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A targeted proteomic multiplex CSF assay identifies
increased malate dehydrogenase and other neurodegenerative
biomarkers in individuals with Alzheimer’s disease pathology
RW Paterson1,9, WE Heywood2,9, AJ Heslegrave3, NK Magdalinou4, U Andreasson5, E Sirka2, E Bliss2, CF Slattery1, J Toombs3,
J Svensson6,7, P Johansson6,8, NC Fox1, H Zetterberg3,5, K Mills1,2,10 and JM Schott1,10

Alzheimer’s disease (AD) is the most common cause of dementia. Biomarkers are required to identify individuals in the preclinical
phase, explain phenotypic diversity, measure progression and estimate prognosis. The development of assays to validate candidate
biomarkers is costly and time-consuming. Targeted proteomics is an attractive means of quantifying novel proteins in cerebrospinal
and other fluids, and has potential to help overcome this bottleneck in biomarker development. We used a previously validated
multiplexed 10-min, targeted proteomic assay to assess 54 candidate cerebrospinal fluid (CSF) biomarkers in two independent
cohorts comprising individuals with neurodegenerative dementias and healthy controls. Individuals were classified as ‘AD’ or ‘non-
AD’ on the basis of their CSF T-tau and amyloid Aβ1–42 profile measured using enzyme-linked immunosorbent assay; biomarkers of
interest were compared using univariate and multivariate analyses. In all, 35/31 individuals in Cohort 1 and 46/36 in Cohort 2
fulfilled criteria for AD/non-AD profile CSF, respectively. After adjustment for multiple comparisons, five proteins were elevated
significantly in AD CSF compared with non-AD CSF in both cohorts: malate dehydrogenase; total APOE; chitinase-3-like protein 1
(YKL-40); osteopontin and cystatin C. In an independent multivariate orthogonal projection to latent structures discriminant analysis
(OPLS-DA), these proteins were also identified as major contributors to the separation between AD and non-AD in both cohorts.
Independent of CSF Aβ1–42 and tau, a combination of these biomarkers differentiated AD and non-AD with an area under curve
(AUC) = 0.88. This targeted proteomic multiple reaction monitoring (MRM)-based assay can simultaneously and rapidly measure
multiple candidate CSF biomarkers. Applying this technique to AD we demonstrate differences in proteins involved in glucose
metabolism and neuroinflammation that collectively have potential clinical diagnostic utility.
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INTRODUCTION
Alzheimer’s disease (AD) is the most common major neurode-
generative dementia with a prevalence of epidemic proportions
expected in the coming decades.1 Biomarkers are increasingly
utilised for clinical diagnosis2 and are essential for diagnosis in the
preclinical phase, which may begin 20 years or more before
symptom onset.3 Molecular biomarkers currently used in clinical
research diagnostic criteria for AD include amyloid positron
emission tomography imaging, and cerebrospinal fluid (CSF)
β-amyloid 1–42 and tau, which reflect the key hallmarks of AD
pathology, that is, amyloid plaques and neurofibrillary tangles.3,4

Although these biomarkers can distinguish AD pathology from
non-AD pathology with reasonable sensitivity and specificity,5

there remains a need for new biomarkers,6 including those
that can detect pathological changes before overt neuronal
death; correlate with the progression of neurodegeneration for
clinical trials; explain phenotypic diversity;7 and allow for accurate
prognostication.

Over recent years, a large number of candidate biomarkers
have been identified, particularly in CSF, reflecting a range of
pathophysiological processes including cholesterol metabolism,
neuroinflammation and amyloid processing.6 However, to date
few, if any, have been adopted in clinical practise. This is, in part,
because of the time taken to develop suitable immunoassays;
availability of biomarker multiplex panels; replicability of immu-
noassays, with very few novel biomarkers being successfully
validated in large independent cohorts.8 Mass spectrometry can
measure a large number of potential biomarkers (reviewed by
Kroksveen et al.9 and Brinkmalm et al.10) and therefore has
considerable potential utility for the identification of new
biomarkers, and for use in clinical practice. However, most mass
spectrometry studies in AD have largely focused on biomarkers for
which there is already an immunoassay;11 and, although mass
spectrometry has considerable potential clinical utility, this has
been limited in part due to the lack of a streamlined, cost-effective
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pipeline to rapidly test large numbers of potential biomarkers
concurrently.
Recently, our group and others have developed targeted

