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Neuropathology of mood disorders: do we see the stigmata
of inflammation?
N Mechawar1 and J Savitz2,3

A proportion of cases with mood disorders have elevated inflammatory markers in the blood that conceivably may result from
stress, infection and/or autoimmunity. However, it is not yet clear whether depression is a neuroinflammatory disease. Multiple
histopathological and molecular abnormalities have been found postmortem but the etiology of these abnormalities is unknown.
Here, we take an immunological perspective of this literature. Increases in activated microglia or perivascular macrophages in
suicide victims have been reported in the parenchyma. In contrast, astrocytic markers generally are downregulated in mood
disorders. Impairment of astrocytic function likely compromises the reuptake of glutamate potentially leading to excitotoxicity.
Inflammatory cytokines and microglia/macrophage-derived quinolinic acid (QA) downregulate the excitatory amino acid
transporters responsible for this reuptake, while QA has the additional effect of inhibiting astroglial glutamine synthetase, which
converts glutamate to glutamine. Given that oligodendroglia are particularly vulnerable to inflammation, it is noteworthy that
reductions in numbers or density of oligodendrocyte cells are one of the most prominent findings in depression. Structural and/or
functional changes to GABAergic interneurons also are salient in postmortem brain samples, and may conceivably be related to
early inflammatory insults. Although the postmortem data are consistent with a neuroimmune etiology in a subgroup of depressed
individuals, we do not argue that all depression-associated abnormalities are reflective of a neuroinflammatory process or even that
all immunological activity in the brain is deleterious. Rather, we highlight the pervasive role of immune signaling pathways in brain
function and provide an alternative perspective on the current postmortem literature.
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INTRODUCTION
The question of whether mood disorders are neuropathological
conditions has been the subject of considerable debate.1–3 In the
case of major depressive disorder (MDD) and bipolar disorder (BD),
there is evidence for subtle histopathological changes observed
postmortem that plausibly may affect excitatory and inhibitory
circuits involving the prefrontal cortex (PFC) and limbic regions.
The most salient of these abnormalities are reductions in the size
and/or density of GABAergic neurons and reductions in glial cell
densities that are concurrent with altered gene expression. These
data have been reviewed in detail elsewhere1 and are not
comprehensively covered here. Instead we focus on one potential
cause of the histopathological changes associated with mood
disorders—inflammation. That is, we highlight those postmortem
cellular and molecular abnormalities that may be directly or
indirectly related to immune dysregulation. This is not intended to
be a systematic review of the literature. Nor do we argue that all
changes observed postmortem in mood disorders are related to
inflammation. Rather we provide an alternative perspective on a
substantial and diverse body of work.

EVIDENCE FOR IMMUNE DYSREGULATION IN MOOD
DISORDERS
A large number of studies have reported increased levels of
inflammatory proteins such as tumor necrosis factor (TNF),

interleukin 6 (IL-6) and C-reactive protein (CRP) in the serum or
plasma of depressed individuals with MDD and BD, and these
results have been confirmed in meta-analyses.4–8 Concentrations
of pro-inflammatory cytokines are also reportedly elevated during
mania or hypomania.9,10 Although most studies have focused on
cytokine proteins, additional support for the role of inflammation
in mood disorders is derived from gene expression studies of
peripheral blood mononuclear cells, which have demonstrated the
existence of increased messenger RNA (mRNA) expression of pro-
inflammatory mediators in patients with mood disorders.11–14

Notably, Padmos et al.11 performed whole-genome expression
profiling on microarrays using purified cluster of differentiation 14
(CD14+) monocytes and reported elevated mRNAs of inflamma-
tory (for example, TNF, IL-1, IL-6, TNF-alpha-induced protein 3),
trafficking, survival and mitogen-activated protein kinase pathway
genes in BD subjects in various illness phases, and in the affected
offspring of other BD subjects. Similarly, the expression of several
genes previously implicated in neurological and inflammatory
disorders, including TNF, were found to be upregulated in the
peripheral blood mononuclear cells of a combined sample of
depressed MDD and BD participants.14 Further, Pandey et al.13

found that the mRNA expression of IL-1, IL-6 and TNF, as well as
their receptors, IL-1R1, IL-1RA and TNFR1 was significantly greater
in the lymphocytes from BD patients than those of healthy
controls. These data demonstrate the potentially important
pathological role of membrane-bound cytokine receptors, which
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mediate the functional and biological effects of cytokines. In a
follow-up study by the same group, similar increases in the mRNA
expression of cytokines and their membrane-bound receptors
were found in hospitalized MDD patients.15 Soluble cytokine
receptors may also be relevant to the pathophysiology of
depression. Elevations in the protein concentrations of soluble
IL-1R (sIL-1R), sTNFR1, sTNFR2 and sIL-6R also have been reported
in patients with mood disorders.16–18

It is not yet clear whether the association between mood
disorders and inflammation is causal. Regarding prospective
studies, elevated CRP levels have been shown to predict the
subsequent development of BD19 as has been demonstrated
several times for CRP or IL-6 in the case of MDD and
psychosis.20–22 Second, it has been well established that treatment
of hepatitis C or melanoma patients with interferon alpha (IFN-α)
or interleukin 2 (IL-2) induces a depressive episode in about 40%
of patients.23–25 Importantly, there is a temporal disjunction
between the ‘psychological’ and ‘physical’ manifestations of this
immune-stimulating treatment, with the neurovegetative symp-
toms appearing within 1 week, whereas the mood and cognitive
symptoms peak 8–12 weeks post initiation of treatment.26,27

Moreover, it is the mood and cognitive symptoms rather than the
neurovegetative symptoms that are responsive to antidepressant
treatment.26,27 Similarly, the typhoid vaccine and low-dose
endotoxin, which has been shown to activate microglia in vivo,28

induce transient, mild depressive symptoms in healthy
controls.29–31 These data prompted investigations into the efficacy
of anti-inflammatory medications for the treatment of bipolar
depression. Results have been mixed32 although low-dose aspirin,
minocycline, infliximab and n-acetyl cysteine show some ther-
apeutic promise.33–35 Finally, positron emission tomography
studies have found evidence for microglial activation in the PFC
and anterior cingulate cortex (ACC) of patients with MDD as well
as the hippocampus in patients with BD as indexed by an increase

in the distribution volume of the ligand for the translocator
protein ligand, TPSO, which is expressed by microglia.36,37

