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Translational potential of olfactory mucosa for the study of

neuropsychiatric illness

K Borgmann-Winter'?, SL Willard', D Sinclair', N Mirza®, B Turetsky', S Berretta*> and C-G Hahn'

The olfactory mucosa (OM) is a unique source of regenerative neural tissue that is readily obtainable from living human subjects
and thus affords opportunities for the study of psychiatric illnesses. OM tissues can be used, either as ex vivo OM tissue or in vitro
OM-derived neural cells, to explore parameters that have been difficult to assess in the brain of living individuals with psychiatric
illness. As OM tissues are distinct from brain tissues, an understanding of the neurobiology of the OM is needed to relate findings in
these tissues to those of the brain as well as to design and interpret ex vivo or in vitro OM studies. To that end, we discuss the
molecular, cellular and functional characteristics of cell types within the olfactory mucosa, describe the organization of the OM and
highlight its role in the olfactory neurocircuitry. In addition, we discuss various approaches to in vitro culture of OM-derived cells
and their characterization, focusing on the extent to which they reflect the in vivo neurobiology of the OM. Finally, we review
studies of ex vivo OM tissues and in vitro OM-derived cells from individuals with psychiatric, neurodegenerative and
neurodevelopmental disorders. In particular, we discuss the concordance of this work with postmortem brain studies and highlight
possible future approaches, which may offer distinct strengths in comparison to in vitro paradigms based on genomic

reprogramming.
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INTRODUCTION

A critical component of neuropsychiatric research is the delinea-
tion of neurobiological abnormalities in patients’ brains. Although
decades of postmortem studies have yielded vital insights, the
lack of access to living patients’ brain tissues has long been a
major hurdle in the field. Recently, several in vitro paradigms have
emerged, such as induced pluripotent stem cell (iPSC)' and
induced neuronal® cell technologies, which offer unique and
unprecedented opportunities to reprogram patients’ cells into
developing neurons and glial cells.

This review focuses on another paradigm with a similar purpose
and with distinct strengths; the olfactory mucosa (OM) tissue
approach. The OM harbors neurons and glial cells residing in the
nasal cavity and is readily accessible via biopsy. Neural tissues
without genomic reprogramming can be captured via olfactory
biopsy. OM tissues offer ex vivo and in vitro neuronal cells that may
more closely reflect in vivo neural characteristics of the donors.
OM cells also have regenerative potential, which permits them to
propagate in vitro, yielding neuronal or glial cells in sufficient
quantity for various assays.

Another unique advantage of this paradigm arises from the fact
that the OM is the peripheral component of the olfactory circuitry,
connecting olfactory sensory neurons (OSNs) to the olfactory bulb,
the neurons of which then connect to the olfactory cortex. As
such, neurobiological alterations in patients’ limbic regions may
affect or be reflected in the olfactory circuitry, including neural
cells in the OM. Indeed, Alzheimer's disease,>* schizophrenia®™®
and mood and anxiety disorders (review'®) are associated with

olfactory dysfunction, and OM derived from these patients exhibit
cellular and molecular alterations."’°

Recently, a growing number of groups have examined OM
biopsies in these disorders''%'72'"2> and others in which
olfactory dysfunction is yet to be characterized as a key
phenotype."?*2% An important question is to what degree and/
or in what ways these OM-derived cells reflect the pathophysio-
logic mechanisms in patients’ brains. Given that the OM is a
specialized neural tissue containing a regenerative neuroepithe-
lium whose identity is distinct from brain cells, alterations in the
OM cells can best be appreciated in the context of the
neurobiological characteristics specific to the OM tissue. The goal
of this paper, therefore, is to consider how the OM paradigm can
contribute to pathophysiologic understanding of neuropsychiatric
illnesses by reviewing the neurobiological context in which these
OM cells arise in vivo and in vitro.

CYTOARCHITECTURE AND MOLECULAR CHARACTERISTICS OF
THE OM

A distinctive characteristic of the OM is that it contains a
regenerative neuroepithelium. In this neural tissue, cells con-
tinually slough off and are replenished by newborn cells including
neurons and other cell types. Multipotent cells of the OM must
continuously produce replacement OSNs and other cell types in
the adult mammalian OM.>”?® This continual process of renewal
from multipotent cells to differentiated neurons offers a unique
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Cytoarchitecture and molecular characteristics of the olfactory mucosa (OM). The multilaminar organization of the rodent OM is

depicted on the left, and core molecular markers that define and distinzc;uish mammalian OM cell types in vivo are listed on the right. Most of
the studies identifying these markers have been reviewed elsewhere.3*3 *Markers that distinguish lamina propria mesenchymal stem cells
(LP-MSCs) have not been studied to the extent of markers for other OM cell types, but see Tome et al.,*” Lindsay et al.>® and Delorme et al.3° for
MSC-specific cluster of differentiation (CD) expression in these cells. GBC, globose basal cell; HBC, horizontal basal cell; INP, intermediate neural

progenitor; OEC, olfactory ensheathing cell; OSN, olfactory sensory neuron; SUS, sustentacular cell.

opportunity to capture the processes of neurodevelopment in
human studies.

