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Newer insights into the role of miRNA a tiny genetic tool in
psychiatric disorders: focus on post-traumatic stress disorder
VV Giridharan1, RA Thandavarayan2, GR Fries1, C Walss-Bass1, T Barichello1,3,4, NJ Justice4,5, MK Reddy6,7 and J Quevedo1,3,4,8

Post-traumatic stress disorder (PTSD) is a mental disorder occurring in about 2–9% of individuals after their exposure to
life-threatening events, such as severe accidents, sexual abuse, combat or a natural catastrophe. Because PTSD patients are exposed
to trauma, it is likely that epigenetic modifications have an important role in disease development and prognosis. For the past two
decades, abnormal expression of the epigenetic regulators microRNAs (miRs) and miR-mediated gene regulation have been given
importance in a variety of human diseases, such as cancer, heart disease and viral infection. Emerging evidence supports a role for
miR dysregulation in psychiatric and neurological disorders, including schizophrenia, bipolar disorder, anxiety, major depressive
disorder, autism spectrum disorder and Tourette’s syndrome. Recently mounting of evidence supports the role of miR both in
preclinical and clinical settings of psychiatric disorders. Abnormalities in miR expression can fine-tune the expression of multiple
genes within a biological network, suggesting that miR dysregulation may underlie many of the molecular changes observed in
PTSD pathogenesis. This provides strong evidence that miR not only has a critical role in PTSD pathogenesis, but can also open up
new avenues for the development of diagnostic tools and therapeutic targets for the PTSD phenotype. In this review, we revisit
some of the recent evidence associated with miR and PTSD in preclinical and clinical settings. We also discuss the possible clinical
applications and future use of miRs in PTSD therapy.
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INTRODUCTION
Post-traumatic stress disorder (PTSD) is a mental illness that results
from the experience or witnessing of traumatic or life-threatening
events. It was first officially recognized in the Diagnostic and
Statistical Manual of Mental Disorders, 3rd ed. (DSM III) in 1980, and
since then knowledge has accumulated about the characteristics,
symptomatology and epidemiology of PTSD as well as assessment
and treatment of individuals suffering from this disorder.
According to DSM-5, the diagnostic criteria for PTSD includes
experiencing at least one symptom from the re-experiencing
factor, at least one symptom from the avoidance factor, two or
more symptoms from the negative alterations in cognitions and
mood factor, and two or more symptoms from the alterations in
arousal and reactivity factor, along with significant functional
impairment and at least a one-month duration of the symptoms.1

It can be categorized under two types, acute or chronic. In acute
PTSD, symptoms last for at least 1 month but o3 months after
the traumatic event. In chronic PTSD, symptoms last for more than
3 months after exposure to trauma.2 PTSD patients with either
type frequently show socio-behavioral problems and have a
higher risk of alcohol and drug abuse. In addition, structural
changes in the prefrontal cortex, amygdala and hippocampus, and

biochemical changes such as increase in norepinephrine/cortisol
in urine, elevated total cholesterol in the blood and higher levels
of norepinephrine in cerebrospinal fluid (CSF) are hallmarks of
PTSD.3–6 PTSD included as a new chapter in DSM-5 on trauma and
stressor-related disorders. This move from DSM-IV, which
addressed PTSD as an anxiety disorder, and its symptoms,
includes depression, outbursts of anger, self-destructive behavior,
and feelings of shame, self-blame and distrust.7 Notable biological
findings in PTSD include derangements in the noradrenergic/
sympathetic brain systems and the hypothalamic–pituitary–
adrenal axis, increased CSF concentrations of corticotropin-
releasing factor; reduced volume of the hippocampus, functional
differences in responding of fear system brain regions, such as
hyperactivation of the amygdala and hypoactivation of the
prefrontal cortex; sleep disturbances, measures of hyperarousal
in response to stimuli and of delayed habituation to loud noises,
and evidence for impaired conditioned fear extinction recall.8 The
currently available pharmacotherapies target the different phe-
notypes of PTSD, such as anxious, depressive, externalizing and
dissociative. Multisite randomized clinical trials have noted the
efficacy of FDA-approved selective serotonin reuptake inhibitors
and serotonin–norepinephrine reuptake inhibitors for PTSD
treatment. Although alternatives to serotonin reuptake inhibitors

1Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston
(UTHealth), Houston, TX, USA; 2Department of Cardiovascular Sciences, Centre for Cardiovascular Regeneration, Houston Methodist Research Institute, Houston, TX, USA; 3Center
of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston
(UTHealth), Houston, TX, USA; 4Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; 5Center for
Metabolic and Degenerative Diseases, Institute of Molecular Medicine, The University of Texas Health Sciences Center, Houston, TX, USA; 6Clinical and Translational Research
Program on Traumatic Stress, Department of Psychiatry and Behavioral Sciences, Mc Govern Medical School, Houston, TX, USA; 7Department of Psychiatry and Human Behavior,
Warren Alpert Medical School of Brown University, Providence, RI, USA and 8Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University
of Southern Santa Catarina (UNESC), Criciúma, Brazil. Correspondence: Dr J Quevedo, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science
Center at Houston, 1941, East Road, Houston, TX 77054, USA.
E-mail: Joao.L.DeQuevedo@uth.tmc.edu
Received 6 June 2016; revised 10 August 2016; accepted 20 September 2016

Citation: Transl Psychiatry (2016) 6, e954; doi:10.1038/tp.2016.220

www.nature.com/tp

http://dx.doi.org/10.1038/tp.2016.220
mailto:Joao.L.DeQuevedo@uth.tmc.edu
http://dx.doi.org/10.1038/tp.2016.220
http://www.nature.com/tp


and mixed serotonin–norepinephrine reuptake inhibitors in PTSD
would be desirable, little data supports the use of other
antidepressants, benzodiazepines, atypical antipsychotics for
clinical symptoms. The comorbid psychotic features such as
nightmares and sleep disturbance in PTSD treated by Prazosin and
alpha-1-adrenergic antagonist that attenuates noradrenergic-
mediated suppression of rapid eye movement sleep in preclinical
work. However, there are currently no pharmacotherapy treat-
ments that can be recommended clinically for the prevention of
PTSD development post-trauma.8 The overall response rate of
serotonin reuptake inhibitors treatment is about 60% in PTSD
patients and only 20–30% of patients achieve complete remission.
Unfortunately, there have been no other new medications
approved to treat PTSD in the past 10 years.9

By definition PTSD requires exposure to a traumatic event. As
genes are sensitive to stress and trauma, epigenetic alterations
have received attention as a possible mechanism for the
development and persistence of PTSD. miRNAs (miRs) can be
considered important players in the epigenetic control of gene
expression that not only have its role in regulation of many cellular
and developmental processes but also can be developed as a
novel diagnostic tool or target for therapeutic intervention.10,11

Over the past 15 years, many epigenetic markings such as DNA
methylation, post-translational histone modifications and histone
variants have moved center attention in many areas of transla-
tional and experimental medicine, including neurology and
psychiatry.12 In addition, the epigenetic regulation of catechol-o-
methyltransferase (COMT), an enzyme, which degrades dopamine,
is associated with the impaired fear inhibition in PTSD.13 Besides
DNA methylation and histone modifications, recently non-coding
RNAs (ncRNAs) have gained considerable attention in diverse
fields. It is demonstrated that RNAs are not only an intermediate
molecule between DNA and protein. Some RNAs that are not
translated into protein can act as functional molecules known as
ncRNAs and can regulate normal cellular function and gene
expression. The principle ncRNA molecules that participate in
gene expression, such as ribosomal RNA and transfer RNA were
discovered in the early 1950s. Other ncRNAs such as small nuclear
RNAs, small interfering small cajal body specific RNAs, small
nucleolar RNAs, long non-coding RNAs, long intergenic non-
coding RNAs, piwi-interacting RNAs and circular RNAs were more
recently discovered and have been shown to have a remarkable
variety of biological functions. In 1993, the revolution in RNA
biology started by the discovery of the first miR, in the nematode
Caenorhabditis elegans, Lin-4 by the efforts of Ambros’s and
Ruvkun’s laboratories.14,15 Seven years later the second miR, let-7a
heterochronic gene of C. elegans was reported by Reinhart et al.16

at Ruvkun’s laboratory. Currently, thousands of miRs have been
identified in humans and other species. In eukaryotic organisms,
the discovery of miRs was a huge revolution because it depicted
their importance in post-transcriptional events.17 Recently, accu-
mulating evidences explores the role of miR in psychiatric diseases
such as schizophrenia, autism and bipolar disorders. In this review,
we aim to brief the recent highlights in the neurobiology of miR
associated with PTSD and its comorbid depression, and examine
the support for their involvement in psychiatric pathophysiology.
We also addressed the possible clinical applications for miR in
PTSD treatment and what is needed for the field to progress.