Inflammatory mediators likely affect neuronal function and
neurotransmission by an array of different mechanisms. For
instance, pro-inflammatory cytokines such as interferon gamma
(IFN-γ), IL-1 and TNF can reduce the availability of monoamines
(serotonin, dopamine and norepinephrine) by upregulating
synaptic reuptake transporters, as well as reducing monoamine
synthesis by decreasing the availability of tetrahydrobiopterin
(BH4), a co-factor for the enzyme tyrosine hydroxylase (see ref. 38
for a comprehensive review). At the circuit level, these alterations
in neurotransmission lead to functional changes in components of
the visceromotor network including the ventromedial PFC, insula
and hippocampus,30,31,39 as well as hypoactivity of a ‘reward
network’ centered on the ventral striatum, thus providing a clear
link with the behavioral trait of anhedonia.29,40,41 Nevertheless,
postmortem studies have generally pointed to abnormalities in
glutamatergic and/or GABAergic circuits in BD, and thus immune-
mediated modulation of the balance between excitatory and
inhibitory neurotransmission will be the primary focus here.
As will be discussed below, activated microglia release

glutamate42–47 and pro-inflammatory cytokines further elevate
the risk for excitotoxicity by impairing astrocyte-mediated
glutamate recycling.48,49 However, inflammatory mediators also
may affect glutamatergic signaling indirectly by, for instance,
altering the production of neuroactive metabolites of the
kynurenine pathway (Figure 1). Specifically, pro-inflammatory
cytokines upregulate the enzyme indoleamine 2,3 deoxygenase,
increasing the production of kynurenine from tryptophan.
Kynurenine in turn is metabolized along two principal branches
to form kynurenic acid (KynA) or alternatively, the potentially
neurotoxic metabolites, 3HK (3-hydroxykynurenine) and quinolinic
acid (QA).50 KynA is a pleiotrophic metabolite that is produced by
astrocytes and among other roles, acts as a preferential antagonist
at the glycine co-agonist site of the N-methyl-D-aspartate (NMDA)

Figure 1. Main branches of the kynurenine pathway. The enzyme indoleamine 2,3 deoxygenase (IDO), which converts tryptophan to
kynurenine is upregulated by pro-inflammatory cytokines. Each box represents a metabolite resulting from the oxidation of tryptophan. The
black italicized text shows the enzymes that catalyze select steps in the metabolic pathway. NMDA, N-methyl-D-aspartate.
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receptor.51 In contrast, QA is produced by microglia and is
neurotoxic at elevated concentrations partly via its agonistic effect
on the NMDA receptor.52 Although QA is usually found in low
nanomolar concentrations in the human brain and cerebrospinal
fluid, a significant increase in QA levels to micromolar concentra-
tions is observed in patients with inflammatory neurological
diseases.53 In addition to its effect on the NMDA receptor, QA has
been shown to increase the production of reactive oxygen and
nitrogen species,54 inhibit the reuptake of glutamate into synaptic
vesicles,55 promote the formation of hyperphosphorylated tau
proteins56 and upregulate transcription of pro-inflammatory
chemokines and cytokines in astrocytes.57

Decreases in KynA and increases in QA in the cerebrospinal fluid
of predominantly depressed subjects have been found up to 2
years after a suicide attempt,58 and we previously reported a
reduction in the ratio of KynA to 3HK and KynA to QA in the serum
of patients with both MDD and BD.59,60 In addition, the ratio of
3HK to KynA and/or QA to KynA in the serum was inversely
correlated with hippocampal volume in both MDD and BD
participants, as well as depressed football players with concussion,
raising the possibility that neuroactive kynurenine metabolites
may affect brain structure in the context of depression.59–61

ETIOLOGY OF THE IMMUNE DYSREGULATION IN MOOD
DISORDERS
Although the evidence for immune dysregulation in a subgroup of
individuals with mood disorders is robust, the upstream cause of
this immune dysregulation is less clear. Below, we discuss three
potential, non-mutually exclusive causal factors, stress, pathogens
and autoimmunity.

Stress
Stress hormones (for example, epinephrine, norepinephrine and
cortisol) and ‘hard-wired’ sympathetic nervous system innervation
of lymphoid organs exert pleiotrophic effects on the immune
system via their receptors on immune cells. This stress response
causes (potentially chronic) ‘low-grade’ inflammation character-
ized by increases in pro-inflammatory mediators such as TNF, IL-6
and IFN-γ, as well as impairment of the adaptive immune system
leading to increased vulnerability to viral disease, deficient
response to vaccination and poorer prognosis for diseases such
as cancer.62 In complementary studies, Cole and colleagues have
demonstrated that social isolation and loneliness is associated
with a consistent pattern of gene expression in peripheral blood
leukocytes, that is, an increase in inflammatory markers involved
in wound healing and bacterial immunity together with a
downregulation of transcripts involved in Type I interferon
antiviral responses and IgG antibody production.63–65 In the brain,
this immunological dysregulation may lead to increased activity of
the amygdala, deficient hippocampal neuroplasticity, and more
generally, morphological and/or atrophic changes to pyramidal
neurons.66

Pathogens
The impaired adaptive immunity associated with chronic stress
may lead to increased susceptibility to the negative sequelae of
pathogens, especially viruses. Herpesvirus infections are a salient
example. The majority of the population of the United States (US)
is seropositive for Epstein–Barr virus and herpes simplex 1 virus,67

whereas more than half of the US population is seropositive for
cytomegalovirus.68 Generally, these viruses remain latent after
initial infection but they may undergo reactivation during periods
of both physical and psychological stress without producing
significant clinical disease. Reactivation is usually accompanied by
a noticeable increase in specific antibody titer to the virus, even in
the absence of detectable virus. For instance, IgG antibody titers

to cytomegalovirus, Epstein–Barr virus and herpes simplex 1 virus
were found to be significantly elevated in medical students during
exams compared with when they returned after summer
vacation.69 Several studies have reported higher IgG
cytomegalovirus antibody titers in depressed subjects relative to
controls70–72 and more recently, the Detroit Neighborhood
Health Study showed that individuals with cytomegalovirus
antibodies in the top quartile were four times more likely to be
depressed than those individuals in the bottom three quartiles of
the population.73

Another pathogen that may have a role in the pathophysiology
of mood disorders is the protozoan, Toxoplasma gondii.74 A meta-
analysis of 23 studies found that serological evidence of infection
with T. gondii was associated with a 2.73-fold increased risk of
schizophrenia75 and several recent studies have reported associa-
tions between T. gondii seropositivity and depression, mania and
suicidal behavior more generally.76–79 Like the herpesviruses,
T. gondii is neurotrophic and additionally encodes proteins
with homology to tyrosine hydroxylase and the D2 receptor,
raising the possibility that it may modulate dopaminergic
neurotransmission.80 Further, T. gondii-infected mice display
increased production of neuroactive kynurenine pathway meta-
bolites in the brain, suggesting another possible mechanistic
connection between T. gondii and the pathophysiology of mood
disorders.81

Autoimmunity
Certain microbial infections may increase the risk of developing
autoimmune disease via molecular mimicry and/or bystander
activation and stimulation of pattern recognition receptors.82