proteomics methods using liquid chromatography–tandem mass
spectrometry to multiplex scores of peptides in a single rapid CSF
assay, which has low technical variability11 and relatively low cost.
We have applied this to clinical cohorts of patients with
Parkinson’s disease and Dementia with Lewy Bodies,12,13 and a
previous study has used similar technology to assess CSF
biomarkers of progression in a small number of AD subjects
longitudinally.14 Such assays allow quantification of proteins15

with high reproducibility16 and thus have potential utility in
facilitating the rapid validation of biomarkers in clinical cohorts
overcoming a bottleneck in biomarker development.
The aims of this study were to (a) evaluate the feasibility of this

rapid ‘one pot’, multiplexed, targeted proteomic assay to measure
biomarkers of interest in clinical cohorts of individuals with AD,
other degenerative diseases and healthy controls and (b) explore
differences in novel biomarker concentrations between indivi-
duals with AD and non-AD classified according to their CSF tau
and β-amyloid levels.

MATERIALS AND METHODS
Ethics statement
The study was conducted in accordance with local clinical research
regulations and was approved by the local Queen Square Ethics
Committee. Where appropriate, individuals gave informed written consent.

Subjects and CSF collection
Cohort 1. This cohort included 107 individuals, 88 undergoing investiga-
tion for cognitive concerns and 19 healthy age-matched controls without
cognitive concerns. The majority of subjects were from a single memory
centre at Skaraborg hospital in Sweden (n=78) and this cohort has
previously been described in detail.17 A further 29 CSF samples from
individuals with cognitive concerns from another single memory centre in
Sweden were included. Healthy control participants had an lumbar puncture
for research purposes only; they were asymptomatic spouses of affected
individuals or healthy controls without subjective cognitive concerns.

Cohort 2. This cohort included 92 individuals assessed at the Specialist
Cognitive Disorders Service at Queen Square, London, UK between 2011
and 2014. All subjects had a clinical CSF examination as part of their
diagnostic work-up. Twenty-six asymptomatic controls (spouses of research
participants) were also included; these individuals had no cognitive concerns

Figure 1. Study design outline (univariate analysis). AD, Alzheimer’s disease; CSF, cerebrospinal fluid; ELISA, enzyme-linked immunosorbent
assay; LC-MS, liquid chromatography-mass spectrometry.
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and had lumbar punctures for research purposes only. For the patient group,
we recorded the nearest Mini-Mental State Examination (MMSE) score to the
date of the lumbar puncture. Rate of cognitive decline was estimated using
the formula (30-MMSE at time of lumbar puncture/duration of cognitive
symptoms in months). APOE genotype was determined by measuring
peptides corresponding to apoE2, apoE3 and apoE4 in CSF using the
multiple reaction monitoring (MRM)-based liquid chromatography–tandem
mass spectrometry assay as previously described,18 and individuals were
classified as APOE ε4-positive or -negative.

CSF collection and routine biomarker analysis
For all subjects, CSF was collected by lumbar puncture in polypropylene
containers, and was spun at 300 g for 10 min at 4 °C and the supernatant
was frozen in aliquots at − 80 °C within 60 min. CSF levels of β-amyloid
(1–42), T-tau and P-tau were analysed using INNOTEST enzyme-linked
immunosorbent assays (ELISAs) (Fujirebio Europe, Gent, Belgium) accord-
ing to the manufacturer’s protocols.

Neurochemical classification
We classified each individual independent of clinical diagnosis on the basis
of CSF profile. A previous study has shown that a tau/β-amyloid (1–42)
ratio cutoff of 0.52 gives a sensitivity of ~ 93% and specificity of ~ 83% for
AD diagnosed clinically;19 moreover, according to the manufacturer’s
guidelines, a P-tau of 463 gives a sensitivity of 74% and specificity of 85%
for AD compared with other neurodegenerative diseases.20 To ensure that
the neurochemical AD subjects had AD, we used stringent CSF criteria
defined as: tau/β-amyloid (1–42) ratio 41 and P-tau 463; a negative
Alzheimer’s signature CSF profile was defined by Tau/β-amyloid (1–42)
ratio o0.52 and P-Tauo63. As the purpose of this study was to determine
biomarkers that differentiate between established AD and healthy
controls, we excluded individuals with ‘grey zone’ CSF profiles (that is,
those with Tau/β-amyloid (1–42) ratio 40.52 and o1.0 or non-compatible
P-tau) using discovery and replication cohorts.