BIOGENESIS AND FUNCTIONS OF miR
miRs are genomically-encoded, single stranded, non-coding RNA
molecules with 19–24 nucleotides that anneal with complemen-
tary sequences to messenger RNA (mRNA), thereby regulating
protein expression. miR reduce the transcription and translation of
mRNA, thereby down-regulating gene expression.15 miR are
transcribed by RNA polymerase II as long primary transcripts
characterized by hairpin structures called pri-miR, and are

processed in the nucleus by RNA polymerase III Drosha into 70–
100 nucleotide long precursor miRs in combination with cofactors
such as DGCR8. The product of pri-miR cleavage is exported to the
cytoplasm by exportin-5, a member of the Ran-dependent nuclear
transport receptor family and further cleaved in a complex
composed of RNase III Dicer and the trans activating response
RNA-binding into a miR duplex.18 Dicer and several other RNA-
binding proteins, such as Ago2, protein activator of PKR and trans-
activation response RNA-binding protein, incorporate one strand
of mature miR duplexes into the ribosome-induced silencing
complex. The miR-associated ribosome-induced silencing complex
binds to the target miR to inhibit its translation or cause the
degradation of the target miR. miRs silence their target mRNAs by
a variety of mechanisms at the post-transcriptional level by
binding to the 3′-untranslated regions (3′UTRs) or the open
reading frames of target genes, leading to the degradation of
target mRNAs or repression of mRNA translation (Figure 1). miR
was originally considered to have no biological function and to be
degraded; however, recent evidence suggests that it can be used
as a functional strand and may have significant biological roles. It
is believed that there are as many 1000 miR in the human genome
and that up to 30% of human genes are regulated by miR. For
some human genes, more than one miR may be involved in their
regulation and more than 80% of conserved miR is tissue-specific.

miR SIGNATURES IN PSYCHIATRIC DISORDERS
The common etiology of psychiatric disorders includes (1) genetic
factors such as polymorphisms, gene deletions or insertions, gene
amplification and gene translocation (2) environmental factors
such as stress. The combination of genetic and environmental
factors is known to lead the development of most psychiatric
disorders.19 Environmental factors by means of regulating
epigenetic mechanisms can interact with the genome to have
long-term consequences for brain plasticity and behavior. These
mechanisms include histone modification, DNA methylation and
post-transcriptional regulation by ncRNA such as miRs. In
psychiatry, we are now in the first era of miR biology approach.
Recent evidence in psychiatric disorders such as schizophrenia
and bipolar disorder supports a role for miRs as possible mediators
of the susceptibility, onset, diagnosis and treatment of these
disorders.20,21 A recent study by Hauberg et al. provides evidence
for the role of miR in the etiology of schizophrenia. Schizophrenia
risk genes were more likely to be regulated by miRs, as revealed
by gene set analyses with the strongest enrichment for targets of
miR-9-5p, miR-485-5p and miR-137.22 miR was also suggested as a
biomarker for schizophrenia in CSF and peripheral blood. Mono-
nuclear leukocyte-based miR profiling identified seven miRs, that
is, miR-34a, miR- 449a, miR-564, miR-432, miR-548d, miR-572,
miR-652 and had a high discriminating accuracy for
schizophrenia.23 In addition, a large cluster of 17 miRs on
chromosome 14q32 were reported to have the potential to serve
as biomarkers for schizophrenia.24 In the same vein, miR-499,
miR-708 and miR-1908 were shown to have significant association
with bipolar disorder.25 In plasma from drug-free manic patients,
miR-134 was shown to be downregulated compared with
controls.26 The recent study suggests that a set of 13 differentially
expressed serum miRs might serve as a possible non-invasive
biomarker for autism spectrum disorder.27 Tourette syndrome (TS)
is a childhood neuropsychiatric disorder characterized by multiple
motor and one or more vocal tics. The syndrome is commonly
associated to comorbid conditions such as attention deficit
hyperactivity disorder and obsessive compulsive disorder. Net-
work and gene-ontology analysis revealed that miR-429 is
significantly under expressed in TS patients with respect to
controls.28 The miR signatures in different psychiatric disorders
showed in Figure 2. Despite this earlier promising work, there have
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been only a handful of preclinical and clinical studies investigating
the role of miRs in other psychiatric disorders such as PTSD.

