosen to characterize MA-specific modules
(Supplementary Figure 3). The ME of the ‘interferon signalling’
module was positively associated to MA status (r= 0.40, P= 0.03),
BDI total score (r= 0.40, P= 0.03), as well as structural information
from both left (r= 0.54, P= 0.002) and right putamen areas
(r= 0.41, P= 0.03). This module was negatively associated to
EPQRS measure of extraversion (r=− 0.38, P= 0.04) and EPQRS
total score (r=− 0.38, P= 0.04). Further, the ME of the ‘chloride
transporter activity’ module was positively associated with both
MA status (r= 0.36, P= 0.05) and METH dependency (r= 0.39,
P= 0.03), in addition to BDI total score (r= 0.39, P= 0.03) and brain
volume in the left putamen (r= 0.53, P= 0.003). This module was
also negatively associated to control status (r=− 0.39, P= 0.03)
and the left ventral DC (r=− 0.40, P= 0.03). The ‘ribosome
pathway’ module was negatively associated to MA status
(r=− 0.37, P= 0.04) and positively associated to EPQRS total score
(r= 0.38, P= 0.04) and K10 total score (r= 0.44, P= 0.02). The

Table 1. Recorded clinical characteristics from all subjects (N= 30)

Healthy controls
(N=10)

MA
(N= 10)

MAP
(N= 10)

ANOVA Post hoc significance

Mean± s.d. Mean± s.d. Mean± s.d. X2(df = 2) P-value Bonferroni P-value

Age 25.5± 5.8 24.8± 3.9 27.2± 8.3 0.040 0.980
Education level 12.2± 1.2 10.7± 2.1 9.3± 1.7 10.788 0.005 Contol 4 MAP
METH age started using — 18.6± 3.9 18.8± 6.8 0.191 0.662
METH abstinence (days) — 53.1± 82.9 45.5± 36.2 0.593 0.441
METH duration of use (years) — 5.8± 2.3 7.1± 3.0 0.688 0.407
Nicotene use last 30 days 5 6 9 2.400 0.121
Cannabis use last 30 days 2 2 1 0.529 0.467
Alcohol use last 30 days 3 4 2 1.347 0.246
EPQRS psychoticism 2.3± 1.7 1.6± 1.2 3± 2.1 1.880 0.391
EPQRS extraversion 10.3± 2.5 8.2± 3.5 6.6± 2.5 7.039 0.030 Contol 4 MAP
EPQRS neuroticism 2.6± 1.8 4.6± 2.9 5.6± 3.2 4.624 0.099
EPQRS lie 5.6± 2.3 4± 1.9 5.1± 3.3 1.902 0.386
EPQRS total score 20.8± 5.3 18.5± 2.3 20.4± 4.7 1.876 0.391
BIS 15.1± 1.5 15.8± 3.1 13.1± 3.6 3.018 0.221
BAS drive 7.4± 2.5 8.3± 2.6 6.5± 1.3 2.267 0.322
BAS fun seeking 7.1± 1.5 8.1± 1.6 6± 1.2 7.014 0.030 MA 4 MAP
BAS reward responsiveness 7.7± 1.9 7.2± 1.8 6.2± 1.7 3.859 0.145
BIS/BAS total score 44.8± 5.8 47± 7.9 38.4± 5.6 6.269 0.044
BDI total score 4.3± 3.0 17.3± 10.3 16.6± 12.5 10.363 0.006 MAP 4 Control; MA 4 Control
K10 total score 14± 3.8 18.2± 7.7 23.5± 8.2 7.944 0.019 MAP 4 Control
LEQ—sum of life events (⩽6 months) 2.6± 1.7 4.4± 2.0 4.7± 1.6 5.663 0.059
LEQ—sum of life events (46 months ago) 2.2± 2.2 4.2± 3.5 4.1± 2.0 3.643 0.162

Abbreviations: BDI, Beck Depression Inventory; BIS/BAS, behavioural inhibition system/behavioural activation system; EPQRS, Eysenck Personality
Questionnaire; K10, Kessler Psychological Distress Scale; LEQ, Life Events Questionnaire; MA, methamphetamine-dependent subjects with no psychotic
events; MAP, methamphetamine-associated psychosis; PANSS, Positive and Negative Syndrome Scale. Shapiro wilk test was used to assess normality of
variables and either a one-way analysis of variance (ANOVA) or KRUSKAL–Wallis ANOVA with post hoc Bonferroni correction was implemented accordingly.
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‘cytokine signalling’ module was positively associated with both
left accumbens (r= 0.37, P= 0.04) and right accumbens (r= 0.55,
P= 0.002), whereas the ‘generic transcription’ module was
negatively associated to these areas (r=− 0.49, P= 0.006; r=− 0.60,
P= 5e-04, respectively).