Mass spectrometry
Targeted proteomics: MRM-based triple quadrupole mass spectral assay. A
multiplexed, 10 min, targeted proteomics assay performed on Waters
ultraperformance liquid chromatography system (Manchester, UK) coupled
to Waters Xevo TQ-S triple quadrupole mass spectrometer, operated in the
MRM mode, was used to detect a panel of 54 biomarkers as described
previously.13 The panel consisted of proteins that were identified from a
literature review (see Supplementary Table 1) and new markers identified
from proteomic profiling described previously including four novel
markers previously found to be elevated in AD and Dementia with Lewy
Bodies compared with controls: malate dehydrogenase (MDH); serum
amyloid A4; GM2-activator protein and prosaposin.13 A standard curve 0–
40 pmols per 100 μl CSF of each peptide was analysed in duplicate at the
end of the run for quantitation and performance standardisation (see
Supplementary Table 1). Twenty nanograms of yeast enolase protein
standard (Sigma, Dorset, UK) and 10–50 pmols heavy labelled peptide
standards (Thermo Scientific, Loughborough, UK) were added to 100 μl of
CSF. CSF was freeze-dried and trypsin-digested as described previously.21 A
single 35 μl injection of each CSF digest was injected on a Waters CORTECS
UPLC C18 + Column, 90 Å, 1.6 μm, 3 mm×100 mm column attached to a
C18+ VanGuard pre-column. Ultra performance liquid chromatography
(UPLC) and mass spectrometry tune conditions were performed as
described previously.22 Dynamic MRM was performed over a 10-min
gradient. Quality control (QC) runs of pooled CSF digests were run in
triplicate at the start of the run and then every 10 injections. A coefficient
of variation (CV) within ± 10% for each QC was considered acceptable. CSF
was spiked with peptides to create standards with average concentrations
of biomarker levels and analysed for intra- and interbatch variation.
Chromatograms were analysed using the Waters Targetlynx software.
Peptides were standardised by either using a spiked heavy labelled
peptide or to a yeast enolase peptide. Absolute levels were obtained from
standard curves. Standard curve linearity of r2 40.9 was achieved for all
calibration curves.23 Data were exported to Microsoft Excel (Microsoft,
Redmond, WA, USA) and GraphPad Prism (GraphPad Software, La Jolla, CA,

Table 1A. Demographics and CSF profiles of individuals from Cohort 1

Neurochemical AD (N= 35) Neurochemical Non-AD (N= 31) AD versus non-AD (P-value)

Sex (% male) 42.9 64.5 0.09
% APOE4 heterozygotes 42.9 22.6 o0.001
% APOE4 homozygotes 25.7 3.2 o0.001
% APOE2 heterozygotes 5.7 19.4 o0.001
Aβ1-42 (pg ml− 1) 453± 147 907± 221 o0.001
T-tau (pg ml− 1)a 654 (505–969) 255 (210–294) o0.001
P-Tau (pg l− 1) 119.7± 72.4 44.5± 12.0 o0.001
Tau/Aβ1-42 ratioa 1.51 (1.25–2.06) 0.25 (0.22–0.34) o0.001

Abbreviations: AD, Alzheimer’s disease; CSF, cerebrospinal fluid. Data are shown as mean± s.d., unless otherwise stated . aLog-transformed for regression
analyses; values quoted as the median (interquartile range).

Table 1B. Demographics and CSF profiles of individuals from Cohort 2

Neurochemical AD (n= 46) Neurochemical Non-AD (n= 36) AD vs Non-AD (P-value)

Age at lumbar puncture 62.9± 8.0 58.5± 8.8 0.2
Sex (% male) 39.1 44.4 0.5
MMSE 20.6± 5.6 26.7± 6.9 o0.001
Duration of cognitive symptoms (months) 36.4± 17.4 NA NA
Rate of cognitive decline (MMSE points per month) 0.36± 0.42 NA NA
% Individuals fulfilling McKhann criteria 95.7 0 o0.001
% APOE ε4-positive 67.4 33.4 o0.001
Aβ1-42 (pg ml− 1) 408± 168 960± 291 o0.001
T-tau (pg ml− 1)a 947 (760–1196) 234.5 (174.5–315.5) o0.001
P-Tau (pg ml− 1) 107.5± 38.12 35.5± 13.2 o0.001
Tau/Aβ1-42 ratioa 2.5 (1.8–4.1) 0.25 (0.19–0.33) o0.001

Abbreviations: AD, Alzheimer’s disease; CSF, cerebrospinal fluid; MMSE, Mini-Mental State Examination; NA, not applicable. Data are shown as mean± s.d.,
unless otherwise stated. aLog-transformed for regression analyses and values quoted as the median (interquartile range).
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USA) for statistical analysis. Intrabatch variation was determined as being
between 3.0 and 5.1% and inter-batch variation being 7.6–8.5% (n=10,
three consecutive days). Investigators were fully blinded to clinical and
neurochemical diagnosis during this analysis.