IMPLICATIONS OF miR IN PTSD
By definition PTSD requires exposure to a traumatic event. As
genes are sensitive to stress and trauma, epigenetic alterations
have received attention as a possible mechanism for the
development and persistence of PTSD. Epigenetic modifications,
including DNA methylation, histone modifications and ncRNAs,
have been implicated in a number of complex diseases such as
cardiovascular disease, cancer and neurological diseases.29 In
regards to PTSD, the recently identified allele specific DNA

methylation of FKBP5, a potential candidate gene for PTSD, has
been suggested to mediate gene-childhood trauma interactions.30

Table 1, summarizes reports of dysregulated miR in both
preclinical and clinical models of PTSD. There is now evidence
that miRs are involved in brain development and disease and in
control of neurotransmitter release. For example, miR-130a and
miR-206 inhibit the synthesis of substance P, whereas interleukin-
1α reduces the expression of these miRs, relieving their
inhibition.31 Abelson et al. identified Slit- and Trk-like family
member 1 (SLITRK1), a leucine-rich transmembrane protein as
involved in TS, a brain disorder potentially induced by miR
dysregulation. They subsequently identified two independent pro-
bands with a 3′-UTR mutation in a miR-189 binding site.32

Depression is a condition that is highly comorbid with PTSD. In
the Grady Trauma Project (GTP), the prevalence of PTSD and
depression was 28.4% among 6863 at risk participants with high
rates of trauma exposure. Also, in 9/11 World Trade Center Health
Registry enrollees, 10.1% had PTSD and depression about 10 years
after the September 9/11 disaster. Hence it is important to assess
the role of miR in both stress and depression and we have
tabulated this in Table 2.

EVIDENCE OF miR IN PRECLINICAL MODEL OF PTSD
miR-1971 as a target gene in PTSD pathobiology
In a study published by Schmidth et al.,66 the rodent model of
electric foot shock was used to induce the PTSD phenotype. The
antidepressant drug fluoxetine (effective both in PTSD patients
and mice suffering from a PTSD-like syndrome) was administered
at a dose of 20 mg kg− 1 day− 1. miR profiles in prefrontal cortices
dissected from either fluoxetine or control-treated wildtype
C57BL/6N mice 74 days after their subjection to either a single
traumatic electric footstock or mock-treatment were performed
using micro array profiling. The relative expression levels of all
potential miR target sequences of miRBase 18.0 by pairwise

Figure 2. MicroRNA in various psychiatric disorders.

Figure 1. microRNAs (miRs) biogenesis and function. miRs are transcribed by RNA polymerase II or III as pri-miR, and are processed in the
nucleus by Drosha into pre-miRs. The pre-miR, is exported to the cytoplasm by exportin-5 and further cleaved in a complex composed of
Dicer and trans-activation response RNA-binding protein. The functional strand of mature miR is incorporated into the RNA-induced silencing
complex (RISC). As a part of this complex, the mature miR regulates gene expression by binding to partially complementary sequences in the
3′-untranslated regions (3′UTRs) of target mRNAs, leading to transcriptional repression and transcriptional activation.
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comparison of the prefrontal cortices miR profiles resulted in an
identification of five miR candidate molecules. Validation of these
miR candidates by RT-qPCR reaction revealed that the therapeutic
action of fluoxetine in shocked mice is associated with a
significant reduction in mmu-miR-1971. To our knowledge, this
is the first study demonstrating miR expression profiles in a PTSD
mouse model. Thus the antidepressant fluoxetine in shocked mice
is correlated with significant reduction in prefrontal cortical mmu-
miR-1971.66

miR as a potential biomarker in rat model of PTSD
In this study by Balakathiresan et al.,36 the rat model of learned
helplessness stress was used to identify significantly modulated
miRs in serum and amygdala after induction of the PTSD
phenotype. The stress protocol consisted of a 2 h per day session
of immobilization along with tail shocks for three consecutive
days. During restraints animals were exposed to 40 electric shocks
at varying intervals of 150–210 s. This study identified the
significantly modulated miRs in serum after traumatic stress to
develop a novel non-invasive PTSD diagnostic biomarker and
validated their expression on amygdala based on, it is involve-
ment in regulating fear response under stress.67 Accordingly
differentially expressed and statistically significant miRs in serum
were validated for their presence in amygdala of corresponding
animals. The nine stress-responsive miRs, miR-142-5p, miR-19b,
miR-1928, miR-223-3p, miR-322∗, miR-324, miR-421-3p and
miR-463∗ identified may have potential as biomarkers for PTSD.

