
OPEN

ORIGINAL ARTICLE

Dopamine D2/3 receptor antagonism reduces activity-based
anorexia
SJ Klenotich1, EV Ho1, MS McMurray2, CH Server1 and SC Dulawa1

Anorexia nervosa (AN) is an eating disorder characterized by severe hypophagia and weight loss, and an intense fear of weight
gain. Activity-based anorexia (ABA) refers to the weight loss, hypophagia and paradoxical hyperactivity that develops in rodents
exposed to running wheels and restricted food access, and provides a model for aspects of AN. The atypical antipsychotic
olanzapine was recently shown to reduce both AN symptoms and ABA. We examined which component of the complex
pharmacological profile of olanzapine reduces ABA. Mice received 5-HT2A/2C, 5-HT3, dopamine D1-like, D2, D3 or D2/3 antagonist
treatment, and were assessed for food intake, body weight, wheel running and survival in ABA. D2/3 receptor antagonists eticlopride
and amisulpride reduced weight loss and hypophagia, and increased survival during ABA. Furthermore, amisulpride produced
larger reductions in weight loss and hypophagia than olanzapine. Treatment with either D3 receptor antagonist SB277011A or D2

receptor antagonist L-741,626 also increased survival. All the other treatments either had no effect or worsened ABA. Overall,
selective antagonism of D2 and/or D3 receptors robustly reduces ABA. Studies investigating the mechanisms by which D2 and/or D3

receptors regulate ABA, and the efficacy for D2/3 and/or D3 antagonists to treat AN, are warranted.
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INTRODUCTION
Anorexia nervosa (AN) is an eating disorder characterized
by hypophagia, weight loss and an intense fear of weight
gain. AN typically onsets in mid-adolescence and primarily
affects females.1 AN affects ~ 0.1–1.7% of the population
during their lifetime.1–5 The standard mortality ratio is 5.86,6

representing one of the highest mortality rates of all psychiatric
illnesses.7 No approved pharmacological treatments currently
exist for AN.
The activity-based anorexia (ABA) phenomenon models aspects

of AN. In the ABA paradigm, rodents housed with running wheels
and subjected to restricted food access rapidly develop hypopha-
gia, weight loss, and paradoxical increases in wheel running.
Conversely, rodents exposed to either restricted food access or
running wheels maintain normal body weight.8,9 Progression of
ABA is characterized by hypothermia, loss of estrus, increased HPA
axis activity and ultimately stomach ulceration and death.8–12 ABA
exhibits predictive validity for aspects of AN. For example,
adolescent rodents are more vulnerable to ABA than older
rodents.13–16 Thus, the ABA paradigm provides a useful preclinical
tool for studying aspects of AN.
Currently, only a handful of small, randomized controlled

trials evaluating the efficacy of olanzapine to improve AN
symptomatology have been performed. Three such trials reported
improved AN symptomology in patients receiving olanzapine
treatment,17–19 whereas two trials found no effect of
olanzapine.20,21 Thus, the potential efficacy of olanzapine in AN
requires further study, and efforts to identify other treatments are
imperative. Identifying the mechanisms by which olanzapine
reduces ABA22 could provide insight into the neurobiological

processes underlying AN, and thereby identify novel treat-
ments. Olanzapine is an antagonist with high affinity for
5-HT2A/2B/2C, α1-adrenergic, muscarinic M1–4, and histamine H1

receptors (Ki = 1.9–25 nM), and moderate affinity for 5-HT3 and
dopamine D1–5 receptors (Ki = 17.1–202 nM).23,24 Antagonist
properties of olanzapine at either dopamine or serotonin (5-
hydroxytryptamine, 5-HT) receptors could reduce ABA, as both
regulate feeding25,26 and locomotion.27,28 Furthermore, abnor-
malities in 5-HT and dopamine neurotransmitter systems have
been reported in ill and recovered AN patients. For example, the
major metabolite of 5-HT, 5-hydroxyindoleacetic acid, is elevated
after weight restoration in AN.29,30 Recovered AN patients also
exhibit reductions in homovanillic acid, a dopamine metabolite,31

and increases in D2/3 receptor binding in the anteroventral
striatum.32 These biomarkers may represent trait alterations that
increase vulnerability to AN. As ill and recovered AN patients
exhibit alterations in serotonergic and dopaminergic signaling
systems, olanzapine may reduce ABA in rodents and AN
symptoms in patients through antagonist properties at certain
serotonergic and/or dopaminergic receptors.
To determine which aspect of olanzapine’s complex pharma-

cology reduces ABA, we examined the effects of selective
serotonergic or dopaminergic receptor antagonists on ABA in
mice. We assessed the effects of the 5-HT2A/2C receptor antagonist
ritanserin, and the 5-HT3 receptor antagonist ondansetron. Then,
we examined the effects of the D1-like antagonist SCH23390 and
the D2/3 receptor antagonists eticlopride or amisulpride. We also
compared the ability of amisulpride and olanzapine to reduce
ABA. Finally, we used the D3 receptor antagonist SB277011A and
the D2 receptor antagonist L-741,626 to discern the effects of
selective D3 and D2 receptor antagonism on ABA.

1Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA and 2Department of Psychology, University of Illinois at Chicago, Chicago, IL, USA.
Correspondence: Dr SC Dulawa, Department of Psychiatry and Behavioral Neuroscience, University of Chicago, 924 E. 57th Street Room R022, MC3077, Chicago, IL 60637, USA.
E-mail: dulawa@uchicago.edu
Received 5 February 2015; revised 18 May 2015; accepted 14 June 2015

Citation: Transl Psychiatry (2015) 5, e613; doi:10.1038/tp.2015.109

www.nature.com/tp

mailto:dulawa@uchicago.edu
http://www.nature.com/tp


MATERIALS AND METHODS
Animals
Balb/cJ female mice (Jackson Laboratories, Bar Harbor, ME, USA), aged
8 weeks, were acclimated to the vivarium for 1 week before the
experimental procedures. Mice received ad libitum access to standard
chow and water, except during food restriction. Animals were euthanized,
or ‘dropped’, from experiments when they lost 25% of their baseline body
weight (assessed on the last day of baseline). All the procedures were
conducted in accord with the National Institutes of Health laboratory
animal care guidelines and with Institutional Animal Care and Use
Committee approval at the University of Chicago.

Experimental conditions
Mice were housed in a climate-controlled room maintained on a 12:12
light–dark cycle (lights off at 2000 h). Cages (19.56 × 34.70 × 14.41 cm) were
equipped with wireless low-profile running wheels (Med Associates, St
Albans, VT, USA). Running wheels transmitted running data every 30 s to a
computer with Wheel Manager Software 24 h a day. Food was provided in
a glass jar (65 cm diameter × 50 cm height) during baseline and restriction
periods.

Activity-based anorexia paradigm
The mice were pseudo-randomly divided into experimental groups on the
basis of body weight upon arrival. During acclimation (2 days), baseline
(7 days), and food restriction (14 days), mice were singly housed and given
24 h running wheel access. During restriction, the mice received daily food
access for 6 h a day beginning at 0900 h. Six hours daily food access
induces a dropout rate of approximately ⩽ 7 days, permitting detection of
either increases or decreases in survival.22 Daily body weight, food intake
and wheel running were recorded during baseline and restriction
conditions. Food anticipatory activity (FAA), defined as running activity
0–4 h before food access, and postprandial activity (PPA), defined as
running activity following food access and before initiation of the dark
cycle, were also determined. Days to dropout (loss of 25% baseline body
weight) provided a measure of survival.

Experimental design
For all the experiments, the mice were subjected to the treatment regime
(see Supplementary Methods) and ABA paradigm described above. Sample
sizes were chosen on the basis of previous studies, which identified
statistical differences in survival in the ABA paradigm.22 The experimenter
was not blind to the treatment groups to accurately dose each group via
the drinking water (See Supplementary Methods).
Experiment 1: mice received 0, 0.01, 0.1 or 1 mg kg− 1 per day ritanserin

and a separate group received 25mg kg− 1 per day olanzapine as a
positive control (n=8 per group). Ritanserin33–35 and olanzapine22 doses
were based on previous studies.
Experiment 2: mice received 0 (n=12), 0.1 (n= 11), 1 (n= 12) or

10mg kg− 1 per day ondansetron (n= 12),36–38 or 30mg kg− 1 per day
olanzapine (n=12).22

Experiment 3: mice received 0, 0.005, 0.5 or 0.5 mg kg− 1 per day
SCH23390,39–42 or 15mg kg− 1 per day olanzapine22 (n= 12 per group).
Experiment 4: mice received 0, 0.1, 0.5 or 1 mg kg− 1 per day

eticlopride,43–45 or 35mg kg− 1 per day olanzapine22 (n=12 per group).
Experiment 5: mice received 0, 10, 50 or 100mg kg− 1 per day

amisulpride.46–49 A separate group received 1mg kg− 1 per day
eticlopride43–45 as a positive control (n=12 per group).
Experiment 6: effects of amisulpride (0, 100 or 150mg kg− 1 per day)46–49

were compared with olanzapine (12 or 18mg kg− 1 per day)22 (n= 12 per
group).
Experiment 7: mice received 0 (n= 15), 5 (n= 14), 25 (n= 15) or

50mg kg− 1 per day (n= 15) SB277011A.50–53 For experiments 7 and 8,
the restriction period lasted only 10 days as dropout from the ABA
paradigm generally occurs within this timeframe.
Experiment 8: mice received 0, 1, 10 or 20mg kg− 1 per day L-741,626