There are two predominant sources of evidence for autoimmune
illness in depression and psychosis. First, there is a greater
prevalence of various autoimmune disorders in patients with
mood disorders than that of the general population.83–87 Further,
there is persuasive epidemiological evidence to suggest that
autoimmune disease is a risk factor for the development of
de novomood disorders. For instance, using the Danish Psychiatric
Central Register, which included data on 90 000 inpatient
admissions for depression, Benros et al.88 found that a history of
any prior autoimmune disease increased the risk of a subsequent
diagnosis with a mood disorder by 45%, a history of hospitaliza-
tion for infection increased the risk of later mood disorders by 62%
and the two factors interacted in synergy to increase the risk of
subsequent mood disorders by 235%.
Second, there is evidence to suggest that a subset of patients

with mood disorders have elevated levels of circulating auto-
antibodies. For instance, thyroperoxidase antibodies are signifi-
cantly more common in patients with MDD and BD even after
accounting for lithium exposure,89,90 a finding that may be related
to a shared genetic vulnerability to BD and autoimmune
thyroiditis.84 In another one of many examples, Ching et al.91

reported that 2 out of 20 patients with a diagnosis of MDD had
raised levels of autoantibodies to glutamic acid decarboxylase 65
(GAD65) and Ro52 in both the serum and cerebrospinal fluid, with
one of the patients meeting criteria for stiff-person syndrome.
Whether these antibodies have a causal role in the development
of the illness or are a consequence of an independent
pathological process is still unknown. However, at least some
cases of psychosis and/or depression appear to be caused by
antibodies that have functional effects on neurotransmission.
Dalmau and colleagues first reported the existence of autoanti-
bodies, which cause cross-linking and internalization of the NMDA
receptor in limbic encephalitis patients with a variety of
psychiatric symptoms including auditory and visual hallucinations,
delusions, depression and mania.92,93 Further, ~ 4% of the cases in
the Kayser et al.93 series presented with isolated psychiatric
symptoms. Subsequently, anti-NMDA receptor antibodies also
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have been reported to be present at an increased frequency in
patients initially diagnosed with MDD (3%)94 and post-partum
psychosis (2%).95 On the basis of these and other studies, it has
become increasingly recognized that a small minority of patients
diagnosed with psychosis or depression may in fact have a variant
of autoimmune encephalitis. In a recent editorial, Lennox et al.96

wrote that ‘Antibody screening in young people presenting with
psychosis, seizures and cognitive disturbance is now part of
routine clinical practice in neurological and intensive care settings
[in the United Kingdom]’.

INFLAMMATION-RELATED HISTOPATHOLOGICAL
ABNORMALITIES
Postmortem brain studies: methodological considerations
Among the different approaches used to investigate psychiatric
illnesses, postmortem brain research offers a unique window
through which underlying cellular and molecular alterations can
be observed and described with the highest resolution and
sensitivity. Moreover, postmortem studies can provide invaluable
information on cerebral cells and networks that are only found in
humans. This is particularly crucial when it comes to mental
illnesses unique to humans such as BD. For instance, our view of
human astrocytes has changed considerably in the past few years
since Nedergaard and colleagues elegantly highlighted that both
the size and complexity of cortical astrocytes are disproportio-
nately greater in humans than in rodents.97,98 Furthermore, the
same team found that the diversity of these cells is more
important in the human neocortex, with astrocytic subtypes
displaying projections spanning several cortical layers or columns.
The great diversity of human astrocytes was subsequently
confirmed and extended to other brain regions, with the discovery
of novel subtypes in the hippocampus and, more recently, in
subcortical regions such as the thalamus and caudate
nucleus.99,100 The notion that human astrocytes may also display
different functional properties than in animal models further
highlights the importance of clinical and postmortem studies to
better understand the biological roots of mental illnesses.
Despite these advantages, postmortem studies also present

some limitations, and the results should always be interpreted
with consideration for factors such as: (i) the quality of sample
preservation, which is generally assessed by measuring tissue pH
and RNA quality (RNA Integrity Number); (ii) the necessity of
adequately matched controls (age, death with or without agonal
period, postmortem delay, tissue characteristics and so on); and
(iii) the amount of information (for example, clinical, psychosocial
and so on) available for each donor, which can be considerably
increased by psychological autopsies. Even when generated in
optimal conditions, postmortem data showing significant differ-
ences between cases and controls should be viewed as a
‘snapshot’ of cellular and molecular events unfolding in brain
tissues before death, without precluding the possibility that the
observations may reflect cumulative changes having occurred
during the course of the illness. Consideration should also be
given to possible postmortem changes to brain tissues between
death and their preservation by freezing or fixation, although a
careful matching of samples should eliminate this concern.

Pro-inflammatory molecules and pathways
Despite the fact that several studies have examined peripheral
(plasma and cerebrospinal fluid) inflammatory molecules and
mediators in patients with mood disorders, little is currently
known about the expression of inflammatory markers in the brain
of such individuals. The few postmortem investigations that have
addressed this question have all examined cortical areas and are,
unfortunately, largely inconsistent. Using real-time polymerase
chain reaction to compare the expression of TNF, IL-1, IL-4, IL-5,

IL-6 and IL-13 in the orbitofrontal cortex of suicides vs non-
psychiatric controls, Tonelli et al.101 reported a significant increase
in the expression of IL-4 in women and of IL-13 in men. As
highlighted by the authors, this study had important limitations,
such as a lack of diagnosis for the majority of suicides, the absence
of toxicological data, and the fact that groups were not matched
by age.101 The roles of IL-4 and IL-13 in the brain, similar cytokines
released by T-helper 2 cells in allergic inflammation, remain mostly
to be determined (but see ref. 102). Interestingly, there is in vitro
evidence showing that in rat cells, IL-13 can lead to the death of
activated microglial cells by enhancing the production of cyclo-
oxygenase-2.103 Thus, increased IL-13 expression could represent a
mechanism through which microglial activation is kept in check.
In their investigation of teenage suicides (various diagnoses),

Pandey et al.104 found that both mRNA and protein levels of pro-
inflammatory cytokines TNF, IL-1 and IL-6 were significantly
increased in prefrontal cortex (Brodmann’s Area 10; BA10) relative
to matched controls. These findings are consistent with the results
of a later study by this group on the expression of the Toll-like
receptors (TLR) found on macrophages and microglia.105 They
showed that the expression (mRNA and protein) of TLR3 and TLR4
was significantly upregulated in the dorsolateral PFC of depressed
suicides vs non-depressed suicides. TLR3 and TLR4 mRNA, but not
protein, was similarly increased in depressed non-suicides,
suggesting that suicide, independent of diagnosis, is associated
with a stronger dysregulation in the expression of these
receptors.105

Focusing on TNF protein expression in prefrontal cortical
samples (BA24 and BA46) from 10 adult MDD patients (mostly
suicides) and matched controls, Dean et al.106 also detected a
highly significant depression-associated increase in protein levels
of transmembrane—but not soluble—TNF that was restricted to
BA46. A more extensive follow-up study by these authors showed
a greater than three-fold increase in transmembrane TNF
expression in ACC (BA24) samples from BD patients, as well as a
51 and 67% decrease in TNFR2 expression in BA46 samples from
MDD and BD subjects, respectively.107 These results suggest
illness-specific regional disruptions in TNF signaling. In contrast,
Rao et al.108 did not detect any difference in TNF expression in the
frontal cortical samples from BD patients relative to controls. They
did however, report significantly increased mRNA and protein
levels for IL-1 and IL-1R, as well as of astrocytic (glial fibrillary acidic
protein; GFAP) and microglial (CD11b) markers in the same
tissues.108 Using microarrays, a more high-throughput approach,
some investigators have reported a widespread upregulation of
both pro- and anti-inflammatory cytokines in the dorsolateral PFC
of MDD patients,109 whereas others have been unable to implicate
cerebral inflammation in any of brain regions examined in
individuals with BD.110