Experimental design. The experimental design of this study is summarised
in Figure 1. The panel of 54 novel markers was first assessed in cohort 1.
Markers showing significant differences between the AD-positive/negative
groups from this initial analysis were then further assessed in cohort 2.

Statistical analysis
Univariate analysis of proteins of interest. We performed a univariate
analysis of all proteins of interest. We determined which individuals in
Cohort 1 were Alzheimer-positive and which were Alzheimer-negative
based on their CSF neurochemical profile, and compared levels of proteins
determined by targeted mass spectrometry using t-tests between the
positive/negative groups when there were no clear departures from a
normal distribution, and Wilcoxon rank-sum tests for skewed or truncated
data. Proteins showing statistically significant differences between AD-
positive/negative groups in Cohort 1 were then tested in Cohort 2 as a
validation set. All analyses were carried out at a significance level of
Po0.05; to control for the risk of Type 1 error for multiple biomarker
comparisons, results were also controlled using the false discovery rate
(FDR). 'Validated biomarkers' were those found to separate neurochemi-
cally defined AD/non-AD in both data sets at an FDR-corrected significance
level of Po0.05.

Multivariate analysis. Independent of the biomarkers discovered in step 1,
we carried out an analysis of the entire targeted mass spectrometry data
set to determine which markers contributed the most to the separation

between AD and non-AD in each cohort separately. To do this, we used an
orthogonal projection to latent structures discriminant analysis (OPLS-DA)
implicated in the software SIMCA, Umetrics, Sweden, as previously
described,24 classifying subjects on the basis of their AD signature
(positive/negative) CSF. In brief, this is an algorithm that determines the
vector that maximally separates these groups in the multivariate
orthogonal space. Non-normally distributed data were log-transformed
before analysis.
We used receiver operating characteristic curves to determine the

diagnostic utility of the ‘validated’ biomarkers from step 1 using the
‘roctab’ command in Stata Version 12.1 (Stata, College Station, TX, USA)
using the healthy control subjects with a non-AD neurochemical profile
from Cohort 2 as the control group. We finally explored the relationship
between each of the validated biomarkers and the established CSF
biomarkers Tau, P-Tau, and rate of cognitive decline by fitting separate
regression models for each of the ‘Validated’ biomarkers including all
subjects with AD or non-AD CSF in the model, except when exploring
the relationship with cognitive function when only individuals with AD
CSF were included. Linear regression was used to explore the relationship
between novel biomarkers and T-tau, P-Tau, β-amyloid (1–42), MMSE
and rate of cognitive decline. Unless otherwise stated, all analyses were
carried out using Stata V12.1. Graphs were created using GraphPad prism
V5 (Graphpad Software). The correlation matrix was created using
Microsoft Excel.

RESULTS
Comparing neurochemical AD and non-AD subjects
In Cohort 1, 35 individuals fulfilled CSF neurochemical criteria for
AD, and 31 had a non-AD CSF profile. The remaining 41 had an
intermediate profile (that is, Tau/β-amyloid (1–42) ratio40.52 and
o1.0 or non-compatible P-Tau) and were not included in further
analyses. As expected, there were significantly more APOE ε4
carriers in the AD group (Table 1A). Groups were well matched for
sex; the neurochemical AD group was significantly (~4 years) older
than the non-AD group.
In Cohort 2, 46 individuals fulfilled neurochemical CSF criteria

for AD, 44/46 of whom had a clinical diagnosis of AD and thus
fulfilled contemporary (International Working Group (IWG-2)2 and
National Institute of Aging (NIA)4) criteria for AD; the remaining

Table 2A. Univariate analysis comparing biomarkers in AD and non-
AD CSF from Cohort 2

P-value
(cohort 1)

P-value
(cohort 2)