Putative diagnostic blood biomarker for MAP
Supervised class prediction methods were used to identify any
single important gene(s) that may have been over-looked in our
network analysis. First, differentially expressed genes (all Po0.01)
were identified between the control and MA subjects (N= 197),
control and MAP subjects (N= 409) and between the MA and MAP
subjects (N= 79; Supplementary Table 2, Supplementary Figures
4A–D). To control for confounding factors, genes corresponding to
WGCNA modules significantly associated to polysubstance abuse
were excluded. Gene lists were annotated for functionality at the
pathway level and cross-referenced with drug-induced gene
signatures from the comparative toxicogenomics database
(Supplementary Figure 4E and F; See Supplementary File for
detailed information).
Subsequently, differentially expressed genes (Po0.01) were

pooled from across the three candidate gene lists and subjected
to recursive feature elimination feature selection and different
multivariate classification methods in a leave-one-out cross-
validation approach (See Materials and Methods for complete
description). Two models were built for separating classes. First,
when separating healthy controls form METH dependents (MA
and MAP subjects) classification accuracy reached 87% when the
expression of 25 genes was used with diagonal linear discriminant
analysis multivariate classification method (Supplementary Figures
5a and b). Second, when separating MA from MAP, classification
accuracy reached 95% when the expression of 20 genes (recycling
14 genes from the first model) was used with diagonal linear
discriminant analysis (Supplementary Figures 5c and d).
We next sought to understand the biology represented by

these MAP biomarkers and derive mechanistic insights. Our multi-
step approach permitted taking each single biomarker and
returning to our network analysis to retrieve guilt-by-association
biological information from our empirically derived functional
gene modules. Majority of these genes were found in a module
annotated to ‘RNA degradation’ (CLN3, FBP1, TBC1D2, ZNF821,
ADAM15, ARL6, FBN1 and MTHFSD; Table 3). However, two top-
scoring biomarkers were found to be implicated in ‘circadian
clock’ dysfunction (ELK3 and SINA3) and three other top-scoring
biomarkers were found in the module annotated to ‘ubiquitin-
mediated proteolysis’ (PIGF,UHMK1 and C7orf11).

Prioritization and biological interpretation of blood biomarkers
Biomarkers were prioritized using a Bayesian-like CFG approach
(Supplementary Figure 6) integrating previously published human
evidence based on genetics (for example, GWAS, copy number
variants), post-mortem brain gene expression and peripheral
blood gene expression specific to psychosis, SCZ, depression/
stress as well as neurocognitive impairment at the time of our
analysis (August 2015). This is a way of validating relevant blood
transcriptome biomarkers from moderately sized data sets,
extracting generalizable signal out of potential cohort-specific
noise.12–20 Using the CFG approach, we first focused our attention
on the ‘ubiquitin-mediated proteolysis’ annotated module, which
in this study represents a functional biomarker of MAP. This
module was enriched with 61 genes having CFG evidence
(P= 4.8E− 10), including those found to be dysregulated in the
blood of a psychotic disorder (n= 29) as well as in the blood
and/or post-mortem brain of SCZ patients (n= 32) across indepen-
dent human studies (Supplementary Table 3A). Notably, of the 29
CFG genes found in the blood of a psychotic disorder, 21
pertained to one single study.45 We further found a significant