(n=15 per group).54–57

Statistics
For baseline data, analyses of variance assessed the effects of treatment as
a between-subjects factor, and day as a within-subjects factor for each
dependent variable (body weight, food intake, wheel running). Post hoc

analyses of variance resolved main effects of treatment or interactions of
treatment ×day. Bonferroni adjustments were made when post hoc
analyses of variance were applied.
The mice drop out of the ABA paradigm during restriction, creating data

sets with missing values. Therefore, general linear models (PROC GLIMMIX;
SAS v9.2, SAS Institute, Cary, NC, USA; code available from corresponding
author upon request) were used to assess differences in body weight, food
intake, wheel running, FAA, and PPA during restriction. Post hoc analyses
resolving main effects of treatment and treatment × day interactions were
adjusted for multiple comparisons using the false discovery rate method.
Survival analysis was performed using the Kaplan–Meier test with Logrank
(Mantel–Cox) and Peto–Peto–Wilcoxon post hoc tests.
For baseline and restriction data, all the post hoc tests compared drug

doses to vehicle. For experiment 6, all the doses were compared with one
another. The mice were excluded from the data set when their log-
transformed dropout day was 42 s.d. from the group mean (see
Supplementary Results). Significance was set at Po0.05.

RESULTS
Ritanserin reduces food intake and wheel running during ABA
During baseline, neither ritanserin nor olanzapine treatment
altered body weight (Supplementary Table S1). Main effects
indicated that 25 mg kg− 1 per day olanzapine reduced food
intake (F(4,31) = 4.098, Po0.01) and wheel running (F(4,32) = 3.020,
Po0.05; all comparisons Po0.05, Supplementary Table S1). For
experiment 1, baseline running-wheel data reflects the last 4 days
of baseline due to a malfunction of the data acquisition system.
During food restriction, ritanserin treatment did not alter

survival (Figure 1a). Conversely, 25 mg kg− 1 per day olanzapine
treatment increased survival (Po0.0005).
A main effect of treatment (F(4,111) = 5.23, Po0.001) and post

hoc analyses revealed that 25 mg kg− 1 per day olanzapine
reduced weight loss (Po0.005), while ritanserin had no effect
(Supplementary Figure S1A). Specifically, 25 mg kg− 1 per day
olanzapine increased body weight on days 1–3 relative to vehicle
(treatment × day, F(21,111) = 17.04, Po0.0001; all comparisons
Po0.001; Supplementary Figure S1A). Olanzapine 25mg kg− 1

per day also protected against hypophagia (F(4,112) = 12.50,
Po0.0001; all comparisons Po0.0001; Supplementary Figure
S1B). Specifically, 25 mg kg− 1 per day olanzapine increased food
intake on day 1, while 0.1 mg kg− 1 per day and 1mg kg− 1 per day
ritanserin reduced food intake on days 3 and 4, and day 4,
respectively, relative to vehicle (treatment × day, F(22,112) = 13.69,
Po0.0001; all comparisons Po0.05; Supplementary Figure S1B).
All doses of ritanserin and 25mg kg− 1 per day olanzapine

reduced wheel running (F(4,112) = 4.91, Po0.005; all comparisons,
Po0.05; Supplementary Figure S1C). Specifically, 0.01, 0.1 and
1mg kg− 1 per day ritanserin reduced wheel running on day 4,
days 2–4 and day 4, respectively (treatment × day, F(22,112) = 4.06,
Po0.0001; all comparisons Po0.05; Supplementary Figure S1C).
All the doses of ritanserin reduced FAA on days 3 and 4, and
25mg kg− 1 per day olanzapine reduced FAA on day 4 (treat-
ment × day, F(17,81) = 4.79, Po0.0001; all comparisons Po0.05;
Supplementary Figure S1D). Finally, 0.1 mg kg− 1 per day ritanserin
reduced PPA on day 3 (treatment × day, F(22,110) = 5.99, Po0.0001;
all comparisons Po0.05; Supplementary Figure S1E).

Ondansetron treatment decreases body weight and food intake
during ABA
During baseline, neither ondansetron nor olanzapine altered body
weight or food intake (Supplementary Table S1). However, a main
effect of treatment (F(4,50) = 4.275, Po0.005) and post hoc analyses
indicated that 30 mg kg− 1 per day olanzapine reduced wheel
running (Po0.05, Supplementary Table S1).
During restriction, ondansetron did not alter survival (Figure 1b).

However, 30 mg kg− 1 per day olanzapine increased survival early
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in the restriction period (Po0.05), but in not the late phase
(P= 0.25).
All the doses of ondansetron and olanzapine produced further

reductions in body weight (F(4,244) = 13.85, Po0.0001; all compar-
isons Po0.0001; Supplementary Figure S2A) and food intake
(F(4,245) = 102.99, Po0.0001; all comparisons Po0.0001;
Supplementary Figure S2B) compared with vehicle. Specifically,
0.1, 1 and 10mg kg− 1 per day ondansetron reduced food intake
on days 6 and 7, days 4 and 5 and days 3–6, respectively
(treatment × day, F(46,245) = 23.43, Po0.0001; all comparisons
Po0.05). Finally, 30 mg kg− 1 per day olanzapine reduced food

intake on days 5, 6 and 13 (all comparisons Po0.05;
Supplementary Figure S2B).
Neither ondansetron nor olanzapine altered wheel running

(Supplementary Figure S2C) or FAA (Supplementary Figure S2D).
However, all the doses of ondansetron increased PPA
(F(4,245) = 4.53, Po0.005; all comparisons Po0.05; Supplemen-
tary Figure S2E, see inset). Specifically, 0.1 mg kg− 1 per day
ondansetron increased PPA on day 6 (treatment × day, F(46,245) =
3.65, Po0.0001; all comparisons Po0.05; Supplementary
Figure S2E).