Fold change
in cohort 2

Malate dehydrogenasea 0.005* o0.001* 2.12
Total APOEa o0.001* 0.005* 1.55
Chitinase-3-like protein
1(YKL-40)a

o0.001* o0.001* 1.52

Osteopontina o0.001* o0.001* 1.50
NCAM1 0.03 0.38 1.40
UCLH1 0.003* 0.88 1.30
Cystatin Ca 0.008* 0.003* 1.28
Beta-amyloid 40 o0.001* 0.01 1.28
CNDP1 0.01* 0.03 1.26
V-Set and transmembrane
domain containing protein 2A

0.03 0.06 1.25

Fibrinogen A 0.03* 0.83 1.24
IBP-2 0.007* 0.04 1.20
S100B o0.001* 0.06 1.20
TREM2 0.001* 0.05 1.18
Serum amyloid p-component 0.007* 0.33 1.14
CD166 0.03 0.25 1.12
Pro-orexin o0.001 0.22 1.11
TIMP metallopeptidase inhibitor 1 0.03 0.5 1.05
IGF2 0.005* 0.72 0.97
Glutathione-S-transferase omega-1 0.006* 0.75 0.91
ENPP2 0.05 0.11 0.89

Abbreviations: AD, Alzheimer’s disease; CNDP1, carnosine dipeptidase 1;
CSF, cerebrospinal fluid; FDR, false discovery rate; IBP-2, insulin-like growth
factor-binding protein 2; IGF2, insulin-like growth factor 2; NCAM1, neural
cell adhesion molecule 1; OPLS-DA, orthogonal projection to latent
structures discriminant analysis; TREM2, triggering receptor expressed on
myeloid cells 2; UCLH1, ubiquitin carboxyl-terminal esterase 1. *Denotes a
P-value that survived FDR correction. Bold indicates a biomarker that
differentiated neurochemical AD from non-AD—significant after FDR
correction in test and validation cohorts. Italics indicate a biomarker that
differentiated neurochemical AD from non-AD—significant after FDR
correction in test cohort only. aDenotes biomarkers also identified using
OPLS-DA analysis where subjects were classified neurochemically.

Table 2B. Univariate analysis comparing biomarkers in AD and non-
AD CSF (excluding healthy controls)

P-value (cohort
2)

Fold
change

Malate dehydrogenase o0.001 1.85
V-Set and transmembrane domain
containing protein 2A

0.001 1.71

LSAMP 0.003 1.65
Total APOE o0.001 1.61
S100B 0.004 1.48
Chitinase-3-like protein 1 (YKL-40) o0.001 1.47
Cystatin C 0.003 1.44
Osteopontin 0.03 1.43
LAMP1 0.008 1.42
CD166 0.02 1.40
Pro-orexin o0.001 1.30
Beta-amyloid 40 o0.001 1.38
CNDP1 o0.001 1.38
Carboxypeptidase E 0.004 1.37
GM2 0.04 1.35
NCAM1 0.03 1.25

Abbreviations: AD, Alzheimer’s disease; CNDP1, carnosine dipeptidase 1;
CSF, cerebrospinal fluid; LSAMP, limbic system-associated membrane
protein; NCAM1, neural cell adhesion molecule 1. Bold indicates a
biomarker that differentiated neurochemical AD from non-AD—significant
after FDR correction.
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two were controls. Of the 36 subjects with non-AD CSF, 22 were
healthy controls, seven had subjective cognitive concerns and the
others were diagnosed with other non-AD neurodegenerative
dementias including semantic dementia, behavioural variant
frontotemporal dementia and Lewy Body dementia. A further 10
individuals had an intermediate profile and were not included in
further analyses. Groups were well matched for age and sex. As
expected, there were significant differences in MMSE and APOE
status. CSF ELISA biomarker data are given in Table 1B.

Univariate analysis: comparing neurochemical AD and non-AD
subjects
Comparing the neurochemically defined AD and non-AD groups
in Cohort 1, there were significant differences in measured
biomarker concentrations in 21 markers, of which 15 survived FDR
correction (Table 2A). Taking these 15 proteins forward to the
validation cohort (Cohort 2), 9 markers (total apoE (which refers to
the APOE protein where the peptide is taken from a conserved
region of ApoE and quantitate irrespective of isoform status),

β-amyloid40, Carnosine Dipeptidase 1, cystatin C, insulin-like
growth factor-binding protein 2, MDH, osteopontin, triggering
receptor expressed on myeloid cells 2 and YKL-40) were
significantly elevated in the patients with both clinically and
neurochemically defined AD. Five biomarkers (total apoE, cystatin
C, MDH, osteopontin and YKL-40) survived FDR correction in both
the test (Cohort 1) and validation (Cohort 2) sets and were defined
as 'validated biomarkers' (Figure 2).
We also compared the AD (CSF +ve) and non-AD (CSF –ve)

dementias in Cohort 2 excluding healthy control subjects. A
similar list of 16 markers was significantly different between the
groups, with only MDH surviving FDR correction (Table 2B).