Although the OM is located external to the brain, OSN axons
extend through the lamina propria (LP) and then the cribiform
plate to the brain where they synapse onto neurons of the
olfactory bulb. These olfactory bulb neurons then project to
primary olfactory regions, including the piriform and entorhinal
cortices and the amygdala.®® Cells within the projection regions
then synapse onto cells in other neuropsychiatric disease-related
regions, including the hippocampus, prefrontal cortex and
hypothalamus, thus enabling olfactory information to influence
emotional, cognitive and visceral functions.'?°

The current knowledge of the cytoarchitecture and molecular
profiles of the OM stems largely from rodent studies. The human
olfactory neuroepithelium (ON) is thought to recapitulate histo-
logic and molecular characteristics of the rodent counterpart,
though the precise degree of similarity remains under investiga-
tion. The ON exists as a pseudostratified epithelium in adult
mammals, comprising three primary layers; a basal layer, an
intermediate region and an apical layer (as depicted in Figure 1).
The apical layer is exposed to the nasal cavity and contains glial-
like supporting cells called sustentacular cells. The intermediate
region contains layers of immature and mature OSNs and exhibits
a distinct laminar organization in the rodent ON (Figure 1), with
the immature OSN layer residing closer to the basal lamina. In the
human ON, however, immature and mature OSNs are more
dispersed throughout, suggesting a less pronounced laminar
organization of OSNs than observed in the rodent ON.*%’

Deep to the intermediate region lies the basal layer that
contains globose and horizontal basal cells (GBCs and HBCs,
respectively), and is separated from the underlying LP by the basal
lamina. As shown in the mouse ON, GBCs and HBCs are the stem
cells that initiate the OSN lineage by proliferating into transit-
amplifying progenitors that give rise to immediate neuronal
precursors (INPs), which differentiate into immature and ultimately
mature OSNs.? Several rodent studies have delineated the
expression of transcription factors in ON basal cells to define the
lineage of ON cells.**** These defining factors and associated cell
types are listed in Figure 1. Depending upon the niche, both HBCs
and GBCs comprise stem cell populations in the rodent ON that
can be both neuro-competent and multipotent.?84°

In the mouse ON, the basal layer exhibits a distinct organization.
HBCs form a single layer next to the basal lamina, exhibit a
flattened morphology and express cytokeratin-5 and -14, whereas

Translational Psychiatry (2015), 1-12

GBCs exhibit a round morphology, do not express cytokeratins
and reside in a single layer superficial to the HBCs (Figure 1).*'*2
Similarities between rodent and human ON basal cells have been
observed,?>*'*? yet the laminar organization and morphologies of
the different basal cell types (flattened versus rounded) appear to
be less clearly defined in human ON.3%?! In addition, molecular
expression patterns of these basal cells may differ between
species, as robust expression of the low affinity nerve growth
factor p75NGFR has been observed in first- and second-layer basal
cells in human ON, but not in adult rodent ON.'>3%444> These
basal cells, whether analogous to rodent HBCs, GBCs or both, are
thought to comprise the presumptive neural precursor population
in human ON.

Juxtaposed to the basal cell layer, separated by the basal
lamina, is the LP. Rodent studies have shown this to be a neural
crest-derived ectomesenchymal tissue, which contains multi-
potent mesenchymal stem cells (LP-MSCs), olfactory ensheathing
cells (OECs), axons originating from the OSNs and the acynus of
Bowman glands.>”*¢%” Studies of LP-MSCs in rodents and humans
have shown that these cells are able to generate multiple cell
phenotypes, including, but not limited to, OECs and neural
lineages, both during development and in response to regen-
erative cues>>3738454748 The glial potential of OECs has been
extensively studied in the context of spinal cord transplantation
and has been reviewed elsewhere.**® OECs represent a highly
specialized, likely heterogeneous glial cell population that share
morphological and neurochemical features with Schwann cells
and astrocytes, although they differ from both. Their neurochem-
ical composition highlights their functional heterogeneity, as they
express sets of proteins shared with astrocytes (for example, glial
fibrillary acidic protein (GFAP) and s100p), oligodendrocytes and
oligodendrocyte precursors (04, NG2), CNS radial glia (basic lipid
binding protein, BLBP), as well as developmentally important
proteins CD 44, 1 integrin, P200 and Notch 3.3°

USE OF EX VIVO OLFACTORY TISSUE IN THE STUDY OF
NEUROPSYCHIATRIC AND NEURODEVELOPMENTAL DISEASES

As a regenerative neuroepithelium containing a range of
morphologically and molecularly distinct neuronal and glial cells,
the ex vivo ON represents a useful tool for examining cell type-
specific biological changes in neuropsychiatric illness. Compared
with all other in vitro neuronal models or blood cell studies, this
cell type-specific resolution is a unique feature of this paradigm.



As such, the ON has been utilized as a platform for histologic
assessment, investigation of intracellular signaling and gene
expression profiling.