Figure 1. A multi-step translational work-flow for identifying
methamphetamine-associated psychosis (MAP) biomarkers. First,
weighted gene co-expression network analysis (WGCNA) analysis
built a global co-expression network and identified 24 co-expression
modules. On the hierarchical cluster tree, each line represents a
gene (leaf ) and each group of lines represents a discrete group of
co-regulated genes or gene modules (branch) on the clustering
gene tree. Each gene module is indicated by the colour bar below
the dendrogram, and subsequently functionally annotated then
integrated with recorded clinical and biological data to identify
candidate gene modules representing functional biomarkers of
MAP. Second, differential gene expression and class prediction
methods identified 20 candidate MAP biomarkers (14 were recycled
from the second split on the tree). A Bayesian-like convergent
functional genomic (CFG) approach prioritized our panel of
biomarkers specific to MAP and biomarkers were placed within an
empirically derived biological framework. For each step, the
corresponding figure and/or table is listed providing a quick
reference. LOOCV, leave-one-out cross-validation; RFE, recursive
feature elimination.
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enrichment of 39 genes holding CFG evidence (P= 7.0E−12)
within the module annotated as ‘circadian clock’ (Supplementary
Table 3B). Similarly, these genes were also previously associated to
psychosis and/or SCZ in independent studies. Of interest, two
genes within the ‘ubiquitin-mediated proteolysis’ annotated
module (TMEM106B and SCAMP1) and one within the ‘circadian
clock’ annotated module (DCTN1) overlap with a previous study
that had used CFG-based approach to validate blood biomarkers
for delusions, a core symptom of psychotic disorders.20 An
additional gene (RAB18) within the ‘ubiquitin-mediated proteo-
lysis’ module was also validated as a SCZ biomarker using the CFG
approach.18

Applying the CFG approach to our panel of 31 discriminative
biomarkers confirmed 8 candidate biomarkers for MAP (Table 3)
which had a CFG score of 3 or above, meaning either maximal
score from the P-value threshold cut-offs or at least two other lines
of prior independent evidence (Figure 3a). Indeed, CFG evidence
for 8 out of 31 discriminatory biomarkers is a significant overlap
(P= 0.01), beyond what would be expected by chance. Of these
validated MAP biomarkers, four were previously reported to
predict psychosis in an independent human blood transcriptome

investigation (FBP1, ZNF821, TBC1D2 and SIN3A), one of which was
previously labelled a genetic variant for SCZ risk (FBP1). In
addition, one other biomarker had been implicated in SCZ risk
across two independent studies (UHMK1). Subsequently, a gene–
disease network was built using all the CFG-validated biomarkers,
either in the form of a functional biomarker (gene modules) or
single biomarkers, to visualize unique gene signatures of MAP and
consensus signatures of MAP, psychosis and SCZ (Figure 3b). In
this study, we found that MAP shares 69 genes with SCZ, 39 genes
with other psychotic disorders and six genes are shared across all
the three conditions. Importantly, cross-referencing all the
candidate MAP genes onto query haloperidol gene expression
signatures from the CMap and CDT provided preliminary evidence
for the lack of neuroleptic-associations across our candidate
findings (Figure 3b).

DISCUSSION
This preliminary report describes gene networks and blood
biomarkers of MAP, further validating the MAP model as an
exemplar for discovery of biomarkers related to SCZ susceptibility

Table 2. Brain structural volumes (mm3) from all the subjects (N= 30)

Brain region Healthy controls
(N= 10)

MA
(N=10)

MAP
(N= 10)

Bayes
ANOVA

Post hoc significance

Mean± s.d. Mean± s.d. Mean± s.d. X2 (df = 2) P-value Bonferroni P-value

L hippocampus 3950.11± 463.71 3790± 297.51 3521.71± 173.43 3.538 0.041 Control 4 MAP
R hippocampus 4067.56± 414.08 4005.43± 196.29 3645.29± 189.97 4.261 0.029 Control 4 MAP
L accumbens 690.56± 80.38 689.14± 128.15 651.57± 99.24 0.343 0.714
R accumbens 669.33± 100.54 673.00± 199.23 694.71± 91.48 0.076 0.927
L caudate 4116.89± 340.84 4078.57± 293.78 3906.71± 177.23 1.149 0.337
R caudate 4211.22± 251.11 4283.86± 314.36 4119± 163.64 0.760 0.481
L putamen 6606.78± 408.97 6633.14± 667.17 6718.57± 661.5 0.078 0.925
R putamen 6313.33± 371.03 6274.43± 596.45 6506.71± 672.14 0.373 0.694
L ventral DC 4551.33± 247.16 4295.71± 273.56 4323.71± 204.25 2.715 0.091
R ventral DC 4473.44± 377.34 4340.43± 78.7 4369.86± 278.58 0.485 0.623
CC anterior 938.78± 125.96 1056.14± 194.83 1016.57± 100.31 1.389 0.272
CC posterior 966.00± 191.65 912.29± 139.86 956.29± 135.16 0.236 0.792