The inconsistencies in the literature presented above could be
attributable to differences in experimental approaches or to the
diversity of postmortem brain samples. As mentioned above,
however, this diversity could be further enhanced by the clinical
heterogeneity of patients suffering from mental illness. Molecular
differences associated with such heterogeneity were recently
highlighted in a postmortem study aimed at examining genes
involved in stress and inflammation.111 Fillman et al.111 performed
postmortem gene expression analyses with Stanley Array Cohort
frontal/prefrontal cortex samples (34 BD, 35 schizophrenia and 35
control). Using eight markers of inflammation (Serpin Family A
Member 3, IL-1, IL-1R1, IL-6, IL-8, IL-18, TNF and Prostaglandin-
Endoperoxide Synthase 2), the authors were able to cluster the
samples into a high inflammation subgroup consisting of 16
samples with schizophrenia (46%), 10 samples with BD (29%) and
9 controls (26%), and a low inflammation subgroup consisting of
19 samples with BD, 20 samples with schizophrenia and 25
controls. The samples also were clustered into high and low stress
groups on the basis of the expression of several glucocorticoid
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signaling-related markers. The stress and inflammation markers
were further combined to yield a high stress/inflammation
subgroup and a low stress/inflammation subgroup with the
former consisting of 46% of the schizophrenia group, 32% of the
BD group and 18% of the controls. In addition, a microarray
analysis demonstrated that 57 genes were differentially expressed
between the high inflammation/stress subgroup of psychiatric
samples and the low inflammation/stress subgroup of controls. A
pathway analysis of these 57 genes identified a network of
differentially expressed genes involving immune, growth factors,
inhibitory signaling and cell death factors.111 Thus, a robust
immune activation in the brain does seem to be occurring in
subgroups of patients with BD and schizophrenia. More recently,
Clark et al.112 compared the postmortem mRNA expression of
various cytokines in ventrolateral prefrontal cortical samples from
patients with depression not otherwise specified to matched
controls. Unexpectedly, this study showed that the expression of
TNF, IFN-γ, IL-13, IL-33, IL-12 and of Chemokine (C-C Motif) Ligand
2 (CCL-2), was significantly decreased in the samples from
depressed patients. Furthermore, these findings were correlated
with evidence of a compromised kynurenine pathway in the same
samples. Taken together, these studies suggest that the important
variations in expression levels of inflammation-related molecules
and pathways measured in postmortem brain samples potentially
reflect the clinical heterogeneity of samples analyzed, both
between and within diagnoses.

Microglia
Microglia are the resident immune cells of the brain (Figure 2). In
their ‘resting’ state, these macrophages display a ramified
phenotype and are actively implicated in neuronal plasticity.113

Upon immune activation, microglia release pro-inflammatory
cytokines as well as other factors, such as glutamate, chemokines
and growth factors, and can undergo graded morphological
changes leading up to a highly motile ameboid phenotype.114,115

Other types of macrophages can be found in the brain, such as
infiltrated monocytes and perivascular macrophages, both of
which are highly responsive to alterations of the blood–brain
barrier integrity in pathological conditions. The best way to
distinguish these different cell populations in postmortem brain
samples remains the observation of their fine morphological
properties and spatial distribution in immunostained tissues.116

With this approach, it is particularly easy to distinguish microglia
from perivascular macrophages, as the former occupy the
parenchyma in non-overlapping domains, whereas the latter are
clearly associated with blood vessels.114,115 Although many
macrophage-specific markers have been identified, it is currently
impossible to differentiate macrophage cell populations based on
the expression of these markers alone. The scavenger receptor
CD163 may represent an exception, as it is more highly expressed
by perivascular macrophages than microglia.117

Few studies have examined microglia/macrophages in post-
mortem samples from individuals having suffered from mood
disorders. Steiner et al.118 provided the first evidence suggesting
increased microglial activation in psychiatric illnesses. These
authors examined the immunohistochemical distribution of
human leukocyte antigen-DR, a major histocompatibility complex
(MHC class) II cell surface receptor specifically expressed by
macrophages, in samples of dorsolateral prefrontal cortex, ACC
and mediodorsal thalamus from individuals having died with
MDD, BD and schizophrenia as well as matched non-psychiatric
controls.118 They observed increased densities of human leuko-
cyte antigen-DR-immunoreactive (-IR) microglial cells in all the
three brain regions. Interestingly, this observation concerned
samples from individuals having died from suicide, irrespective of
diagnosis.118 The same group subsequently published another
postmortem study showing increased microglial quinolinic acid-IR
within ACC subregions of severely depressed individuals com-
pared with matched controls.119 More recently, support to the
notion of depression-associated microglial/immune activation
in the brain was provided by independent postmortem

Figure 2. (Torres-Platas et al.116): Four main IBA1-IR microglial phenotypes are observed in human dorsal anterior cingulate cortex (ACC).
Representative examples are illustrated here for the white matter. (a) Ramified microglial cell body and highly ramified processes. (b) Primed
microglia display a wider cell body compared with the ramified phenotype. (c) Reactive microglia present an ameboid-shaped rounder cell
body with a few ramified processes, whereas (d) ameboid microglia display a characteristic ameboid-shaped cell body extending one or two
unramified processes (top panel) or are completely devoid of processes (bottom panel). Scale bars, 10 μm. IR, immunoreactive.
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investigations focused on other microglial markers. On the basis of
previously established morphometric criteria,116 the first of these
studies assessed through stereology the relative abundance of
microglial phenotypes immunostained for the macrophage-
specific calcium-binding protein IBA1 in the dorsal ACC white
matter of depressed suicides and matched sudden-death
controls.120 Although this comparison suggested a relative
increase of primed microglia in depressed suicides, the most
striking observation was that samples from depressed suicides
displayed significant more blood vessels surrounded by a high
density of IBA-IR macrophages than matched controls.120 This may
reflect increased recruitment of circulating bone marrow-derived
monocytes in depressed suicides, a phenomenon that has been
associated in mice with anxiety-like behavior in response to
repeated social defeat stress.121 The distinction between resident
microglia cells and monocyte-derived macrophages is important
because the latter have been more closely linked with neurotoxi-
city, for instance producing 32 times more QA than resident
microglia.122

The postmortem study conducted concomitantly by Schnieder
and colleagues suggested that the accumulation of macrophages
in the perivascular space is not specific to the ACC. Indeed, their
stereological investigation of IBA1 and of CD68-IR cells in the
prefrontal white matter also showed an increase in perivascular
macrophages in suicides relative to controls.123 In this study, the
group of cases was composed of individuals who had suffered
from affective disorders or from schizophrenia, and the results
were significant only in the subgroup of patients who died by
suicide. It remains to be explored whether this phenomenon
occurs solely in the white matter or whether the blood vessels in
neocortical gray matter are similarly affected. Moreover, it will be
important to determine whether the perivascular space is affected
in this manner only in regions associated with mood disorders and
suicide, such as the ACC and PFC, or whether this is a more global
phenomenon in the brain.
Glutamate released by activated microglia may induce excito-

toxicity and contribute to neuronal damage and/or dysfunction. A
recent proton magnetic resonance spectroscopy study reported
elevations in glutamate in the basal ganglia and dorsal ACC in
patients receiving treatment with IFN-α, and higher levels of
glutamate correlated with increases in depressive symptoms
during the course of treatment.124 Hashimoto et al.125 reported
increased levels of glutamate in the frontal cortex of BD patients
and several studies identified increases in the glutamine+gluta-
mate (GLX) signal in multiple brain regions in BD patients.126,127