Multivariate analysis classified according to clinical diagnosis and
neurochemical diagnosis
Results of the OPLS-DA analysis using Cohort 2 are shown in
Figure 3. Peptides corresponding to the following biomarkers
were identified as the seven strongest predictors of group
membership when separating the groups on neurochemical

Figure 2. Boxplots and whiskers (representing 10th and 90th percentiles) comparing Alzheimer’s disease (AD) and non-AD cerebrospinal fluid
(CSF) concentrations of proteins surviving false discovery rate (FDR) correction in the univariate analysis of cohort 2.
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diagnosis (AD profile-positive; AD profile-negative): osteopontin,
YKL-40, MDH, vitronectin, total apoE, limbic system-associated
membrane protein and cystatin C. Osteopontin and YKL-40 also
topped the list for cohort 1 (data not shown).

Diagnostic utility
When applied to Cohort 2 for which full clinical data were
available, the five 'validated biomarkers' could individually
differentiate AD from non-AD healthy control CSF with areas
under the curve (AUC) as follows: total apoE = 0.62; cystatin
C = 0.62; MDH= 0.67; osteopontin = 0.79; and YKL-40 = 0.75. In a
multivariate logistic regression analysis including all of these
variables, the combination could differentiate AD from non-AD
healthy control CSF with an AUC of 0.88. When we included all
individuals in cohort 2, including those with grey-zone CSF profiles
and classified them by clinical diagnosis only, the combination of
biomarkers could differentiate AD from non-AD neurodegenera-
tion with an AUC= 0.7.

Correlation of proteins with each other and existing CSF
biomarkers
To explore the relationship between established CSF biomarkers
measured using ELISA and the proteins measured using this
targeted proteomics assay, regression analyses were carried out
between each of the five validated biomarkers and β-amyloid 1–
42, T-Tau and P-Tau including all subjects in the analysis
irrespective of the neurochemical status. None were significantly
correlated with age or β-amyloid 1–42. Cystatin C, MDH,
osteopontin and YKL-40 were each correlated with both T-Tau
and P-Tau (Figures 4a and b). A correlation map shows which of
the proteins from Tables 2A and 2B were correlated with one
another (Figure 5).

In a regression analysis including age, sex and APOE status in
the model, there was a weak association between YKL-40 and rate
of cognitive decline in the AD cohort (Figure 4c). There were no
other significant associations between proteins measured using
this targeted proteomics assay and rate of cognitive decline.

DISCUSSION
In this study we use a targeted, fully quantitative multiplexed
assay to measure a panel of 54 proteins identified in previous
studies as of potential interest in AD and neurodegeneration. We
show that this ‘one-pot’ test, which requires a very small volume
of CSF (100 µl), can be used to rapidly validate biomarkers of
potential interest in clinical cohorts.
We identified five biomarkers that differentiate neurochemical

AD from non-AD in two independent clinical populations from
different centres, all of which were also identified as those markers
contributing most to the separation in an independent multi-
variate model differentiating by neurochemical AD/non-AD. These
include markers of neuroinflammation, that is YKL-40, cystatin C
and osteopontin; total apoE, the best recognised genetic risk
factors for AD; and MDH, a key enzyme in brain glucose
metabolism. We compared AD CSF with other suspected non-
AD neurodegenerative subjects and, although with the caveat that
sample sizes are small, MDH was also significantly higher in the AD
cohort, suggesting that it could be specific to AD neurodegenera-
tion. Whereas the majority of these biomarkers are unlikely to
have diagnostic utility individually as they have lower sensitivity/
specificity than T-Tau/β-amyloid 1–42 ratio or P-Tau, MDH, YKL-40
and osteopontin were individually capable of differentiating AD
from non-AD CSF with AUC⩾ 0.75; and collectively all five of the
'validated' biomarkers could distinguish individuals with AD-
positive/negative CSF with AUC= 0.88.
The biomarkers identified all have potentially important roles in