Using a histologic approach to study neuronal differentiation,
Arnold et al.'® conducted immunohistochemical assessment of the
ON using markers for specific stages of neuronal differentiation in
ex vivo tissue from schizophrenic patients and controls. In this
study, basal cells, immature and mature neurons were marked
with antibodies for p75NGFR, GAP-43 and OMP, and densities of
immunoreactivity for these markers were used as indices for
specific stages of differentiation. Compared with controls, patients
exhibited decreased density of p75-labeled basal cells, a higher
density of GAP-43-labeled immature OSNs and an increased ratio
of immature to OMP-labeled mature OSNs. Together these
findings led to the postulate that neuronal lineage may be
disrupted in the ON and by extension in the CNS of patients with
schizophrenia.'®

In a similar paradigm, Pantazopoulos et al?® examined
chondroitin sulfate proteoglycans, prominent components of the
extracellular matrix, in ex vivo ON from schizophrenic patients
compared with controls. These extracellular matrix proteins are
critical for cellular differentiation and migration, and are
postulated as a possible mechanism for the altered neuronal
lineage as observed in by Arnold et al. In that study, the decreased
chondroitin sulfate proteoglycan density reported in mature OSNs
in schizophrenia is consistent with previous findings of reduced
proteoglycans in multiple brain regions of postmortem brains of
schizophrenic patients.?**' Thus, some of the neurobiological
characteristics observed in the ON can be extrapolated to those of
the brain.

Histologic changes in the ON that are specific to particular
neuropsychiatric illnesses may hold promise as potential biomar-
kers. In the postmortem ON of patients with Alzheimer disease,
Arnold et al. found higher frequency and abundance of amyloid-3
and paired helical filament-tau pathologies in ON derived from
Alzheimer patients compared with controls,'" essentially mirroring
previous observations in postmortem brains of patients (reviewed
in Hardy and Selkoe®?). If these and other findings described
above are extended to ON biopsy tissues of living patients, and
are correlated with clinical severity or diagnostic subtypes, they
could serve as cellular biomarkers of psychiatric illnesses.

The ON can be utilized for gene expression profiling of neural
cells with cell type-specific resolution. McCurdy et al'* used
microarray analyses in ex vivo tissues to demonstrate altered
expression of genes relating to cell cycle and neurogenesis in
schizophrenic patients, findings that may be consistent with
neurodevelopmental dysregulation. More recently, Mor et al.*'
used laser capture microdissection in ex vivo tissues to isolate
mature OSNs, and observed increased miRNA expression of
MiR-382 in schizophrenic patients versus controls. Notably, similar
dysregulation in MiR-382 has been observed in the postmortem
dorsolateral prefrontal cortex,>® again supporting the notion that
certain aspects of brain pathology may be represented in the ON.

Ex vivo ON tissues can also be examined for their electro-
physiological properties. OSNs can be dissociated from biopsy
tissues, readily identified by their morphology and examined
using calcium imaging, voltage sensitive dye imaging and other
electrophysiological measures. Indeed, Hahn et al.'® assessed
odorant induced calcium signaling in OSNs derived from
medication-free bipolar disorder patients and their matched
controls, and demonstrated decreased intracellular calcium
signaling in bipolar disorder patients. Given that dysregulated
calcium signaling has been consistently reported in bipolar
disorder patients in peripheral blood and brain,>*>® ON derived
from bipolar patients may be useful for furthering understanding
of the molecular pathologies of the disorder.

Ex vivo ON tissues also provide a unique paradigm for the study
of neurodevelopmental disorders, given the lifelong regeneration
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of ON and the presence of OSNs at all the stages of development.
One such developmental disorder where ex vivo ON has been
studied is Rett syndrome, which results in profound intellectual
disability and has been associated with deficits in neuronal
maturation. Ronnett et al?® reported fewer mature OSNs,
increased immature OSNs and abnormal morphology of mature
OSNs in Rett syndrome patients of various ages compared with
age-matched controls. These observations support the notion that
ON is a viable tool for studying neurodevelopmental aspects of
diseases characterized by abnormal neuronal development.

IN VITRO USE OF CULTURED OM-DERIVED CELLS IN THE
STUDY OF NEUROPSYCHIATRIC ILLNESSES

A second approach to the use of the OM in psychiatric research,
which complements the study of ex vivo OM tissues, is the in vitro
culture of OM-derived cells. Due to the regenerative nature of the
OM, OM-derived cells can be readily propagated and are
increasingly yielding insights into the cellular and molecular
underpinnings of neuropsychiatric illness.