The GLX signal is constituted predominantly by intracellular
glutamate and glutamine and is thought to reflect the total
glutamatergic pool available for neurotransmission in the form of
glutamate or glutamine.126 The smaller number of studies that
distinguished between glutamate and glutamine, generally
suggested elevations in glutamate in patients with BD.127 Thus it
is unclear how best to interpret the increase in GLX, but the data
are at least consistent with glutamate-induced neuronal
hyperactivation.128

Astrocytes
Astrocytes (Figure 3) have attracted much attention in the search
for etiological factors in depression.129 Consistent with the
changes described above concerning macrophages in ACC white
matter, morphometric data generated from the analysis of
reconstructed Golgi-stained cells indicated that fibrous astrocytes
in this cortical compartment displayed a hypertrophic phenotype
in depressed suicides (MDD and BD) relative to controls.130 This
observation may be indicative of mild astrogliosis in response to
local low-grade neuroinflammation. In this regard, it is puzzling
that postmortem studies examining the expression (gene and
protein) of GFAP, an astrocyte-specific intermediate filament

known to be upregulated with inflammation, have consistently
found it to be significantly decreased in depressed cases vs
matched controls.99,131,132 Initially described in prefrontal cortical
areas, this downregulation was also recently reported in
subcortical regions implicated in depression, but not in other
unrelated cortical areas (for example, primary and visual motor
cortex), suggesting that specific networks of astrocytes are
affected in mood disorders, and that downregulation of GFAP is
not a brain-wide phenomenon.99

Beyond GFAP, studies have found that other astrocyte-specific
genes such as the tropomyosin-related kinase B receptor (TrkB.1)
isoform133 and connexins 43 and 30 (refs 134,135) are significantly
downregulated in the orbitofrontal and dorsolateral PFC of suicide
completers, respectively. The observation of widespread astrocytic
gene downregulation could conceivably reflect a loss of
astrocytes. This would be consistent with decreases in densities
of GFAP-IR cells reported in prefrontal cortical samples from
depressed patients.131 Alternatively, these changes could occur
without cell loss and instead be owing to stress-induced structural
changes in astrocytes.136 Although the underlying mechanisms
remain to be elucidated, either a loss or a significant atrophy of
astrocytes within fronto-limbic brain regions undoubtedly signifies
that communication is altered within these networks in mood
disorders and suicide. This likely affects the immune functions of
these glial cells, and certainly compromises their essential role in
the glutamatergic tripartite synapse.
Glutamate reuptake is critical for regulating glutamate concen-

trations in the synaptic cleft and maintaining normal synaptic
activity, and thus an impairment in glutamate transport may result
in excessive or dysregulated glutamate receptor signaling. Under
physiological conditions, astrocytes prevent excitotoxicity by
maintaining extracellular glutamate in the micromolar range via
the high-affinity glutamate transporters, excitatory amino acid
transporter (EAAT) 1 and EAAT2.137 However, this balance may be
disrupted by oxidative stress or inflammation leading to necrosis
and/or apoptosis through excessive stimulation of glutamate
receptors.49 Several researchers42–47 have shown that activated
microglial cells release glutamate via the system xc− cystine/
glutamate transporter (Xc−) that exchanges cysteine for gluta-
mate, and that this process may be accentuated by inflammation-
induced downregulation of the astrocytic EAAT1 and/or reversed
function (that is, glutamate release) of EAAT2, potentially leading
to excitotoxicity.48,49

A microarray analysis of samples of the ACC (BA24) and the
dorsolateral PFC (BA9 and BA46) from people with MDD showed
reduced expression of the genes coding for the high-affinity

Figure 3. Golgi-stained astrocytes in the human dorsal anterior
cingulate cortex (dACC). These cells extend tortuous varicose and
thorny processes radiating in all the directions and often are
observed to contact adjacent blood vessels, which are also silver-
impregnated.
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Figure 4. Representative micrographs of immunostained oligodendrocyte precursor cells (PDGFRα- and NG2-immunoreactive),
oligodendrocyte-lineage cells (Olig2-immunoreactive) and mature oligodendrocytes (Nogo-A-immunoreactive) in ventromedial prefrontal
cortex white matter at low (left column) and high (right column) magnifications. Note the characteristic distribution of Nogo-A+ mature
oligodendrocytes along axonal fibers.

Neuropathology of mood disorders
N Mechawar and J Savitz

7

Translational Psychiatry (2016), 1 – 16



glutamate transporters glial excitatory amino acid EAAT1 and
EAAT2 along with decreased expression of glutamine synthetase,
the enzyme that converts glutamate to glutamine.138 These results
were subsequently extended to the locus coeruleus139 and
hippocampus.140 It is not immediately clear from these studies
whether the decrease in glutamate transporter expression was
driven by a reduction in glial cell number. However, at least in the
case of the locus coeruleus, the depression-associated decrease in
EAAT1 and EAAT2 expression was found to be present when
expression was normalized to the number of astrocyte cells (but
not oligodendrocytes), suggesting an astrocyte-specific
dysfunction.141

Regarding BD, the picture appears to be more complicated.
Both mRNA and protein levels of EAAT1 were reported to be
increased, whereas EAAT2 mRNA and protein levels were
decreased relative to controls in samples from the frontal cortex
(BA10).142 As ∼ 90% of glutamate is removed from the synapse by
EAAT2, Rao et al. hypothesize that their results remain largely
consistent with the premise that BD is characterized by
hyperglutamatergic signaling.142 Of note, riluzole, which increases
the expression of EAAT2, has shown some efficacy in treatment-
resistant depression and as adjunctive therapy for bipolar
depression in mostly open-label studies.126,143

Another study found decreased expression of the neuronal
transporters, EAAT3 and/or EAAT4 but not EAAT1 or EAAT2 in the
striatum of MDD and BD (as well as schizophrenia) samples
relative to controls.144 The decrease in EAAT3 and EAAT4
expression may diminish the capacity of the synapse to clear
glutamate, resulting in increased levels of synaptic glutamate in
mood disorders.144 Supporting the potential relevance of EAAT3
function to depression and psychosis, a deletion of the solute
carrier family 1 member 1 (SLC1A1) gene that codes for EAAT3
was found to co-segregate with psychosis (BD or schizophrenia) in
a large five-generation pedigree, increasing disease risk by 18-
fold.145 Similarly, both rare and more common variants of the
genes coding for EAAT1 and EAAT2 have been reported to be
associated with BD.146

Interestingly, autoantibodies to the water channel, aquaporin-4
(AQP4) which are usually associated with neuromyelitis optica,
have also been reported in one case of schizophrenia147 and a
case of treatment-resistant depression.148 EAAT2 and AQP4 exist
in astrocytic membranes as a macromolecular complex and the
binding of AQP4 IgG has been shown to cause the rapid
internalization of both AQP4 and EAAT2.149