AD pathogenesis. MDH is one of eight mitochondrial enzymes
involved in the tricarboxylic acid cycle, the main pathway for
oxidation of glucose in the brain. Deficits in brain glucose
metabolism and oxidative stress are now recognised in AD
pathophysiology,25 and MDH is found in increased concentrations
in the cortex and hippocampi of AD brains of humans and mice at
autopsy compared with healthy controls,26–28 whereas other
enzymes in the cycle are reduced or unchanged.27 The mechan-
ism for increased CSF MDH is unclear; however, from studies of
other pathological brain conditions (ischaemia, hypoglycaemia
and thiamine deficiency), anabolic catabolism of glucose may
occur as an alternative mitochondrial energy-generating
pathway29 and induce cell death.25 To our knowledge this is the
first in vivo evidence that glucose metabolism in altered in AD CSF.
In this context, it is notable that glucose hypometabolism
measured using fludeoxyglucose positron emission tomography
predates cognitive symptoms and is correlated with cognitive
function in AD.30

Cystatin C colocalises with amyloid and is involved in microglial
activation.31 Several previous biomarker discovery studies have
compared concentrations of cystatin C in AD and control CSF
using ELISA, sometimes with equivocal or conflicting results.32–34

Cystatin C has also been identified using mass spectrometry in
biomarker discovery studies of AD CSF.35,36 Our findings replicate
these results in two further independent cohorts, suggesting that
mass spectrometry may be a more sensitive and reproducible
method for quantifying this protein. Furthermore, CSF cystatin C
predicts rate of brain atrophy, a surrogate marker of neurode-
generation, in established and prodromal AD.37

Osteopontin is a cytokine expressed by cytotoxic T cells and is
involved in macrophage recruitment and activation. It is increased
in pyramidal neurons in AD,38 AD transgenic mouse models,39

elevated in human AD CSF40,41 as well as CSF of familial AD
mutation carrying individuals.42 Khan et al.43 identified

Figure 3. (a) Orthogonal projection to latent structures discriminant
analysis (OPLS-DA) analysis using data from cohort 2. Subjects are
colour-coded according to neurochemical status: red circles=
Alzheimer’s disease (AD); green squares=non-AD. The correspond-
ing R2 and Q2 values for the model were 0.56 and 0.3, respectively.
(b) Variable importance on projection plot corresponding to the
score plot in a.
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Figure 4. (a) Scatter plots showing correlations between cerebrospinal fluid (CSF) T-Tau (enzyme-linked immunosorbent assay, ELISA) and
'validated biomarkers' measured using targeted proteomics using subjects in Cohort 2. (b) Scatterplots showing correlations between CSF
P-Tau (ELISA, pg ml− 1) and 'validated biomarkers' measured using targeted proteomics using subjects in Cohort 2. (c) Scatterplots showing
correlations between rate of cognitive decline (30-Mini-Mental State Examination (MMSE) score/duration of cognitive symptoms in months)
and 'validated biomarkers' measured using targeted proteomics using subjects in Cohort 2.
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osteopontin as one of the top three proteins differentiating AD
and control CSF using a multivariate support vector machine
algorithm on data from Alzheimer's Disease Neuroimaging
Initiative. Although differences in osteopontin were not found
between AD and controls in another mass spectrometry assay, it
was identified as a predictor of conversion from mild cognitive
impairment to AD.44 Using mass spectrometry assays we have
now found osteopontin to be elevated in AD in two independent
cohorts and individuals with Lewy Body dementia, many of whom
will have AD pathology, we suggest this is likely to be a real
finding.
YKL-40 is expressed by microglia and astrocytes in the brain and

is implicated in the neuroinflammatory response to β-amyloid
deposition.45 Elevated CSF YKL-40 is seen in a number of
neurodegenerative diseases including prodromal AD,45 as well
as in stroke and multiple sclerosis. It was identified previously as a
potential AD biomarker in an unbiased liquid chromatography-
mass spectrometry biomarker discovery study comparing CSF
from individuals with AD to controls46 and was higher in AD CSF in
another targeted proteomics study.14 Although there are com-
mercially available immunoassays for YKL-40 and it is unlikely to
be specific for AD, it could prove a useful marker in the context of
a multiplexed panel of CSF markers of neuroinflammation, which
might improve diagnostic accuracy or help predict rate of disease
progression. It has previously been shown that concentrations are

correlated with AD disease progression,47 which these findings
support, suggesting that it could also be a meaningful functional
biomarker.
As described previously, assays of this type can measure