SCH23390 treatment increases body weight and food intake
during ABA
Neither SCH23390 nor 15 mg kg− 1 per day olanzapine altered the
body weight, food intake or wheel running during baseline
(Supplementary Table S1).
During restriction, SCH23390 did not alter survival (Figure 1c).

Conversely, 15 mg kg− 1 per day olanzapine increased survival
(Po0.01).
A main effect of treatment (F(4,245) = 36.12, Po0.0001) revealed

that 0.05 and 0.5 mg kg− 1 per day SCH23390 and 15mg kg− 1

per day olanzapine reduced weight loss (all comparisons
Po0.001; Supplementary Figure S3A, see inset). Specifically,
0.05 mg kg− 1 per day SCH23390 and 15mg kg− 1 per day
olanzapine increased the body weight on day 5 and days 3–5,
respectively (treatment × day, F(42,245) = 23.77, Po0.0001; all com-
parisons Po0.05; Supplementary Figure S3A). Furthermore,
0.005mg kg− 1 per day and 0.05 mg kg− 1 per day SCH23390, as
well as 15 mg kg− 1 per day olanzapine reduced hypophagia
(F(4,239) = 89.41, Po0.0001; all comparisons Po0.001; Supple-
mentary Figure S3B, see inset).
Wheel running was not altered by either treatment

(Supplementary Figure S3C). However, both 0.05 mg kg− 1

per day SCH23390 and 15mg kg− 1 per day olanzapine increased
FAA (F(4,198) = 25.09, Po0.0001; all comparisons Po0.005;
Supplementary Figure S3D, see inset). In addition, 0.05 mg kg− 1

per day SCH23390 reduced PPA (F(4,244) = 13.86, Po0.0001; all
comparisons Po0.0005; Supplementary Figure S3E, see inset).
Finally, 0.005mg kg− 1 per day SCH23390 and 15mg kg− 1 per day
olanzapine increased PPA on day 2, and days 1 and 2, respectively
(treatment × day, F(42,244) = 5.97, Po0.0001; all comparisons
Po0.05; Supplementary Figure S3E).

Eticlopride treatment robustly increases survival in ABA
During baseline, neither eticlopride nor olanzapine altered body
weight, food intake or wheel running (Supplementary Table S1).
During restriction, 0.5 and 1mg kg− 1 per day eticlopride

increased survival (all comparisons Po0.05; Figure 2a). Impor-
tantly, 1 mg kg− 1 per day eticlopride completely prevented
dropout. Mice receiving 0.1 mg kg− 1 per day eticlopride or
35mg kg− 1 per day olanzapine did not differ from mice receiving
vehicle.
All the doses of eticlopride protected against weight loss

(F(4,448) = 36.31, Po0.0001; all comparisons Po0.01; Figure 2b, see
inset). Conversely, 35 mg kg− 1 per day olanzapine reduced body
weight (Po0.0001). In addition, 1 mg kg− 1 per day eticlopride
increased body weight on days 3–5, while 35 mg kg− 1 per day
olanzapine reduced body weight on day 7 (treatment × day,
F(64,448) = 14.91, Po0.0001; all comparisons Po0.05; Figure 2b).
Similarly, 0.1 and 1mg kg− 1 per day eticlopride increased,
whereas 35 mg kg− 1 per day olanzapine decreased food intake
(F(4,446) = 47.54, Po0.0001; all comparisons Po0.05; Figure 2c, see
inset). Specifically, 35 mg kg− 1 per day olanzapine reduced food
intake on days 6–9 (treatment × day, F(64,446) = 26.81, Po0.0001;
all comparisons Po0.05; Figure 2c).
All the doses of eticlopride increased wheel running

(F(4,449) = 2.88, Po0.05; all comparisons Po0.05; Figure 2d, see
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Figure 1. Ritanserin, ondansetron and SCH23390 treatment do not
increase survival in ABA. Survival curves during restriction of (a)
ritanserin-, (b) ondansetron- and (c) SCH23390-treated mice in
comparison with vehicle- or olanzapine-treated mice. Numbers in
italics represent mice remaining in food restriction. Asterisk
indicates olanzapine is significantly different from vehicle
(Po0.05). BL, baseline; OLZ, olanzapine; OND, ondansetron; RIT,
ritanserin; SCH, SCH23390; VEH, vehicle.
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inset). No effects of treatment on FAA were found (Supplementary
Figure S4A). However, 35 mg kg− 1 per day olanzapine increased
PPA (F(4,449) = 8.55, Po0.0001; all comparisons Po0.001;
Supplementary Figure S4B, see inset).