After synaptic uptake into astrocytes by EAATs, glutamate is
converted into glutamine by glutamine synthetase and glutamine
is, in turn, delivered to neurons where it is re-converted into
glutamate. Thus, the expression of glutamine synthetase may
affect glutamate cycling and availability to neurons. QA not only
inhibits the uptake of glutamate by astrocytes but inhibits
astroglial glutamine synthetase150 perhaps explaining previous
reports of decreased glutamine synthetase expression in the
amygdala and PFC of suicide completers.138,151

Oligodendroglia
Relative to other cell types, oligodendroglia (Figure 4) are
particularly vulnerable to inflammation and/or oxidative stress-
induced excitotoxicity during development in both rodents and
humans.152,153 Lipopolysaccharide is toxic to oligodendrocytes
when they are co-cultured with microglia, and in rodents,
administration of endotoxin preferentially damages oligodendro-
cytes; an effect that may be mediated by TLR4 as transgenic mice
lacking TLR4, through which endotoxin primarily acts, are less
vulnerable to oligodendrocyte damage.154,155 Oligodendroglia in
turn are capable of modulating immune function by, for instance,
producing CCL-2 (previously known as MCP-1) and IL-1 post injury
to open up the blood–brain barrier and recruit peripheral immune

cells into the brain parenchyma as well to redirect themselves to
areas of demyelination.156,157 Interestingly, inflammation-
associated white matter damage is associated with pre-term
births, and the risk for BD putatively increases monotonically with
(shorter) length of gestation.158 Nevertheless, pre-term birth is
more generally associated with a variety psychiatric and
neurodevelopmental disorders, and thus the correlation between
pre-term birth and risk for mood disorders is not necessary
indicative of an underlying inflammatory etiology.
Reductions in numbers or density of glia cells—most likely

oligodendroglia cells are one of the most prominent findings in
postmortem mood disorder samples.1,159 A reduction in the
number of glial cells together with an increase in neuronal density
initially was found in the subgenual ACC in BD and MDD samples,
although the identity of the abnormal glia subtype could not be
determined with the nonspecific staining methods applied.160

These nonspecific glia cell abnormalities were extended to the
supragenual ACC, BA9 of the PFC, the amygdala and the
entorhinal cortex. Cotter et al. reported a 22% decrease in the
glial cell density of layer VI of the supragenual ACC and 30%
decrease in the glial cell density in layer V of BA9 in MDD, but not
BD, samples.161,162 On the other hand, after a stereological analysis
of Nissl-stained tissues, Hercher et al.163 found no difference in
glial densities nor in neuronal densities and average neuronal
soma size between supracallosal ACC (BA24a) samples from MDD
individuals vs matched controls. However, those samples from
MDD subjects who had also been alcohol dependent had
significantly higher densities of glial cells in this region compared
with the samples from controls or from MDD subjects who were
not alcohol dependent.163 Further, in the BA9 samples derived
from BD subjects, Rajkowska et al.164 did find evidence for a
decrease in the density (16–22%) of glial cells in layer III in
conjunction with glial cell enlargement. These discrepancies in the
literature may be related to various confounders, including
treatment with lithium and valproic acid. Indeed, Price and
colleagues reported reductions in glial cell density in the
amygdala (and to a lesser extent the entorhinal cortex) of MDD
samples but not in the BD samples.165 However, further analysis
showed that the reduction in glial cell density was in fact present
in the untreated BD cases.165

Follow-up studies using methods that allowed for the
differentiation of oligodendrocytes from other glial cell types,
specifically reported reduced numbers of oligodendroglia in layers
III and VI of BA9 in BD.166,167 Similarly, a 19% reduction in
oligodendrocyte density in the BD samples that reached trend-
level significance was found in the amygdala,168 while signs of
necrosis or apoptosis-related damage to oligodendrocyte cells
have been observed in the BD samples from the caudate.169

Further, immunoreactivity of myelin basic protein, a surrogate
marker of myelination that is expressed by oligodendroglia, was
decreased in layer I of the hippocampus in female, but not male
subjects with BD.170 In the case of MDD, the staining of deep
white matter in the dorsolateral PFC was reported to be
significantly less intense in MDD subjects compared with
controls.171 Subsequent studies using specific staining methods
or flow activated cell sorting methods, reported reduced numbers
of oligodendroglia cells in the amygdala168 and frontopolar
cortex.172

These morphological studies receive support from studies that
have measured oligodendrocyte cell-related gene and protein
expression changes in mood disorders. For instance, Bahn and
colleagues performed a quantitative PCR analysis of BA 9 tissue,
finding a significant reduction in mRNA expression of key protein
markers of myelination and oligodendrocyte function.173 Specifi-
cally, the expression of proteolipid protein 1, myelin associated
glycoprotein, oligodendrocyte specific protein, myelin oligoden-
drocyte glycoprotein, and transferrin (TF) was reduced by 2- to 4-
fold in the BD patients relative to psychiatrically healthy controls,
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while the transcription factors, OLIG2 and SOX10, which are
involved in oligodendrocyte differentiation and maturation, were
downregulated by 2- to 3-fold in BD.173 Although this decrease in
oligodendrocyte-related gene expression conceivably could result
from cell loss, not all of the oligodendrocyte-related genes were
downregulated, suggesting that these abnormalities are more
likely to reflect cellular dysfunction than cell death.173

Because oligodendrocytes are responsible for the myelination
of axons, the abnormalities of oligodendroglia observed post-
mortem appear congruent with the results of diffusion tensor
imaging studies, which have produced evidence of structural
abnormalities of white matter tracts connecting the prefrontal
cortex with limbic nuclei in MDD174 and BD.175–177 Interestingly, in
patients with BD, a recent study reported a significant positive
association between several pro-inflammatory cytokines and
radial diffusivity, and an inverse association between these
cytokines and fractional anisotropy, leading Benedetti et al.178 to
hypothesize that inflammation is associated with demyelination or
dysmyelination in BD. Oligodendrocytes are also involved in the
turnover of N-acetylaspartate, a marker of neuronal integrity.
Males with BD were reported to display a reduced concentration
of (N-acetylaspartate), in the dorsolateral PFC (BA8, BA9, BA10 and
BA46; ref. 179) and similar findings have been published in the
pediatric BD literature.180,181 Consistent with these data, N-
acetylaspartate levels increased significantly in MDD patients after
treatment with ECT.182

Reductions in numbers or density of oligodendroglia in mood
disorder samples, postmortem, also receives support from the
preclinical literature. In mice, ablation of nerve/glial antigen 2
(NG2)-expressing oligodendrocytes or a chronic social stress-
induced decrease in their density, leads to an impairment of
astrocytic glutamate reuptake and depressive-like behaviors
which can be rescued by repopulation with endogenous
oligodendrocyte progenitor cells.183

Given the evidence discussed above for mood disorders, it is
tempting to draw parallels with the psychopathological features
observed in multiple sclerosis (MS). Indeed, MS is a chronic
neuroinflammatory disorder that is characterized by a compro-
mised blood–brain barrier, infiltration of immune cells, and loss of
myelin and oligodendrocytes.184 Interestingly, MDD co-morbidity
is high in MS, with a lifetime prevalence rate of about 50%, that is,
3- to 5-fold that of the general population.185 Similarly, BD in MS
patients is twice as frequent as in the general population.185

Furthermore, MS patients can also present pseudobulbar affect
(emotional incontinence), with prevalence estimates varying
widely in the literature (6.5–95%).186 Pseudobulbar affect, which
is often misdiagnosed as MDD or BD, is characterized by
inappropriate and uncontrolled crying and/or laughing, and is
thought to result from a dishinibition within the corticopontine-
cerebellar circuits.187 Given these epidemiological and clinical
observations, it can be speculated that the altered connectivity
arising from neuroinflammation-related oligodendroglial loss and
myelination deficits may represent a common path leading to
disorders of mood and affect.