Properties of adult human OM-derived cells in vitro

When developing in vitro models for neuropsychiatric ilinesses, it
is critical to consider the specific characteristics of cell types
arising in culture, which are determined by the tissue compart-
ment from which they originate and conditions in which they are
grown. In diverse variations of these factors, multiple approaches
to the culture of OM-derived cells have been developed including
the organotypic explants, dissociated cultures and neurospheres
(see Box 1 for specifics of culture paradigms). Common to all these
paradigms is that they seek to utilize regenerative characteristics
of the ON and its underlying LP as neural tissues, within which
progenitors differentiate into neurons, sustentacular cells and
OECs.>"™>°

The experimental utility of cultured OM cells as a model for
neuropsychiatric illness is, in part, related to the extent to which
cultured cells recapitulate the characteristics of in vivo OM cells or
of donors’ neurobiological makeup. To define neuronal precursors,
immature neurons or OSNs, a rapidly increasing database on the
expression of molecular markers in cell types of each differentia-
tion stage can be used as a guide. As described in Figure 1, human
and rodent ON cells at different stages of neuronal differentiation
in vivo are characterized by expression of molecular markers such
as Cytokeratin-5, Sox2, Pax6, Ascl1, Neurog1, NeuroD1, Gap43 and
OMP. Neuronal precursors can be defined as proliferative cells
whose progeny ultimately become neuronal cells. Immature
neurons and OSNs do not share this proliferative capacity, and
OSNss are further defined functionally by their capacity to respond
to odorants.”%”"

Numerous markers have been used to characterize OM-derived
cells in vitro (Figure 2). While some markers, such as NeuroD1 and
NCAM, are selectively expressed in neuronal cells at varying stages
of differentiation in vivo, the selectivity or appropriateness of other
markers is less clear. For example, B-tubulin lll and vimentin are
expressed not only in olfactory neurons in vivo, but also in other
cell types,”*”* thus limiting their utility as sole markers for neurons
in vitro despite their widespread expression. While nestin has been
recognized as a neural stem cell/progenitor marker in the
mammalian brain, its expression in adult human ON in vivo has
been demonstrated exclusively in sustentacular cells as opposed
to basal cells of neural lineage.*> LP-MSCs, however, do express
nestin in vitro, suggesting that the use of nestin immunoreactivity
as a stem cell marker applies specifically to LP-derived neural stem
cells 33

Adult human OM-derived cells, originating from non-
dissociated biopsy tissue and cultured in a monolayer in serum-
containing media, are capable of expressing mRNA transcripts or
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Box 1 In vitro culture paradigms of adult human olfactory mucosa
(OM)-derived cells

Human OM is harvested from the nasal septum or turbinates
typically by biopsy, or also by exfoliation. Cells can be
subsequently propagated from the olfactory neuroepithelium
(ON),>” its underlying lamina propria (LP)*° or from tissue
containing both regions.3® Protocols have been established to
enhance the neural stem cell properties of OM cells through
neurosphere®”®' and monolayer culture.®?

(A) Organotypic-monolayer cultures: Non-dissociated adult
human ON biopsy tissues, containing a portion of underlying
LP, can be utilized for propagating OM cells in monolayer
cultures in serum-containing media on uncoated or fibronectin-
coated plates®®®%6243 or on a Matrigel substrate.?>®* In cultures
on fibronectin-coated plates, epithelial cells first grow out from
biopsy tissue to form sheets, over which grow round, more
rapidly proliferating cells after 24-48 h.3%5°

(B) Neurosphere cultures: Multiple groups have reported that
cells collected from the human ON itself (with or without some
underlying LP) can be cultured in neurospheres from dis-
sociated biopsy tissue. In serum-containing media, when adult
human ON tissue (without underlying LP) is first dissociated,
cells with the bipolar morphology of neurons, along with
presumptive olfactory ensheathing cells, are present®' Such
cells soon disappear in serum-containing media, and are
replaced by a proliferating population, which form spheres
and can be cultured for extended periods.®’*>" Alternatively,
adult human OM-derived cells can be dissociated and
propagated on poly-t-lysine-coated plates in defined medium
with EGF and FGF2 to form ‘primary neurospheres’, before being
plated onto uncoated or fibronectin-coated plates and main-
tained in serum-containing medium in monolayer culture.'®*’

Additional approaches that have been employed in rodent
studies include culture of adult rat ON-derived cells on a feeder
layer of newborn rat glial cells,® and co-culture of ON-derived
cells with a 3T3 cell feeder layer at the air-liquid culture
interface.®®

proteins characteristic of a number of OM cells types in vivo
(Figure 2). These include NeuroD1, Gap43, TrkB, NCAM, B-tubulin
I, OMP, OcNc1 and OR3A1.25:30616366.74 \1arkers of sustentacular
and glial cells, such as Sus4, S100 and GFAP, and mesenchymal
stem cells (Stro-1) have also been reported to be expressed in
human OM culture cells (Figure 2).3036-384966 gome ON-derived
cells are also capable of progressing from replication (indicated by
BrdU incorporation) to terminal differentiation (OMP expression)
in culture.® At a functional level, some human ON cells cultured
under these conditions demonstrate the odorant responsiveness
specific to OSNs, with ~5.5% of cells in culture responding to
helional, a ligand for the OR3A1 odorant receptor,®® and up to
10% of OMP-positive cells responding to a mixture of other
odorants.”! Receptors for the key neurotransmitters serotonin
(5-HT2 receptors), dopamine (D2 receptor) and glutamate (NMDA
receptors), which have been identified in cultured ON cells, also
display functional activity.®® Benitez-King and colleagues collected
nasal exfoliates>**> and reported that the cells harvested this way
and propagated in monolayer culture expressed with varying
frequencies a number of potential cell type-specific markers
(Figure 2) and expressed action potentials.?®
Neurosphere-forming cells cultivated from either the ON alone,
or from both the ON and LP, express markers such as NCAM,
B-tubulin 1l TrkA/B, nestin and Map2 (Figure 2).'6°7:61.65767
Overall, the expression of ON neuronal lineage markers, and of
other putative neuronal markers, suggests that many OM-derived
culture cells may be of a neural lineage. To date, although multiple
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OM-derived cell culture paradigms have been used in various
studies, the relative expression of cell type-specific markers by
cells cultured in these paradigms has not been directly compared.
When indirectly compared, some similarities between paradigms
exist in the expression of multiple markers, such as NCAM and
nestin (Figure 2), suggesting a degree of consistency among
paradigms employing serum-containing media. However, differ-
ences also exist, such as in B-tubulin lll, which is expressed in 35%
of ON-derived cells in the study of Matigian et al,'® in the majority
of cells in multiple other studies®”®'®” and in ~100% of ON-
derived cells in the study of Benitez-King et al.> Overall, further
work to delineate the degree of consistency between culture
paradigms, including characterization of cellular heterogeneity
and marker expression, is needed.