Bioinformatics and system biology validation indicated that five of
the nine miRs, that is, miR-142-5p, miR-19b, miR-1928, miR-223
and miR-421-3p may have a role in the regulation of genes
associated with delayed and exaggerated fear.36

miR-29 family members: key regulators involved in PTSD—heart
pathology
This study by Van Rooij et al.68 examined the effects of short-term
stress exposure on heart tissue in a PTSD mouse model and
identified the family of miRs involved in heart pathology. The
PTSD phenotype was induced by the social defeat model,
adapting the different strains of subservient mice by pairing with
aggressor mice (SJL strain). The study identified several key gene
regulators, members of the miR-29 family (miR-29b) that are
involved in the wound-healing process.43 It is to be noted that the
miR-29 family members have been implicated in arrhythmias,
myocardial fibrosis and other heart conditions.68

miR-34c in the pathobiology of PTSD
This study by Li et al.38 identified miR-34c expression in
hypothalamus as an important factor involved in susceptibility
to PTSD in a rat model. Rats received the repeated inescapable
electric foot shock for six consecutive days for the induction of the
PTSD phenotype. The study focused on the relationship among
levels of corticotrophin releasing factor receptor (CRFR) 1 mRNA,
and miR-34c expression in adult stressed rats and suggested that

Table 2. miR implication in stress and depression results from clinical and preclinical models

Species Effect/tissue miR Reference

Human Blood has-miR-130b, miR 505, miR-29b-2, miR-26b, miR22, miR26a,
miR664, miR-494, miR629, miR106b, miR103, miR-191, miR128,
miR502-3p, miR 374b, miR-132, miR30d, miR-500, miR-770-5p,
miR-589, miR-183, miR-574-3p, miR-140-3p, miR-335, miR-361-
5 phas-let-7g, has-let-7d, has-let-7e, has-miR-34c-5p, has-let-7f

Bocchio-Chiavetto
et al.50

Human Blood Has- miR-107, miR-133a, miR-148a, miR-200c, miR381,
miR-425-3p,miR-494, miR-517b, miR-579, miR-589, miR-636,
miR-652, miR-941, miR-1243

Belzeaux et al.51

Human Plasma miR-144-5p Wang et al.52

Human Blood miR-34b-5p and miR-34c-5p Sun et al.53

Human Blood miR-182, miR-132 and miR-182 Li et al.54

Human Blood miR-26b, miR-1972, miR-4485, miR-4498 and miR-4743 Fan HM et al.55

Human Blood/Brain miR-135 Issler et al.56

Human Blood miR-320, miR-451, miR-17-5p, miR-223-3p Camkurt et al.57

Human Post-mortem prefrontal cortex
brain tissue/ depressant patient
blood

miR-1202 Lopez et al.58

Human/postmortem
brain studies

Prefrontal cortex has- miR-10a, miR-20a, miR-20b, miR-27a, miR-33a,miR-137,
miR-142-3p, miR-142-5p, miR-148b, miR-155,
miR-190miR-376a

Smalheiser et al.59

Human Blood and brain miR135 Issler et al.56

Rat Serum miR-16 Zurawek et al.60

Rat Immobilization stress/ hippocampus
CA1, amygdala

miR-132, miR-134, miR-183, let-7a-a, miT-9-1, miR-124a-1 Meerson et al.61

Rat Unpredictable chronic mild stress/
hippocampus

miR-125a, miR-298, miR-130b, miR-135a, miR-323, miR-503,
miR-15b, miR-532 miR-7a, miR-212, miR-124, miR-139,
miR-182

Cao et al.34

Rat Inescapable shock/frontal cortex mmu-miR-184, Mmu-miR-197, mmu-miR-107, mmu-miR-329,
mmu-miR-125a-5p, mmu-miR-872, mmu-miR-181c, mmu-
miR-18a, mmu-miR-29b, mmu-let-7a. Rno-let-7e, rno-miR-20a

Smalheiser et al.62

Mice Unpredictable mild stress/frontal
lobe and hippocampus

miR-132, miR-18a, miR-134, miR-124a miR-18a Pan and Liu63

Mice Restraint stress/ frontal cortex miR-9, miR26a/b, miR-29b,miR-30b, miR-30b/c, miR-30c,
miR-30e, miR125a, miR-126-3p,miR-129-3p, miR-207, miR-212,
miR351, miR423, miR-487b, miR-494, miR-690, miR-691,
miR-709, miR711 and let-7a-e let-7

Rinaldi et al.64

Mice Stressed/hypothalamus miR-18, miR-12a Shimizu et al.65

Abbreviation: miR, microRNA.
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CRFR1 antagonist could target a positive process including
increased levels of miR-34c during acute stress reaction and give
a new certification that miR-34c might be closely related with
vulnerability to PTSD.