Amisulpride treatment increases survival, body weight and food
intake during ABA
During baseline, neither amisulpride nor eticlopride altered the
body weight or food intake (Supplementary Table S1). However,
1 mg kg− 1 per day eticlopride reduced wheel running on day 1
(treatment × day, F(24,53) = 2.685, Po0.0001; data not shown).
During restriction, amisulpride increased survival (Figure 3a).

Although 10 and 50mg kg− 1 per day amisulpride induced
nonsignificant increases in survival, 100 mg kg− 1 per day amisul-
pride increased survival (Po0.05). Similarly, 1 mg kg− 1 per day
eticlopride increased survival (Po0.0005).
All the treatments reduced weight loss (F(4,408) = 12.10,

Po0.0001; all comparisons Po0.0001; Figure 3b) and hypopha-
gia (F(4,406) = 51.29, Po0.0001; all comparisons Po0.0001;
Figure 3c, see inset). Furthermore, 50 and 100mg kg− 1 per day
amisulpride increased food intake on day 5, and 1mg kg− 1

per day eticlopride increased food intake on food restriction days
5 and 6 (treatment × day, F(63,406) = 35.92, Po0.0001; all compar-
isons Po0.05; Figure 3c).

All the treatments reduced wheel running (F(4,394) = 3.45,
Po0.01; all comparisons Po0.05; Figure 3d, see inset). Moreover,
both 100mg kg− 1 per day amisulpride and 1mg kg− 1 per day
eticlopride reduced FAA on food restriction day 3, and food
restriction days 3 and 5, respectively (treatment × day, F(62,359) =
3.54, Po0.0001; all comparisons Po0.05; Supplementary Figure
S5A). Neither amisulpride nor eticlopride altered PPA (Supple-
mentary Figure S5B).

Amisulpride produces larger reductions in body weight loss and
hypophagia during ABA than olanzapine
Neither amisulpride nor olanzapine altered body weight, food
intake or wheel running during baseline (Supplementary Table
S1).
During restriction, both amisulpride and olanzapine increased

survival compared with vehicle (Figure 4a). Specifically,
100mg kg− 1 per day (Po0.05), but not 150 mg kg− 1 per day,
amisulpride increased survival. The 12mg kg− 1 per day (Po0.01)
and 18mg kg− 1 per day (Po0.05) doses of olanzapine also
increased survival. The 100mg kg− 1 per day amisulpride group
did not differ from the 12mg kg− 1 per day or 18 mg kg− 1 per day
olanzapine groups. However, both the olanzapine treatment groups
increased survival compared with 150mg kg−1 per day amisulpride
(all comparisons Po0.05). Finally, 100mg kg−1 per day amisulpride
increased survival compared with 150mg kg− 1 per day
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amisulpride (Po0.05), while 12 and 18mg kg− 1 per day
olanzapine produced comparable survival times.
The 100mg kg− 1 per day dose of amisulpride and 12 and

18mg kg− 1 per day doses of olanzapine reduced weight loss
compared with vehicle during restriction (F(4,281) = 15.60,
Po0.0001; all comparisons Po0.001; Figure 4b, see inset).
Moreover, 100mg kg− 1 per day amisulpride reduced weight loss
relative to 12mg kg− 1 per day olanzapine and 150 mg kg− 1

per day amisulpride (all comparisons Po0.005). Both the
olanzapine doses reduced weight loss relative to 150 mg kg− 1

per day amisulpride (all comparisons Po0.005). Furthermore,
100mg kg− 1 per day amisulpride reduced hypophagia compared
with all the other treatment groups (F(4,280) = 107.40, Po0.0001; all
comparisons Po0.0001; Figure 4c, see inset). Both the doses of
olanzapine reduced hypophagia relative to 150mg kg− 1 per day
amisulpride and vehicle (all comparisons Po0.0005). On the other
hand, 150 mg kg− 1 per day amisulpride reduced food intake com-
pared with vehicle (Po0.05). Furthermore, 100mg kg− 1 per day
amisulpride increased food intake compared with 12 mg kg− 1

per day olanzapine on days 6, 9 and 14, and 18mg kg− 1 per day
olanzapine on restriction day 9 (treatment × day, F(51,280) = 28.10,
Po0.0001; all comparisons Po0.05; Figure 4c).
Neither amisulpride nor olanzapine altered wheel running

(Figure 4d). A main effect of treatment (F(4,233) = 11.68,

Po0.0001) showed that 100mg kg− 1 per day amisulpride
increased FAA compared with 150mg kg− 1 per day amisulpride,
18mg kg− 1 per day olanzapine and vehicle (all comparisons
Po0.05; Supplementary Figure S6A, see inset). Also, 12 mg kg− 1

per day olanzapine increased FAA relative to 18 mg kg− 1 per day
olanzapine, 150mg kg− 1 per day amisulpride and vehicle (all
comparisons Po0.05). Finally, 18 mg kg− 1 per day olanzapine
increased FAA compared with 150mg kg− 1 per day amisulpride
and vehicle (all comparisons Po0.05). Neither amisulpride nor
olanzapine altered PPA (Supplementary Figure S6B).