peptides corresponding to apoE isoforms E3, E4 and E2 accurately
enough to determine APOE genotype,48 which could have
significant practical and financial benefits. However, the utility of
CSF total apoE concentration is less well established, with previous
non-mass spectrometry studies showing no clear difference in
concentration between AD and control CSF.48,49 Our finding that
total apoE levels differentiated between all non-AD cases
(including controls) and non-AD neurodegenerative cases (exclud-
ing controls) suggests that it may be a biomarker with specificity
for AD.
This study has a number of strengths, notably the use of two

independent cohorts allowing for discovery/replication, conserva-
tive statistical approaches correcting for multiple comparison and
two independent techniques for assessing biomarker differences
between groups. Subjects were recruited prospectively and
samples were collected according to a standard operating
protocol50 to minimise the influence of pre-analytical factors on
biomarker profile. Although detailed clinical data were available
for some but not all of the test cohort (Cohort 1), as described
previously,17 the validation cohort (Cohort 2) was well charac-
terised and matched for age and sex, and were from a single

Figure 5. Correlation matrix including all biomarkers listed in Tables 2A and 2B, and enzyme-linked immunosorbent assay (ELISA) data for β-
amyloid 1-42, T-Tau and P-Tau. Red highlight: correlation coefficient ⩾ 0.6 or ⩽− 0.6; green highlight: correlation coefficient 0.4–0.6 or − 0.4 to
− 0.6. CarboxyE, carboxypeptidase E; Malate, malate dehydrogenase.
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centre. Individuals in the AD group were relatively young,
reflecting our clinical focus and that younger individuals are more
likely to be referred for diagnostic lumbar puncture.51 As the
design of this study was to determine whether the assay could
differentiate between AD and non-AD pathology, groups were
defined by CSF neurochemical status and we chose not to classify
by clinical diagnosis, except when determining clinical utility.
Even in specialist centres clinical diagnostic accuracy can be
variable;52–55 a combination of CSF tau and β-amyloid can predict
pathological diagnosis with a sensitivity and specificity of
~ 90%5 in individuals whose brains were subsequently examined
postmortem. The neurochemical non-AD group was mixed; 61%
were controls, whereas the other 39% were concerned about their
cognition and may have had another neurodegenerative disease.
This study is therefore likely to identify biomarker associated with
AD and may not be capable of detecting other markers of
neurodegeneration, which may also be altered in the non-AD CSF
group. Finally, as well as being highly selective and specific,56 and
with a wide dynamic range57,58 MRM is still likely to be as sensitive
as ELISA, which is currently considered the gold standard for
protein detection.59

To date, a large number of candidate CSF proteins have been
suggested as potential biomarkers for presymptomatic AD based
on biomarker discovery experiments in asymptomatic individuals
carrying an autosomal-dominant mutation for AD.42 Blood-based
biomarkers have also been identified from twin studies60 where
some individuals subsequently develop cognitive impairment.
This type of MRM assay has potential to investigate candidate
biomarkers of preclinical disease in months rather than the years
that it might take to develop an ELISA-based assay with the added
benefit that the reagent costs, which might be substantial for a
novel immunoassay, are negligible.61

A previous study of AD, mild cognitive impairment and control
CSF62 used a similar pipeline to validate a panel of biomarkers in a
single cohort with longitudinal CSF samples, and found four
biomarkers that differentiated clinical AD from healthy controls,
including YKL-40, Complement component C3, transthyretin and
amyloid A4 protein. YKL-40 was identified in our OPLS-DA analysis
and univariate analysis comparing neurochemical AD to non-AD.
Similarly, transthyretin was identified in AD and mild cognitive
impairment CSF62 and in our OPLS-DA analysis; serum amyloid A4
protein contributed to variance in our OPLS-DA analysis; comple-
ment component C3, however, was not included on our panel.
Our study uses a larger panel of biomarkers and has some
methodological advantages: the assay is significantly shorter and
simpler; samples do not require to be aliquoted into multiple small
volumes and can be analysed from one ‘single pot’, and therefore
lends itself extremely well to multiplexing large numbers of
peptides.

CONCLUSIONS
We describe a streamlined and efficient mass spectrometry
technique for measuring multiple CSF biomarkers concurrently,
and using this methodology validate a number of biomarkers
including markers of neuroinflammation and glucose metabolism
that distinguish AD CSF from controls. This highly specific method
offers the opportunity to validate large numbers of candidate
biomarkers in very small volumes of CSF with negligible reagent
costs, and is ideally suited both for biomarker discovery, and for
translation into a rapid and cost-effective clinical test.
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