Abbreviations: CC, corpus callosum; DC, diencephalon; L, left; R, right. Bayes analysis of variance (ANOVA) parameters: conf= 12, Bayes= 1, winSize= 5.
P-values corrected for multiple comparisons.
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Figure 2. Significant methamphetamine-associated psychosis (MAP) findings from differential analysis of module eigengene (ME) values
across controls (white), MA subjects (light grey) and MAP subjects (dark grey). Modules specific to MAP include (a) ubiquitin (UB)-mediated
proteolysis, (b) RNA degradation and (c) circadian clock. Indicated for each module are number of overlapping genes from the module ∩ out
of total genes in the term. Enrichment P-values are Bonferroni corrected for multiple comparisons. A Bayes analysis of variance (parameters:
conf= 12, bayes= 1, winSize= 5) was used on the ME values to test for significance between the groups and P-values were corrected for
multiple comparisons where (*) implies post hoc-corrected P-value significance o0.05 and (+) indicates P-value significance o0.05 without
post hoc correction.
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Table 3. Top informative features for separating controls from METH subjects (25 genes) and MA from MAP subjects (20 genes)

Gene
symbol

Parametric
P-value

%CV
support

Module
correspondence

Significant positive module-trait
correlations

Significant negative module-trait
correlations

Top 25 informative features separating controls from METH subjects
ELK3† 0.0175377 97 Circadian clock EPQRS psychoticism (r= 0.43, P= 0.02)

CC posterior (r= 0.39, P= 0.03)
EPQRS extraversion (r=− 0.38, P= 0.04)

CRTAM 0.03485 97 Generic transcription EPQRS neuroticisim (r= 0.41, P= 0.02)
EPQRS total (r= 0.37, P= 0.05)

Left accumbens (r=− 0.49, P= 0.0006)
Right accumbens (r =− 0.6, P= 0.00005)

MAGEE1 0.0158379 100 Generic transcription

RNF138P1 0.0078459 87 RNA degradation Control status (r= 0.38, P= 0.04)
Left ventral DC (r= 0.37, P= 0.04)

CC anterior (r=− 0.48, P= 0.008)
Right accumbens (r=− 0.5, P= 0.005)

MFN1 0.0070206 87 RNA degradation
TBC1D2* 0.000805 90 RNA degradation
ZNF286B 0.000065 90 RNA degradation
MRPL50 0.0001267 93 RNA degradation
ADAM15† 0.000731 97 RNA degradation
DDRGK1 0.0055266 97 RNA degradation
MTHFSD 0.0612426 97 RNA degradation
ARL6 0.0037554 97 RNA degradation
GKAP1 0.0009407 97 RNA degradation
FAM169A 0.0008839 97 RNA degradation
KBTBD6 0.0003548 97 RNA degradation
ZSCAN5A 0.0012892 100 RNA degradation
FBN1†,* 0.0168567 100 RNA degradation
ZNF821 0.0193724 100 RNA degradation
FBP1† 0.6900462 100 RNA degradation
CDK7 0.0054503 100 RNA degradation

CDYL2 0.0000834 93 RNA-binding K10 total (r= 0.42, P= 0.02) Right ventral DC (r=− 0.42, P= 0.02)
TOMM34 0.0019291 100 RNA-binding

C7orf11 0.0587445 80 Ubiquitin-mediated proteolysis Control status (r= 0.4, P= 0.03)
Left caudate (r= 0.37, P= 0.04)
Left ventral DC (r= 0.48, P= 0.0007)

MAP status (r=− 0.45, P= 0.01)
K10 Total (r=− 0.43, P= 0.02)
CC Anterior (r=− 0.55, P= 0.002)
Right Accumbens (r=− 0.4, P= 0.03)

UHMK1† 0.6057577 97 Ubiquitin-mediated proteolysis
PHLDB2 0.0007613 100 Ubiquitin-mediated proteolysis