SB277011A treatment increases survival in ABA
During baseline, SB277011A did not alter body weight, food intake
or wheel running (Supplementary Table S1).
During restriction, 50mg kg− 1 per day SB277011A increased

survival (Po0.005; Figure 5a). Neither body weight (Figure 5b) nor
food intake (Figure 5c) were altered by SB277011A.
Furthermore, SB277011A did not induce changes in wheel

running (Figure 5d) or FAA (Supplementary Figure S7A). Con-
versely, a main effect of treatment (F(3,193) = 6.43, Po0.0005)
indicated that both 25 and 50mg kg− 1 per day SB277011A
increased PPA (all comparisons Po0.05; Supplementary Figure
S7B, see inset).
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Figure 3. Amisulpride treatment robustly reduces ABA behavior. (a) Survival curve, (b) body weight, (c) food intake and (d) running-wheel
activity during restriction in vehicle-, amisulpride- and eticlopride-treated mice. Results are expressed as mean± s.e.m. Insets indicate
mean± s.e.m. during restriction for the dependent measure depicted. Numbers in italics represent mice remaining in food restriction. Asterisk
color indicates which group is significantly different from vehicle (Po0.05). Black asterisk refers to eticlopride. AMIS, amisulpride; BL, baseline;
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L-741,626 treatment increases survival, body weight and food
intake during ABA
During baseline, L-741,626 did not alter body weight, food intake
or wheel running (Supplementary Table S1).
During restriction, both 10mg kg− 1 per day (Po0.05) and

20mg kg− 1 per day (Po0.0005) L-741,626 increased survival
(Figure 5e).
Both 1mg kg− 1 per day and 20mg kg− 1 per day L-741,626

reduced weight loss (F(3,305) = 14.55, Po0.0001; all comparisons
Po0.001; Figure 5f, see inset). Specifically, 20 mg kg− 1 per day
L-741,626 increased body weight on days 3–5 (treatment × day,
F(34,305) = 13.28, Po0.0001; all comparisons Po0.05; Figure 5f).
Furthermore, all the doses of L-714,626 reduced hypophagia
(F(3,301) = 56.25, Po0.0001; all comparisons Po0.0001; Figure 5g,
see inset).
A main effect of treatment (F(3,305) = 11.40; Po0.0001) showed

that 1 mg kg− 1 per day L-741,626 increased wheel running
(Po0.001; Figure 5h, see inset). Furthermore, 10mg kg− 1

per day L-741,626 increased wheel running on day 3 (treatment ×
day, F(34,305) = 2.15, Po0.001; Po0.05; Figure 5h). Both 1mg kg− 1

per day and 10mg kg− 1 per day L-741,626 increased FAA
(F(3,264) = 4.80, Po0.005; all comparisons Po0.05;
Supplementary Figure S7C, see inset). Moreover, all the doses of
L-741,626 decreased PPA (F(3,305) = 12.95, Po0.0001; all compar-
isons Po0.05; Supplementary Figure S7D, see inset). Specifically,
1 mg kg− 1 per day L-741,626 decreased PPA on day 5, whereas
10mg kg− 1 per day L-741,626 increased PPA on day 1 (treat-
ment × day, F(34,305) = 5.69, Po0.0001; all comparisons Po0.05).
Finally, 10 and 20mg kg− 1 per day L-741,626 decreased PPA on
days 4 and 5, and day 5, respectively (all comparisons Po0.0005;
Supplementary Figure S7D).

DISCUSSION
Here we report that selective antagonism of D2 and/or D3

receptors significantly reduces ABA. The D2/3 receptor antagonists
eticlopride and amisulpride robustly increased survival, and
reduced weight loss and hypophagia during restriction. Thus,
D2/3 receptor blockade underlies, at least in part, the ability of
olanzapine to reduce ABA. Furthermore, amisulpride produced
larger reductions in weight loss and hypophagia than olanzapine,
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Figure 4. Comparison of amisulpride and olanzapine treatment on ABA behavior. (a) Survival curve, (b) body weight, (c) food intake and (d)
running-wheel activity during restriction in vehicle-, amisulpride- and olanzapine-treated mice. Results are expressed as mean± s.e.m. Insets
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suggesting that dopamine D2/3 receptor antagonism may
underlie the mechanism of action of olanzapine. Thus, D2/3
antagonists should be examined in AN. Furthermore, selective
antagonism of either D2 or D3 receptors also reduced ABA. Since
selective D3 antagonism has a reduced propensity to induce
extrapyramidal symptoms (EPS),53,55,58–60 selective D3 receptor
antagonism should also be explored as a novel treatment for AN.
Although D1-like antagonist SCH23390 increased body weight and

food intake during restriction, survival was not increased.
Surprisingly, 5-HT2A/2C or 5-HT3 receptor antagonism increased
ABA. In sum, D2/3 and/or D3 receptor antagonists may provide
effective treatment for AN, and should be investigated in clinical
trials.
Increases in survival are paramount to indicating reductions in