The adult human olfactory LP alone can also be used to culture
progenitors of ectomesenchymal origin, which are particularly
suitable for the in vitro propagation of presumptive OECs.3%7>
When cultured in serum-free media supplemented with NT3,
almost all adult human LP-derived proliferating cells express OEC
markers S100 and GFAP, ~80% express p75NGFR, whereas none
express HNK1 (a marker for Schwann cells).>®”* These cells hold
promise for autologous transplantation in the treatment of spinal
cord injury.>%*97¢

In vitro culture of OM-derived cells from rodents and fetal humans

The OM paradigm has been employed using in vitro cells from
rodents, shedding light on the stem cell potential of OM-derived
cells. For example, proliferation of neuronal precursors and
successful genesis of mature OMP-positive OSNs from adult rat
ON-derived cells in culture has been reported.’® When adult
rodent ON-derived cells are co-cultured with a 3T3 cell feeder
layer at the air-liquid culture interface, cells with the molecular
phenotypes of GBCs, HBCs, sustentacular cells and neurons can be
generated, which can successfully reintegrate into the ON after
transplantation.®® Monolayer culture of rat p75NGFR-expressing
OM-derived cells, which were purified by fluorescence-activated
cell sorting, has been used for characterization of putative OECs
in vitro.”” Cells from the mouse olfactory LP, when cultured in a
monolayer, demonstrate the same OEC phenotype and cell type-
specific marker expression as human LP-derived cells.>® When
cultured in spheres, mouse olfactory LP-derived cells have the
capacity to integrate into lesioned hippocampus in vivo, differ-
entiate into neurons and restore learning and memory.”®
Numerous studies have used OM-derived cells from pre-natal/
neonatal rodents”®"®8 and fetal humans,2°° in part because such
cells can be propagated more readily. This is observed under
controlled neurosphere assay conditions, in which ON-derived
neurospheres are generated with progressively lower efficiencies
from E13.5 mice, P5 mice and adult mice.3®> Importantly, neuro-
spheres derived from E13.5 and adult animals contain cells with
different morphologies, which express different cell type-specific
markers and proliferate at different rates.’' As a result, the extent
to which findings in OM-derived cells from neonatal and early
postnatal animals can be extrapolated to adults may be limited.

The effects of culture environment on neuronal identity of
OM-derived cells

The properties of OM-derived cells, such as their proliferation,
morphology and expression of cell type-specific markers, can be
heavily influenced by the in vitro environment, particularly culture
medium®76%616566 (Taple 1). In culture, BDNF (brain-derived
neurotrophic factor), NT3 and NT5 promote ON-derived cell
survival,”> FGF2, FGF8, EGF and TGF-a (transforming growth
factor-alpha) have been wused to stimulate progenitor
proliferation,2%**** and serum deprivation, Db-cAMP, IGF-I (insu-
lin-like growth factor-l), retinoic acid, forskolin and sonic hedge-
hog have been used to drive human ON culture cells toward a
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Figure 2. Expression of putative molecular markers of stem cells, neural progenitors, neurons and glia by various olfactory mucosa (OM) cell
types, both in adult OM in vivo and in cells generated from adult OM tissues in vitro. Studies of OM explant tissues or dissociated cells
immediately ex vivo are not included. Percentage values are approximate, and refer to the proportion of cells in culture which express each
marker. Values are only shown for markers displaying consistency between studies, and only for cells grown in serum-containing media.
*, studies using neonatally-derived rodent or fetally-derived human ON culture cells; & markers whose significance in OM culture cells is
uncertain due to a discordance between human and rodent (for example, p75NGFR), low/uncertain levels of expression in adult ON in vivo
(NF-M/H, Nestin, NeuN, MAP2) or a possible lack of cell type specificity (p75NGFR, Vimentin); *# markers whose expression increase when cells
are cultured in base (unsupplemented defined) media rather than serum-containing media; A, mesenchymal stem cell cluster of
differentiation (MSC-CD) markers, used to confirm cell type, vary among studies. CK, cytokeratin; INP, intermediate neural progenitor; LP,
lamina propria (indicates cultures derived solely from LP, without ON); LP-MSC, lamina propria mesenchymal stem cell; ND, not detected; NTR,
neurotransmitter receptor; OEC, olfactory ensheathing cell; ON, olfactory neuroepithelium; OSN, olfactory sensory neuron.

neuronal phenotype.>°> Proliferation of human LP-derived cells investigations in a range of neuropsychiatric, neurodegenerative
with an OEC phenotype is promoted by NT3, BDNF or NGF.”” and developmental disorders.