EVIDENCE OF miR IN CLINICAL MODEL OF PTSD
miR-125a targets cytokine production in combat veterans with
PTSD
This study by Zhou et al.33 evaluated the role of miR in the
immunological dysfunction associated with PTSD. The peripheral
blood mononuclear cells (PBMC) and various lymphocyte subsets
in blood collected from combat veterans with PTSD were
analyzed. The numbers of both PBMC and lymphocyte subsets
were significantly increased in combat veterans PTSD patients
compared with controls. There was an alteration in immune
function such as helper T (Th)1 and Th17 cells were increased and
regulator T cells decreased, but Th2 cells remained unaltered in
PTSD patients. These data correlated with increased plasma levels
of cytokines such as interferon-γ and interleukin-17. The severity
in PTSD patients as determined by the clinical scores such as PTSD
scores, anxiety scores and depression scores. It was found that
increase in PBMC counts, Th1 and Th17 cells seen in PTSD patients
correlated with clinical scores. High-throughput analysis exhibited
significant alterations in miR expression which correlates with
immunological changes in combat veterans with PTSD.33

miR-3130-5p and DICER1 regulates biological mechanism of
PTSD&Dep
This study by Wingo et al.35 identified for the first time the
involvement of DICER1 and miR in the regulation pathway
implicated in the biological mechanism of PTSD and cormorbid
depression (PTSD&Dep). DICER1 is an enzyme that cleaves
precursor RNA molecules to produce mature miR. It has been
found that blood DICER1 expression was significantly reduced in
PTSD&Dep patients, and it was associated with increased
amygdala activation to fearful stimuli, a neural correlate for PTSD.
Further, genome-wide differential expression survey of miRs in
blood in PTSD&Dep reveals the miR-3130-5p was significantly
reduced in abundance level in the PTSD&Dep cases.35

FUTURE PERSPECTIVES OF miR IN PSYCHIATRIC DISEASES
With more than hundreds of miRs identified and knowledge of
their role in psychiatric disease becoming clearer, there is the
prospect over the coming years, to harness miR in psycho-
therapeutics. On the other hand, Miravirsen the first miR-based
therapeutics for hepatitis C virus infection entered the phase-II
clinical trial.69 However, to define miRs as a new target for
psychiatric therapy would be premature. Because, delivering miR-
targeted therapies to the central nervous system poses a
considerable challenge, it is important to identify the target gene.
Current understanding on bioinformatics has provided useful
information, but precise targets must be identified among the
different predicted targets. Thus identification of specific target
genes would further deepen our understanding of the mechan-
isms underlying psychiatric disease pathogenesis. Viral and non-
viral vectors are being investigated for their potential to deliver
miRs to the central nervous system, in addition, intranasal delivery,
a non-invasive method that has also been shown some promise in
this regard.70 The aberrant miRs implicated in disease or
therapeutic effects must be further investigated in animal and
other preclinical models, instead of extrapolating from an animal
model to a clinical setting.71 This could involve overexpression or
knockdown of a candidate miR in cell lines and measuring the
target gene’s protein expression levels as well as behavioral
phenotype in preclinical settings. Likewise, aberrant miRs

expression identified in preclinical settings should be followed
up in clinical or postmortem samples. Identifying new rare variants
through sequencing as well as genotyping larger cohorts for more
common miR disease risk variants should also be explored. Thus,
studies correlating miR profiles with clinical outcomes would be
helpful in the development of biomarkers and miR-based
therapeutics in the future.

CONCLUSION
In summary, the given preclinical and clinical evidences suggest
the important role of miRs in PTSD pathophysiology and
diagnosis. There is a great expectation for the use of miR
measures and genetic data as non-invasive biomarkers for the
diagnosis, prognosis and therapeutic appraisal of many illnesses.
The fact that differential expression levels of peripheral miR have
been associated with several disease processes pertaining to brain
tissues suggest the potential use of miR as a new generation of
biomarkers and opens new avenues for the treatment of
neuropsychiatric conditions. Compare with cancer and cardiovas-
cular field, miR implication in psychiatric research at the nascent
stage, hence more detailed understanding of the function of miRs
in PTSD pathophysiology and clinical condition may improve the
treatments and possibly lead to the clinical application of miRs in
PTSD diagnosis, treatment and prognosis.
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