ABA. Additional effects indicating reduced ABA include reductions
in weight loss and hypophagia. Reductions in wheel running
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during restriction can also indicate reduced ABA, but animals also
run less before dropout, confounding the interpretation of wheel
running. Recently, Wu et al.61 has shown that decreases in FAA
and increases in PPA correlate with weight loss61 contrary to
previous findings, which indicated that decreases in FAA are
associated with reduced ABA.22,62,63 Our findings indicate that
changes in FAA and PPA remain inconsistent or unobserved, and
do not always correlate with increases in survival. For example,
amisulpride decreased FAA in experiment 5 (Supplementary
Figure S5A), but increased FAA in experiment 6 (Supplementary
Figure S6A), despite consistently increasing survival (Figures 3a
and 4a). Moreover, none of our experiments yielded simultaneous
increases in FAA and decreases in PPA alongside increases in
survival.
Overall, none of the selective serotonergic or dopaminergic

antagonists used herein produced significant alterations in the
body weight, food intake or wheel running during baseline.
Therefore, observed effects on ABA were unlikely owing to drug-
induced changes in metabolism, activity levels or appetite, but
were specific to restriction conditions.
We used a range of olanzapine doses across the present studies

to identify an optimal dose of olanzapine. Doses from 12 to
25mg kg− 1 per day increased survival (Figures 1a, c and 4a),
whereas higher doses did not (Figures 1b and 2a). Furthermore,
optimal doses of olanzapine (12–18mg kg− 1 per day) not only
increased survival (Figures 1c and 4a), but also increased body
weight (Supplementary Figures S3A and Figure 4b) and food
intake (Supplementary Figures S3B and Figure 4b), during food
restriction. Moreover, as olanzapine doses above 25mg kg− 1

per day increased, ABA also increased. For example, both 30 and
35mg kg− 1 per day olanzapine decreased body weight and food
intake during restriction (Supplementary Figures S2A and S2B and
Figures 2b and c). Furthermore, decreases in baseline food intake
(25 mg kg− 1 per day) and wheel running (30 mg kg− 1 per day)
indicate a propensity for higher doses of olanzapine to induce
nonspecific effects (Supplementary Table S1).
Olanzapine has a higher affinity for 5-HT2A/2C receptors than

dopamine receptors,23,24 and 5-HT2A/2C receptor blockade is
thought to contribute to weight gain following atypical anti-
psychotic treatment.64 However, the effects of 5-HT2A/2C antago-
nists on food intake in rodents vary, and are dependent on
experimental conditions.65–69 Our findings show that ritanserin
had no effect on survival, and reduced food intake (0.1 and
1mg kg− 1 per day) and wheel running (all doses)(Figure 1a,
Supplementary Figures S1A and S1C). Thus, 5-HT2A/2C receptor
antagonism may increase ABA by increasing hypophagia during
restriction.
Ondansetron reduces symptoms of bulimia nervosa70 and

obsessive-compulsive disorder,71 two disorders comorbid with
AN.72 However, ondansetron did not increase survival in ABA and
exacerbated ABA by reducing body weight and food intake
(Supplementary Figures S2A and 2B). Therefore, 5-HT3 receptor
antagonism is unlikely to contribute to the ability of olanzapine to
reduce ABA.
Olanzapine has high affinity binding at 5-HT6 receptors (Ki = 6-

nM).24 However, mice have reduced 5-HT6 receptor expression in
the striatum compared with rats and humans, and alterations in
key amino-acid sequences, which result in different pharmacolog-
ical profiles.73 Thus, findings obtained using mice might not be
readily translated to humans. Therefore, we did not investigate the
effects of 5-HT6 antagonists on ABA.
Although antagonism of D1-like receptors using SCH23390 did

not alter survival, 0.05 mg kg− 1 per day and 0.5 mg kg− 1 per day
SCH23390 reduced weight loss and 0.005 mg kg− 1 per day and
0.05mg kg− 1 per day SCH23390 reduced hypophagia (Figure 1c,
Supplementary Figures S3A and S3B). As SCH23390 induced only
minor reductions in ABA without increasing survival, D1-like

receptor antagonism is unlikely to contribute substantially to the
ability of olanzapine to reduce ABA.
The D2/3 receptor antagonists eticlopride and amisulpride