Human LP-derived cells can be driven toward a neuronal The ability to investigate functional cellular characteristics
phenotype with a cocktail of retinoic acid, forskolin and sonic represents a distinctive opportunity afforded by the OM-derived
hedgehog,”” or dexamethasone, insulin, 3-isobutyl-1-methyl- cell paradigm. The processes of cell proliferation, adhesion,
xanthine, indomethacin and ethanol,”® and toward a osteoblast motility, metabolism and apoptosis have been investigated by
phenotype with a cocktail of dexamethasone, t-ascorbic acid-2- Mackay-Sim and colleagues, who showed that ON-derived cells

phosphate, and B-glycerophosphate’® or NaH,P0,3° Other from schizophrenia patients (but not bipolar disorder patients),
additional factors, many of which are relevant to the control of when cultured in a monolayer from non-dissociated biopsy tissue,
neurogenesis and differentiation in vivo, have also been shown to proliferate more rapidly than ON-derived cells from healthy
modulate OM-derived cell proliferation, morphology and expres-  controls.'*'®'” Such cells were also reported to adhere less
sion of cell type-specific markers in vitro (Table 1). effectively to the culture plate than those from controls, both

during establishment of the initial explant'> and during sub-

sequent monolayer culture.”® This abnormal adhesion was

THE USE OF OM-DERIVED CELLS IN PSYCHIATRY AND accompanied by increased cell motility, decreased vinculin-
NEUROSCIENCE RESEARCH positive adhesion complexes and faster disassembly of focal
Historically, the tools to study neural function and mechanisms of adhesions in schizophrenia ON-derived cells than controls.'®
drug action in humans at a cellular level have proved elusive. OM- Metabolic activity of ON-derived cells has been investigated in

derived cells have emerged as a promising platform for such schizophrenia and Parkinson’s disease, and was reduced in

Translational Psychiatry (2015), 1-12
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Table 1. /n vivo and in vitro factors influencing the proliferation, differentiation and survival of cells within, or derived from, the olfactory mucosa
(OMm)
Factor Cell type impacted Effect observed in vivo Effect on OM-, ON- or LP-derived cells in vitro
in vivo
TGF-a Stem cell Stimtélgates proliferation and progression of rodent Stimulates ON-derived cell (HBC) proliferation®®
HBCs
EGF Stem cell Stimulates proliferation of rodent HBCs*® Stimulates ON-derived cell (HBC) proliferation®®
ANp63 (p63) Stem cell Required for rodent HBC genesis and differentiation'®® —
Sox2 Stem cell Increases Ascl1 expression and differentiation of rodent —
GBC/HBCs into neural progenitors®
Meis1 Stem cell Suppresses Ascl1 expression and stem cell —
differentiation®
Foxg1 Stem cell Promotes differentiation of rodent Sox2-positive stem —
cells into neural progenitors'®!
Retinoic acid Stem cell Stimulates basal cell proliferation and/or differentiation Promotes ON-derived cell (HBC) differentiation®
after lesion'®? and LP-derived neuronal differentiation®’
Uncx Early neural Promotes proliferation of neural progenitors and —
progenitor survival of OSNs'?®
FGF2 Early neural Enhances neural progenitor proliferation'® Stimulates OM-derived cell
progenitor proliferation3”:8390:105
FGF8 Early neural Promotes neurogenesis and progenitor proliferation'® —
progenitor by enhancing Sox2 and repressing Meis1 expression®*
Ascl1 Early neural Required for maturation of early neural progenitors —
progenitor into INPs'07:108
Six1 Early neural Required for maturation of early neural progenitors —
progenitor into INPs'%®
Ngn1 Early neural Required for maturation of neural progenitors into —
progenitor INPs'08
BMP2,4,7 Early neural At lower concentrations, promotes survival of newly —
progenitor, formed OSNs (BMP4 only),110 at higher concentrations
immature OSN inhibit neurogenesis by targeting Ascl1 for
proteolysis'"
FST Early neural Promotes progenitor proliferation by antagonizing —
progenitor GDF11 and ACTpB''>'"3
ACTBB (activin)  Early neural Inhibits progenitor proliferation by promoting —
progenitor proteolysis
Hes1 Early neural Suppresses Ascl1-mediated neural progenitor —
progenitor maturation''*'"*
Hes5 (with Early neural Suppresses Ngn1-mediated neural progenitor —
Hes1) progenitor maturation''*'">
MMP2, MTI- Early neural Downregulated following bulbectomy in rodent —
MMP progenitor, INP GBCs''®
TIMP Early neural Upregulated following bulbectomy in rodent GBCs''® —
progenitor, INP
GDF11 INP Inhibits proliferation of INPs by inducing reversible cell —
cycle arrest''>113
Runx1 INP Stimulates INP proliferation’"” Stimulates ON-derived cell proliferation’"”
NPY INP Promotes, and is required for, INP proliferation and Increases OM-derived cell proliferation via the Y1
maturation' 8121 receptor and PKC-dependent ERK1/2
phosphorylation''®'?'
Peptide YY INP Regulates INP differentiation’'®'"® Increases OM-derived cell proliferation''®'"®
Atf5 Immature OSN Promotes survival and maturation of immature OSNs'?> —
EmxI2 Immature OSN Promotes survival and maturation of immature OSNs'?®> —
Lhx2 Immature OSN Promotes survival and maturation of immature —
OSNS'I24,'I25
ZFP423/0AZ Immature OSN Inhibits maturation of immature OSNs'2® —
LIF1 Immature OSN Promotes survival and inhibits maturation of immature Increases OM- and ON-derived cell
OSNs'27128 proliferation,®>'?° decreases apoptosis, inhibits
differentiation?”'2#
BDNF Multiple cell types May provide trophic support to maturing ON Promotes LP-derived glial cell proliferation” and
cells'30132 neuronal differentiation®”
NT3,4 Multiple cell types May provide trophic support to maturing ON cells'*'  (NT3) promotes LP-derived glial cell
proliferation”®
NGF Multiple cell types Expressed in neuronal ON layers, may provide trophic Promotes LP-derived glial cell proliferation””
support to maturing ON cells''
PACAP — — Promotes proliferation of OM-derived cells'3*
IGF-I — — Decreases OM-derived cell proliferation and
promotes cell differentiation®®
Nitric oxide — — Inhibits ON-derived cell proliferation and
promotes differentiation'3*
Serum — — Decreases ON-derived cell proliferation and
deprivation increases neuronal differentiation®52
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Table. 1. (Continued)
Factor Cell type impacted Effect observed in vivo Effect on OM-, ON- or LP-derived cells in vitro
in vivo
Db-cAMP — — Promotes ON-derived cell differentiation®>®’
Forskolin — — Promotes ON-derived cell differentiation®
Sonic — — Promotes ON-derived cell (HBC) differentiation®®
hedgehog
Abbreviations: BDNF, brain-derived neurotrophic factor; GBC, globose basal cell; HBC, horizontal basal cell; IGF-I, insulin-like growth factor-I; INP, intermediate
neuronal precursor; LP, lamina propria; NGF, nerve growth factor; ON, olfactory neuroepithelium; OSN, olfactory sensory neuron; TGF-a, transforming growth
factor-alpha.