Top 20 informative features separating MA from MAP subjects
SIN3A* 0.0926295 70 Circadian clock EPQRS psychoticism (r= 0.43, P= 0.02)

CC posterior (r= 0.39, P= 0.03)
EPQRS extraversion (r=− 0.38, P= 0.04)

ELK3† 0.0002902 90 Circadian clock

MAGEE1 0.0001558 100 Generic transcription EPQRS neuroticisim (r= 0.41, P= 0.02)
EPQRS total (r= 0.37, P= 0.05)

Left accumbens (r=− 0.49, P= 0.0006)
Right accumbens (r=− 0.6, P= 0.00005)

MFSD7 0.0440767 85 Interferon signalling MA dep. status (r= 0.4, P= 0.03) BDI total
(r= 0.4, P= 0.03) Left putamen (r= 0.54,
P= 0.002) Right putamen (r= 0.41, P= 0.03)

EPQRS extraversion (r=− 0.43, P= 0.02)
EPQRS total (r=− 0.43, P= 0.02)
CC posterior (r=− 0.43, P= 0.02)

SLC41A3 0.0018933 100 Ribosome pathway EPQRS total (r= 0.38, P= 0.04)
BDI total (r= 0.44, P= 0.02)

MA status (r=− 0.37, P= 0.04)

MTHFSD 0.0002405 90 RNA degradation Control status (r= 0.38, P= 0.04)
Left ventral DC (r= 0.37, P= 0.04)

CC anterior (r=− 0.48, P= 0.008)
Right accumbens (r=− 0.5, P= 0.005)

ZNF821* 0.11798 90 RNA degradation
FBP1* 0.3549855 90 RNA degradation
RNF138P1 0.0195014 90 RNA degradation
ARL6 0.0317958 95 RNA degradation
ETFA 0.0235683 95 RNA degradation
TBC1D2* 0.157939 100 RNA degradation
FAM169A 0.0132909 100 RNA degradation
ZSCAN5A 0.0112376 100 RNA degradation
CLN3 0.0087815 100 RNA degradation
DDRGK1 0.0082958 100 RNA degradation
FBN1†,* 0.0070075 100 RNA degradation

PIGF 0.1818898 90 Ubiquitin-mediated proteolysis Control status (r= 0.4, P= 0.03)
Left caudate (r= 0.37, P= 0.04)
Left ventral DC (r= 0.48, P= 0.0007)

MAP status (r=− 0.45, P= 0.01)
K10 Total (r=− 0.43, P= 0.02)
CC Anterior (r=− 0.55, P= 0.002)
Right Accumbens (r=− 0.4, P= 0.03)

C7orf11 0.0028377 90 Ubiquitin-mediated proteolysis
PHLDB2 0.1302545 95 Ubiquitin-mediated proteolysis

Abbreviations: BDI, Beck Depression Inventory; CC, corpus callosum; DC, diencephalon; EPQRS, Eysenck Personality Questionnaire. Parametric P-value indicates
significance in a strict sense following 1000 random permutations to group labels using small N. %CV support denotes the number of correctly passed cross-
validations for each gene. Module correspondence is the module membership of each gene and the subsequent significant correlations for each module are
depicted. Genes in bold are those that were used in classification for nodes 1 and 2 (14 genes total). (*) indicates genes found dysregulated in the blood of
psychosis studies; (†) indicates genes found as genetic variants in SCZ studies.
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and clinical course. In essence, this pharmacogenomics approach
is a tool for identifying genes that contain pathophysiological
relevance to psychotic disorders and SCZ. Considering the variable
environmental component of MAP, it is possible that not all
subjects would show changes in all the biomarker genes. Hence,
our multimodal approach incorporated blood gene expression,
clinical assessment of life history, psychometric measures and
structural MRI data revealing several mechanistic insights regard-
ing the pathophysiology of MAP and its overlapping mechanistic
nature with psychotic disorders and SCZ. First, we identified a
functional biomarker of MAP in the form of a co-expression
module annotated to ubiquitin-mediated proteolysis, further
enriched with 61 genes containing CFG evidence. We also
revealed a psychoticism-associated module implicated in circadian
clock, enriched with 39 genes containing CFG evidence. Second,
we identified 25 genes that were able to distinguish healthy
controls from METH dependents with high accuracy, while only 20
genes (recycling 14 genes from the previous split) were able to
differentiate between MA and MAP subjects. A significant
proportion of these single blood biomarkers also contained CFG
evidence. Further, cross-referencing these results onto haloperidol
specific gene expression signatures reduced the likelihood of
these genes being neuroleptic-related. These high overlaps
suggest similar biological mechanisms detectable in peripheral
blood underlying the pathophysiology of psychosis, regardless of
substance abuse. These findings also outline new avenues
regarding how the MAP model may function in SCZ research.
A central finding from our network analysis was the identifica-