robustly increased survival in ABA. Notably, 1 mg kg− 1 per day
eticlopride prevented mice from dropping out of restriction
(Figure 2a). Moreover, both amisulpride and eticlopride reduced
weight loss and hypophagia (Figures 3a–c). Although optimal
doses of amisulpride and olanzapine required to reduce ABA
produced comparable increases in survival, 100mg kg− 1 per day
amisulpride produced larger reductions in weight loss and
hypophagia than olanzapine (Figures 4a–c). These findings
suggest that dopamine D2/3 receptor antagonism plays a
significant role in the therapeutic mechanism of olanzapine to
reduce ABA behavior.
As D2/3 antagonists robustly reduced ABA, we examined

whether blockade of one or both dopamine receptors drives this
effect. We found that selective antagonism of either D2 or D3

receptors increased survival (Figures 5a and e). The D2 receptor
antagonist L-741,626 also reduced weight loss and hypophagia
during restriction (Figures 5f and g). Increases in survival induced
by D3 antagonist SB277011A appear smaller in magnitude, and
might be due to nonsignificant reductions in weight loss and
wheel running (Figures 5b and d). Higher doses of SB277011A
might produce more robust increases in survival. Although
L-741,626 and SB277011A exhibit ~ 40-fold and 100-fold selectiv-
ity for the D2 or D3 receptor, respectively, cross-receptor reactivity
may have been present at the doses used in these studies. Recent
findings in rats indicate that L-741,626 has relatively no D3

receptor occupancy at 10 mg kg− 1 per day, and that 10 mg kg− 1

per day SB277011A exhibits ~ 20% receptor occupancy at D2

receptors.74 Given that survival increased as the dose of
SB277011A increased, D2 receptor antagonism might have a role
in the ability of SB277011A to increase survival. Future studies
using conditional knockout of D2 or D3 receptors will be required
to definitively resolve their respective contributions to ABA
behavior.
Clinical trials evaluating the efficacy of dopaminergic antago-

nists to ameliorate AN symptomology are limited and severely
underpowered. Overall, typical antipsychotic treatment produces
marginal increases in body weight in AN patients, as well as EPS
and sedation.75,76 Conversely, atypical antipsychotics, most
accurately distinguished from typical antipsychotics by a reduced
susceptibility to EPS,77 show promise in reducing AN symptomol-
ogy. Consistent with our finding that D2/3 antagonists reduce ABA,
a small, single-blind trial showed that atypical antipsychotic
amisulpride increased weight gain in AN patients.78 Conversely,
the related compound sulpiride, produced only marginal increases
in weight gain in anorexic patients.79 These data are consistent
with the report that recovered AN patients show increased
binding affinity at D2/3 receptors in the anteroventral striatum,
which could be a trait alteration that increases susceptibility to
AN.32 The preferential high affinity binding at limbic cortical D2/3

receptors, rather than striatal D2/3 receptors, may underlie the
reduced incidence of EPS following amisulpride treatment.49,80,81

Furthermore, amisulpride does not show high affinity binding at
5-HT2C receptors, muscarinic, or histamine H1 receptors,

81,82 which
are thought to contribute to the metabolic side effects of
olanzapine.83 Therefore, amisulpride may reduce AN symptomol-
ogy with fewer side effects associated with olanzapine or typical
antipsychotic treatment.
We also found that selective antagonism of D3 receptors

reduces ABA (Figure 5a). Since antagonism at striatal D2 receptors
is thought to drive EPS,77 the enriched mesolimbic expression of
D3 receptors

84 may indicate a novel treatment target for AN with
reduced susceptibility to EPS. In fact, reduced EPS were observed
in humans,58 and in the catalepsy rodent model of EPS,53

following D3 antagonist treatment. As both amisulpride and D3

antagonists are thought to produce a low incidence of EPS, these
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agents may provide therapeutic benefit in AN while avoiding
unwanted side effects.
We aimed to determine which aspect of olanzapine’s complex

pharmacology reduces ABA by examining the effects of selective
serotonergic or dopaminergic receptor antagonists on ABA. Our
findings suggest that D2/3 receptor antagonism mediates reduc-
tions in ABA produced by olanzapine, while D1-like, 5-HT2A/2C, and
5-HT3 receptor blockade does not (Supplementary Table S3).
However, complex interactions between multiple receptors could
have a role in the mechanism of olanzapine to reduce ABA. We did
not examine the effects of simultaneously antagonizing three or
more receptors on ABA, yet we still identified robust effects of D2/3

receptor blockade via two selective D2/3 receptor antagonists, and
selective antagonism at D2 or D3 receptors alone.
In conclusion, we show that D2/3 antagonists robustly increase

survival, body weight, and food intake during ABA and therefore
might provide effective treatment for AN. Furthermore, we found
that D3 receptor antagonism alone also reduces ABA, and could
provide a novel approach to treating AN with reduced risk for EPS.
Currently, there is a dearth of suitably powered, placebo-
controlled clinical trials evaluating potential pharmacological
treatments for anorexia nervosa. Our data indicate that clinical
trials evaluating the efficacy of amisulpride and D3 antagonists in
AN are warranted.
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