Parkinson’s disease.'® Increased cell death has been observed in
ON-derived cells from bipolar disorder patients (but not schizo-
phrenia patients), relative to healthy controls,'® although a
subsequent study reported increased caspase-3/7 activity in ON-
derived cells from schizophrenia patients, suggesting increased
apoptotic activity.'®

Cellular processes governing microtubule formation and
cytoskeletal structure have also been investigated in OM-derived
cells from individuals with psychiatric illness. Dynamic structural
processes have been monitored across time in ON-derived cells,
and increased microtubule stability in ON-derived cells from
individuals with schizophrenia than in ON-derived cells from
controls has been reported.”®® In addition, in a paradigm
employing exfoliation and monolayer culture, ON-derived cells
from schizophrenia patients were described by Benitez-King and
colleagues to display abnormal microtubule organization, whereas
ON-derived cells from bipolar disorder patients displayed
decreased microtubule length and cytoplasmic B-tubulin I
protein expression.>*?> Decreased L-type voltage-activated cal-
cium currents in the ON-derived cells from individuals with
schizophrenia were also reported in this study.”® Overall, these
studies suggest the potential utility of OM-derived cells for the
investigation of cellular function in neuropsychiatric disorders. The
reported findings in OM-derived cells implicate processes and
pathways, which have been independently implicated in schizo-
phrenia and bipolar disorder by postmortem studies, such as in
neurogenesis,'**'3” neuronal migration'*”"'*® and apoptosis.'*’
However, they also hold the promise of revealing aspects of neural
cell function in psychiatric illness that are difficult to investigate
using traditional approaches.

The OM-derived cell culture approach also provides a powerful
platform to explore mechanisms of drug action, and to target
pharmacologically the molecular pathways of interest in psychia-
tric disorders. Studies have been performed investigating the
effects of pharmacological agents on intracellular signaling,
molecular expression and cell function in ON-derived cells derived
from schizophrenia, bipolar disorder and major depressive
disorder patients. Feron et al.'*® demonstrated that dopamine
increases apoptosis in control ON-derived cells, but decreases
apoptosis in schizophrenia cells. Cellular effects of lithium, a
first-line bipolar disorder treatment, have also been explored in
ON-derived cells, revealing amelioration by lithium of ionic stress-
induced apoptosis and TRPM2 overexpression.'*’ In major
depressive disorder, there is evidence that ON-derived cells
display decreased nuclear translocation of the glucocortocoid
receptor, GR, in response to glucocorticoids relative to controls.'*?
This diminished receptor translocation was accompanied by
greater cytoplasmic association of GR with the immunophillin
FKBP51.'" These studies suggest the potential utility of ON-
derived cells for understanding current treatments and develop-
ing novel pharmacological agents in psychiatry.