Neurons
The NMDA receptor complex. The NMDA receptor is membrane-
bound ligand-gated Ca2+ channel that is assembled from four or
five subunits with an obligatory NR1 subunit associated with
different combinations of NR2A–D subunits. The NR1 gene is
alternatively spliced, producing eight different isoforms of the NR1
subunit, which combine with different NR2 and NR3 subunits to
produce NMDA receptors with distinct pharmacological proper-
ties. Activation of the receptor requires multiple signals, that is,
glutamate binding, AMPA receptor-mediated depolarization of the
postsynaptic membrane, and binding of glycine or D-serine to the
NR1 subunit.188 The NMDA receptors are found both in the

synapse and in extrasynaptic locations on neurons but are
predominantly expressed in the postsynaptic membrane where
they interact with an intracellular protein complex termed the
postsynaptic density (PSD).
Pro-inflammatory cytokines such as IL-1, IL-6 and TNF can

enhance the release of glutamate from presynaptic neurons and
increase NMDA receptor currents in postsynaptic neurons
potentially leading to excitotoxicity.189 For instance, IL-1 can
enhance NMDA signaling by inducing NR1 (ref. 190) and NR2B (ref.
191) subunit phosphorylation. In neuronal cell cultures, the
administration of IFN-α caused dendritic atrophy, an effect that
was partially mediated by the NR2A receptor.192 Similarly, using
whole-cell patch-clamp electrophysiological recordings, Di Filippo
et al.193 reported that IFN-β, a medication that blocks type I
interferon receptors and is used to treat infectious and
autoimmune diseases such as MS, reduces striatal excitatory
postsynaptic potentials through the NR2A NMDA receptor
subunit. Further, prenatal inhibition of the kynurenine pathway
enzyme, kynurenine monooxygenase, was shown to cause a
significant increase in levels of NR2A, NR2B and the postsynaptic
NMDA receptor complex protein postsynaptic density protein 95
(PSD-95) at postnatal day 21 together with neuronal excitability
and long-term potentiation in the hippocampus.194

Regarding postmortem studies, a western blot analysis showed
approximately 50% reductions in NR2A, NR2B (but not NR1) as
well as the anchoring protein, PSD-95, in the anterior region of the
PFC of MDD samples.195 In contrast, elevations in NR2A and NR2C
and PSD-95 were reported by the same group to be elevated in
the locus coeruleus and lateral amygdala, respectively.196,197 A
more recent study using quantitative PCR in a large sample of 53
MDD subjects and 32 controls reported increased expression of all
the NMDA receptor subunit genes in BA9/BA46 of depressed
females, an effect that was accentuated in the individuals who had
committed suicide.198

In BD, in situ hybridization studies generally have reported
decreased expression of NR1. Specifically, decreased expression of
NR1 was observed in the Cornu Ammonis 3 (CA3) and
hippocampal subiculum of BD samples with a history of
psychosis,199 while decreased expression of synapse- associated
protein 102 (SAP102), NR1 and NR2A (but not NR2B, NR2C and
NR2D) was independently reported in hippocampal samples from
individuals with BD (but not schizophrenia) relative to controls.200

Partially consistent with these data, NR1 (but no other NMDA
subunit) expression was decreased in the oriens layer of CA1 but
not CA2/3.201 Regarding the frontal cortex, NR1 expression was
reported to be decreased in the dorsolateral PFC of MDD, BD and
schizophrenia samples vs controls.202 Similarly, decreased mRNA
and protein levels of NR1 and NR3A (but not NR2A or NR2B)
together with increased concentrations of inflammatory and
excitotoxicity markers such as IL-1, nuclear factor-κB and inducible
nitric oxide synthase were reported in BD samples relative to
controls.108

In aggregate, this literature is suggestive of abnormal glutama-
tergic signaling in depression. Although the changes in expression
of the NMDA receptor subunits could conceivably result from the
direct actions of pro-inflammatory cytokines, there may be many
other factors driving these changes such as compensatory up- or
downregulation of receptors as a result of astrocyte dysfunction-
mediated decreases or increases in glutamate levels.

Vesicular glutamate transporters. The kynurenine metabolite,
xanthurenic acid, which is produced by the transamination of
3HK (Figure 1) and is upregulated in the brain by
lipopolysaccharide,203 is an endogenous inhibitor of vesicular
glutamate transporters (VGLUT).204 The vesicular glutamate
transporters are responsible for loading glutamate into synaptic
vesicles at excitatory neurons thereby regulating presynaptic
glutamate release.205 VGLUT1 primarily is expressed in the
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cerebral cortex, hippocampus and cerebellar cortex, whereas
VGLUT2 transcripts are expressed subcortically (including in
dopamine neurons) and in layer V of the cerebral cortex.206,207

VGLUT3 is expressed in the subsets of serotonergic, cholinergic
and GABAergic interneurons.206

Eastwood and Harrison reported increased VGLUT1 expression
in the supragenual ACC (BA24) in BD, a result they hypothesize is
indicative of abnormally increased glutamate neurotransmission,
rather than, or in addition to, alterations in glutamate metabolism
or cycling.208 Consistent with these data, Gray et al.198 reported
increased VGLUT1 expression in the dorsolateral PFC of female
MDD samples using quantitative PCR. This abnormality may be
region-specific since decreased expression of VGLUT1 also has
been reported in mood disorders. Using in situ hybridization,
Uezato et al.206 reported decreased VGLUT1 mRNA expression in
both MDD and BD in the entorhinal cortex as well as decreased
VGLUT2 expression in MDD, (trending for BD) in the middle
temporal gyrus. Consistent with these data, decreased expression
of VGLUT1 was reported in layer V of both MDD and BD samples
from the dorsolateral PFC (BA9).209 A reduction in VGLUT1/2
mRNA may be due to structural loss of presynaptic terminals or
alternatively a functional decrease in glutamate release while
conversely, increased VGLUT expression may be indicative of
greater numbers of glutamate neurons and/or greater presynaptic
innervation and glutamate neurotransmission.198,206