tion of a functional biomarker (gene module) annotated to
ubiquitin-mediated proteolysis expressed to a lesser extent in
MAP subjects (Figure 2a). The ubiquitin proteasome system (UPS)
is a highly complex and tightly regulated process that has major
roles in a variety of basic cellular processes, specifically degrada-
tion of intracellular proteins and modulation of cellular responses
to inflammation and oxidative stress.46 The UPS has been
identified in genetic reports as a canonical pathway associated
to psychosis,45,47 SCZ,48–52 bipolar disorder,48,53 as well as
neurodegenerative diseases such as Alzheimer’s54 and
Parkinson’s.55 Studies using post-mortem brain gene expression
to investigate mechanisms of psychosis and SCZ provide
consistent evidence for the downregulation of UPS-related genes

in these conditions.50–52 It was also recently shown that UPS
abnormalities disrupt expression at the protein level in SCZ.56

Interestingly, studies using peripheral blood gene expression also
found that the UPS pathway was consistently dysregulated across
bipolar, SCZ and psychosis patient groups.48 A later study used a
targeted approach associating blood expression measurements of
UPS pathway gene members with Scales for Assessment of
Positive and Negative Symptoms and determined UBE2K (also a
gene member of our ‘ubiquitin-mediated proteolysis’ module),
was one of three genes most significantly associated to positive
symptoms of psychosis.47 Another independent report built a
diagnostic blood-based classifier able to distinguish first-episode
psychosis from controls with 400 genes,45 21 of which were found
within our UPS annotated module (Supplementary Table 3A).
Indeed, it is interesting that genes that have a well-established
role in brain functioning should also show changes in peripheral
blood in relationship to psychiatric symptom states, and moreover
that the direction of change should be concordant with that
reported in human post-mortem brain studies. As a consequence
of the overlapping nature of UPS dysfunction found across mental
diseases, the proteasome system has emerged as a putative
candidate highlighting both mRNA and protein-level changes in
psychosis and SCZ. This clearly is an area that deserves attention
and mechanistic elucidation by future hypothesis-driven research.
In determining relationships between blood gene expression

and structural MRI data, we revealed a significant association of
the ubiquitin-mediated proteolysis module to the anterior CC
(r=− 0.55, P= 0.002; Supplementary Figure 3). Conversely, the
circadian clock module, expressed to a greater extent in MAP
subjects (Figure 2), was significantly associated to EPQRS measure
of psychoticism (that is, aggression, egocentrism and impulsive-
ness; r= 0.43, P= 0.02) and the posterior CC (r= 0.39, P= 0.03;
Supplementary Figure 3). There is considerable evidence suggest-
ing that global white matter abnormalities (that is, disruptions in
connectivity in intra- and interhemispheric pathways) have a role
in the pathophysiology of psychiatric disorders.57 With the CC
being the largest white matter tract containing highly packed
neuronal fibres, abnormalities in this structure have frequently
been reported in patients with SCZ,58 including first-episode SCZ
and psychosis patients,59 often relating to the severity of psychotic
symptoms. It has been hypothesized that less efficient

Figure 3. Top candidate blood biomarkers for methamphetamine-associated psychosis (MAP). (a) Convergent functional genomic (CFG)
evidence and scoring are depicted on the right side of the pyramid. Genes in bold have been found in external publications. Genes found in
methamphetamine (METH)-free studies investigating schizophrenia (SCZ, †) and psychosis (*) are as indicated. (b) Overlapping gene–disease
relationships including CFG-validated genes within gene modules (ubiquitin-mediated proteolysis and circadian rhythm) and single-gene
biomarkers. Nodes represent genes and edges indicate gene–disease relationships. Node shape denotes empirically derived functions from
our network analysis. Green shading indicates biomarkers from our machine-learning analysis including 14 unique genes separating controls
from METH dependants. Grey nodes represent CFG-validated biomarkers of delusion (psychosis) or SCZ.12,18 Node border colour in turquoise
indicates gene signatures across MAP, general psychosis and SCZ studies. Venn diagram depicts lack of overlap from curated haloperidol gene
signatures onto the 128 candidate MAP genes (61 UPS+39 clock+25+20= 128 genes (while accounting for overlap across lists)).
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connectivity and resulting aberrant signal transmission between
the brain regions may be a pivotal factor in the manifestation of
psychotic symptoms, including delusions and hallucinations, and
of cognitive dysfunctions.60,61 However, these disturbances have
not been fully elucidated in the context of MAP nor in its
relationship to blood gene expression differences. Yet most
interestingly, we also observed significantly lower bilateral
hippocampal volumes in MAP subjects (Table 2). Although
correlates of blood gene expression to hippocampal volumes
relate mainly to processes of protein ubiquitination (r= 0.37,
P= 0.05), reductions in the hippocampal volumes are consistent
with previous reports of pathological hippocampus changes in
MAP,62 in first-episode and chronic schizophrenia,63 and in
individuals at high risk for psychosis.64 Taken together, these
results suggest that changes in the blood occur in parallel to
structural changes in the brain of MAP subjects and that they are
also most likely involved in the pathophysiology of psychotic
disorders and SCZ in the absence of METH.
The interrogation of the comparative toxicogenomics

database41 with a signature query composed of the genes in
our ‘ubiquitin-mediated proteolysis’ annotated module revealed
an enrichment of sodium arsenate gene signatures
(Supplementary Table 1). Although sodium arsenate is one of
the most toxic metals derived from the natural environment,65 it
has been used as a therapeutic medication in acute promylocytic
leukaemia based on its mechanism to induce apoptotic effects via
release of apoptosis-inducing factor.65 However, arsenic is mainly
a contaminator and interestingly is known to cause clinical
features such as psychosis, toxic cardiomyopathy and seizures.66,67

This exploratory result suggests arsenic, and chemically similar
compounds, as a putatively useful gene-hunting tool for
investigating future mechanisms of psychosis in either primary
or patient-derived lymphoblast cell lines to elucidate further these
effects in search for more verifiable biomarkers.
Topping our list of candidate MAP biomarkers, we found eight

genes involved in RNA degradation (CLN3, FBP1, TBC1D2, ZNF821,
ADAM15, ARL6, FBN1 and MTHFSD), two specific to circadian
rhythm (ELK3 and SINA3) and three involved in ubiquitin-mediated
proteolysis (PIGF,UHMK1 and C7orf11; Table 3). Indeed it is possible
that some of the gene expression changes detected in this
moderately sized cohort (N= 30) may represent biological or
technical artefacts. To minimize such effects, our candidate MAP
biomarkers were selected based on having a line of evidence
(CFG) score of two or higher (Figure 3a). Proper cross-validation
both in silico and across-literature (CFG), minimized the likelihood
of having identified false positives while increasing sensitivity and
specificity in the ability to distinguish true signal (biomarkers) from
noise through a fit-to-disease Bayesian-like methodology.12–20

CLN3 (Ceroid-Lipofuscinosis, Neuronal 3) was the top-scoring
gene in our study and is conventionally involved in lysosome
function. Mutations in this gene are well known to cause
neurodegenerative diseases such as Batten disease,66,68 which
impairs mental and motor development during childhood,
causing difficulty with walking, speaking and intellectual function-
ing. Patients with a CLN3 mutation are also prone to recurrent
seizures, epilepsies, vision impairment and occasionally psychosis.
It is hypothesized that mutations in CLN3 disrupt lysosome
function resulting in build-up of lipopigments, which may induce
apoptotic effects in brain neurons. Although this gene has not yet
been discussed in the context of psychosis, it may represent a
putative biomarker of MAP. In addition, variants in the gene FBP1
(fructose-1,6-bisphosphatase 1) have previously provided genetic
support for the view that alterations in glucose metabolism are
intrinsic to SCZ pathology.69 However, in our study, this gene was
found co-expressed in the ‘RNA degradation’ module. Other top-
scoring genes included genes annotated to a circadian clock
module (Supplementary Table 3B), which are involved in sleep–
wake cycles and previously identified as risk factors for