GABAergic interneurons. Structural and/or functional changes to
GABAergic interneurons are one of the most robust postmortem
findings in BD.1 For instance, in the rostral ACC, Woo et al.210

found a reduction in the density of NR2A-expressing GABAergic
interneurons in subjects with BD (and schizophrenia) relative to
controls and in a separate study, the density of GABAergic
neurons expressing the GluR5 subunit of the kainate receptor was
found to be decreased by 40% in layer II of this region.211 Similarly,
the density of calbindin (CB)-expressing GABAergic neurons in
layer II of the supracallosal gyrus was reduced by 33% in BD212

and in the dorsolateral cortex, the density of glutamic acid
decarboxylase 67 (GAD67) mRNA-containing (GABAergic) neurons
in layers II through V of BA9 was decreased by approximately 25–
33%.213 These data are supported by additional studies reporting
decreased expression of GABAergic neuron-associated proteins
such as GAD67 in both cortical and subcortical regions,214–217 as
well as a meta-analysis showing a reduction in the density of CB-
expressing neurons in layer VlI of BA9 in BD.218 Similarly, MDD
appears to be characterized by reduced density of GABAergic
interneurons labeled with calretinin and/or CB in the dorsolateral
PFC,219 occipital cortex220 and auditory cortex.221

These data suggest that GABAergic neurotransmission in at
least a subset of local neuronal circuits is attenuated; however, the
functional implications are not well understood. In addition to
disinhibition of pyramidal neurons, other studies demonstrate that
parvalbumin-containing interneurons are critical for the genera-
tion of gamma oscillations,222,223 which are implicated in normal
cortical function (for example, working memory224). Expression of
mRNA for neuronal activity-regulated pentraxin, a protein that is
secreted at presynaptic glutamate synapses that terminate on
parvalbumin-containing interneurons, is reduced in the dorsolat-
eral PFC of subjects with BD,225 suggesting that excitatory drive
onto this interneuron subclass is disrupted which, in turn, could
lead to a disruption of gamma oscillations and associated cortical
function.
The mechanisms through which inflammation specifically

affects the structure and/or function of GABAergic interneurons
is not yet clear. However, there are preclinical data showing that
inflammation impacts GABAergic circuits. Multiple rodent studies
have reported that prenatal exposure to lipopolysaccharide or
polyinosinic: polycytidylic acid (poly I:C) is associated with a
reduction in the density of parvalbumin and/or GAD67-staining

neurons in the hippocampus (reviewed in ref. 226). Potentially
consistent with these data, Clements et al.227 found a significant
reduction in parvalbumin-staining interneurons in layer II of the
motor cortex in MS patients vs controls. Stress may have a
modulating role in the relationship between inflammation and
GABAergic function. For instance, maternal separation stress in
rats causes a reduction of GABAergic parvalbumin-expressing
interneurons in the PFC; an effect that was reported to be blocked
by intracerebroventricular administration of the anti-inflammatory
cytokine, IL-10.228 Similarly, adult offspring born to viral mimetic
poly(I:C)-exposed mothers who were subjected to unpredictable
subchronic stress during peripubertal development displayed
significant reductions of parvalbumin-expressing interneurons in
the dentate gyrus.229

In a different vein, T. gondii infection was shown to shift the
distribution of GAD67 expression such that GAD67 becomes
diffusely located throughout the neuropil rather than clustering
on presynaptic termini where it catalyzes GABA synthesis in the
brain.230

CAVEATS
Cause or effect?
Although we have emphasized the potentially detrimental effects
of neuroinflammation on the brain, microglial cells also exert
neuroprotective effects. Toll-like receptor signaling caused by
cellular damage or infectious agents triggers a rapid activation of
microglial cells, clearing away debris, promoting angiogenesis,
neurogenesis, increasing the recruitment of oligodendrocyte
progenitor cells, favoring remyelination and conferring
neuroprotection.231 However, without the rapid clearance of
myelin debris or toxins from the brain, microglial cells may
instead mount a detrimental pro-inflammatory response, resulting
in demyelination, synaptic dysfunction and ultimately
neurodegeneration.231–233 Thus a delicate equilibrium between
under- and overactivation of microglial cells may determine
whether the conditions conducive to neuronal repair or neuronal
damage, predominate. There are likely to be many mechanisms
beyond removal of debris and oligodendroglia-genesis underlying
these neuroprotective effects. For instance, activated macro-
phages and microglial cells express high-affinity glutamate
transporters and glutamine synthetase during both acute and
chronic central nervous system inflammation, potentially partially
compensating for astrocytic dysfunction.234 Mice given intraper-
itoneal injections of 1.0 mg kg− 1 of endotoxin for four consecutive
days to globally activate central nervous system microglia, are
protected from a subsequent traumatic brain injury challenge235

by microglia-mediated stripping of inhibitory GABAergic synapses,
which facilitates NMDA receptor signaling allowing for greater
expression of neurotrophic and anti-apoptotic molecules such as
brain-derived neurotrophic factor and B-cell lymphoma 2 (Bcl-
2).236 Thus conceivably, the increased expression of glutamate-
related genes together with the decreased expression of GABA
observed in postmortem tissue in BD may be an adaptive
response to injury rather than a cause of neuronal pathology.

Misattribution of function
The assumption that molecules that are involved in the peripheral
immune response automatically play the same functional role in
the brain is potentially faulty. A case in point is the recent
discovery that a variant in the gene coding for a component of the
complement (CA4) pathway constitutes a risk factor for
schizophrenia.237 Rather than (or at least in addition to) defending
against microbial infection, CA4 in the brain appears to have a key
role in synaptic pruning during neurodevelopment.237 Thus
postmortem alterations in inflammation-related proteins do not
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necessarily reflect an immune-related etiology—at least in the
classical sense of the word.

CONCLUSION AND FUTURE DIRECTIONS
The most prominent morphological abnormalities observed in
postmortem samples from individuals with BD include decreases
in the density and/or number of GABAergic neurons and glial cells.
The literature describing microglial activation in mood disorders is
smaller but appears robust. These data are complemented by
gene expression studies, which are consistent with functional
deficits in myelination, astrocytic glutamate recycling and in the
regulation of inhibitory/excitatory neurotransmission. Immune
processes could conceivably account for these abnormalities,
but with the possible exception of the microglia data it is not
possible to draw a direct link between neuroinflammation and
histopathology. It is likely that there is a great deal of
heterogeneity within the MDD and BD syndromes with respect
to pathophysiology and etiology such that postmortem samples
encompass patients with a range of conditions that appear
clinically related but are neurobiologically distinct. This lack of a
precise and biologically verifiable definition of illness, together
with contrasting experimental approaches presumably contribute
to the inconsistencies observed within the literature. Future
studies should give greater consideration to these factors to better
clarify the possible contribution of neuroinflammation to the
etiology of mood disorders.
It will be particularly importance for future postmortem studies

to be carried out using thoroughly characterized samples, that is,
case and control tissues for which substantial clinical information
is available and complemented retrospectively with psychosocial
data. Moreover, in addition to common tissue-based immunohis-
tochemical and molecular approaches, the field should increas-
ingly take advantage of techniques allowing for single cell
analyses, such as laser capture microdissection and fluorescence-
activated cell sorting. These approaches offer the opportunity to
explore and compare, within a given brain region or circuit, the
epigenetic and molecular profiles of different cellular subtypes
(neurons vs glia, subtypes of neurons and glia, macrophages and
so on). Such characterizations should lead to a more detailed
understanding of the causes and consequences of cerebral
neuroinflammation in mood disorders.
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