psychosis,12 anxiety disorders,17 suicidality19 and mood
disorders.70 ELK3 (ETS-Domain Protein (SRF Accessory Protein 2))
encodes a transcriptional factor that may switch from activator to
repressor in the presence of Ras, whereas SIN3A (SIN3 Transcrip-
tion Regulator Family Member A) encodes a transcriptional
repressor with known roles in circadian clock negative
feedback.71 Although SIN3A has well-known association to
circadian clock function, an advantage of our approach was to
be able to derive guilt-by-association co-expression interpretation
of biomarkers, such as ELK3, by indicating module membership
status. Dysregulation of circadian clock genes in post-mortem
brain of SCZ patients have previously been observed,72 however,
reports in the blood are less frequent.
Of note, MA-associated findings also allow us to speculate on

molecular mechanisms of psychosis. MA discoveries mainly
included elevated expression in modules specific to interferon
and cytokine signalling. Although cytokine signalling was
positively associated to METH dependency (that is, MA and MAP
subjects; r= 0.39, P= 0.03), a module specific to ‘interferon
signalling’ was significantly overexpressed in the blood of MA
subjects relative to controls, rather than MAP subjects relative to
controls (Supplementary Figure 2). Previous work has highlighted
a weak or absent immune stress response, specific to HPA axis
activation73 and cortisol measurements,74 in medication-naive
first-onset psychosis patients. Moreover, modules specific to IL-5
signalling, actin cytoskeleton and ATPase activity all showed a
strong association to both the left and right accumbens area
(Supplementary Figure 3). Owing to high levels of dopaminergic
innervations, the nucleus accumbens, together with other
subcortical structures, has a pivotal role in several neurocircuits
involved in reward, motivation, drug-reinforcement and drug-
seeking behaviour, mood regulation and sleep–wake cycles.75,76

Such neurocircuit functions are similarly affected by drug
exposure as well as stressors, life events or social pressure, with
increased dopamine release in the nucleus accumbens triggered
by the stimulant in addiction and by glucocorticoid hormones in
stress.75 Furthermore, there is emerging evidence that cytokines
circulating in blood may target subcortical dopamine function,
with potential implications on behaviour, sleep patterns and the
progression of psychiatric disorders, such as depression.77

Although it appears that the identification of blood-based
biomarkers may be accomplished by systems level and machine-
learning approaches, it remains an open empirical question for
future work, which approach provides the most favourable
translational avenues. Systems approaches are particularly useful
in providing comprehensive characterizations of the molecular
factors for a given disease state, multi-scale data integration and
are statistically robust in terms of reproducibility. Machine-
learning applications, while often fit-to-cohort, rank genes by
importance producing a unique predictive or diagnostic panel of
biomarkers. This dual approach permitted the placement of MAP
single-gene biomarkers into an empirically derived biological
framework (that is, gene network) to derive mechanistic insights.
Pragmatically, these results provide a proof of principle for joint
statistical analysis providing complimentary and comprehensive
molecular characterizations in pursuit of blood biomarkers for
MAP. A limitation of this study is that our findings cannot yet be
used to change the clinical practice. Notwithstanding that many of
our MAP single-gene biomarkers identified by machine learning
were supported by CFG evidence, these findings need to be
replicated in an independent MAP sample.
Overall, our results support the MAP model for the identification

of biomarkers involved in psychosis and SCZ. Our most significant
findings suggest that genes involved in UPS and circadian clock
dysregulation are prominent players in psychosis and are reflected
in both peripheral blood and post-mortem brain profiles.
Specifically, UPS abnormalities have emerged as a common
denominator across a variety of independent studies investigating
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psychosis, SCZ and bipolar disorder. Indeed in clinical practice
there is a high degree of overlap and comorbidity between
psychotic disorders, MAP and SCZ. Our results were able to shed
light on the biological mechanisms of psychosis, regardless of
polysubstance abuse, medication or other confounding factors
and further emphasize the value of moving towards comprehen-
sive empirical profiling. These results also open empirical avenues
for future field trials, clinical testing and validation in various at-
risk populations.
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