The experimental potential of OM-derived cells from psychiatric
patients has also been highlighted by studies of subcellular
molecular abnormalities. As in work with ex vivo ON tissue, many

molecular and cellular studies using ON-derived cells have
demonstrated a concordance with postmortem brain studies.
ON-derived cells from Alzheimer's patients exhibited increased
amyloid precursor protein levels,'* along with other protein
alterations,”® consistent with changes in multiple brain regions in
the illness.>? Dysregulation of gene expression in multiple cellular
pathways, including cell cycle regulation,'*'” oxidative stress
response,'®'** focal adhesion'® and axon guidance'® have been
reported in ON-derived cells from schizophrenia patients, some of
which may be meditated by altered histone H3 lysine 4
trimethylation."*™ These findings are consistent with postmortem
brain studies in schizophrenia showing aberrant histone H3 lysine
4 trimethylation within the GAD1 gene'* and dysregulated
expression of immune genes.*®' Protein changes in oxidative
stress and cell adhesion pathways have also been recently
reported in a preliminary human iPSC study.'*® As described
earlier, increased expression of miR382 has been reported in ON-
derived cells from individuals with schizophrenia,?’ mirroring
findings in ex vivo microdissected ON tissue?' and postmortem
prefrontal cortex.®® In ON-derived cells from bipolar disorder
patients, gene expression changes within the phosphatidylinositol
signaling pathway' have been reported. In Alzheimer's and
Parkinson'’s diseases, OM-derived cells have also demonstrated
altered gene and protein expression profiles, implicating mito-
chondrial function, oxidative stress and xenobiotic metabolism in
these illnesses.'®?? Finally, OM-derived cells have also yielded
insights into molecular pathologies in developmental disorders. In
an early study interpreted as suggesting blood-brain concordance
of FMRP deficits in fragile X syndrome, decreased FMRP protein
was observed in ON-derived cells from affected individuals.'*® LP-
MSCs from individuals with familial dysautonomia, which is caused
by mutations within the IKBKAP gene, display lower IKBKAP mRNA
expression, decreased IKAP/hELP1 protein, altered IKAP/hELP1
subcellular localization and dysregulation of genes involved in cell
migration and cytoskeletal reorganization.”” Overall, these studies
indicate the potential for OM-derived cells to shed light on
molecular abnormalities associated with brain disorders, and the
concordance of many OM-derived cell studies with postmortem
findings highlights the potential for OM-derived cells to reflect
pathophysiological mechanisms in the brain.

CONCLUSIONS

Advantages and challenges for olfactory paradigms in the study of
neuropsychiatric illnesses
Olfactory mucosal biopsy studies afford a unique opportunity in
neuropsychiatric research, offering ex vivo and in vitro neural cells
from living individuals, which harbor biological characteristics that
may be more relevant to neuropsychiatric disease than blood
cells'®® or skin fibroblasts. Figure 3 provides a summary of the
previous and potential uses of OM-derived cells in psychiatric and
neuroscience research, as described throughout this review.

The OM model has a number of strengths. First, ex vivo OM
tissues were previously exposed to the in vivo neurohormonal
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\ Focus of published research in psychiatry

> Neuronal differentiation, ECM composition in schizophrenia 1320
t Amyloid beta and Tau accumulation in Alzheimer’s disease™

OSN maturation in Rett Syndrome?®

Gene expression —C: Cell cycle and neurogenesis in schizophrenia®*
MicroRNA in schizophrenia?!

Source Paradigm Examples of experimental approaches

Ex vivo Protein

tissue abundance/localization
(immunohistochemistry)
Intracellular
signaling

In vitro > Assays of cellular

B cultured function
cells

Olfactory mucosa
{epithelium with or
without lamina
propria) Effects of drugs or
pharmacological agents

Protein abundance/
localization (immuno-
histochemistry, western
blotting, mass
spectrometry)

Gene expression

= Odorant-induced Ca** signaling in bipolar disorder?

Cell proliferation, adhesion in schizophrenia, bipolar disorder4 1> 17. 18

Cell metabolism, apoptosis in schizophrenia, bipolar disorder and
Parkinson’s disease!* 16

Microtubule formation and stability in schizophrenia®®>
Voltage-activated calcium currents in schizophrenia and bipolar
disordert

Dopamine effects on apoptosis in schizophrenia4?

Lithium (mood stabilizer treatment) effects on apoptosist

Glucocorticoid effects on glucocorticoid-receptor translocation in
major depressive disorderi4?

Amyloid beta and other proteins in Alzheimer’s disease?3 143
Microtubule organization in schizophrenia®® 2>

Mitochondrial function, oxidative stress and xenobiotic metabolism
in Alzheimer’s and Parkinson’s diseases!®- 22

FMRP in Fragile X syndrome®*?

IKAP/hELP1 protein in familial dysautomomia®’

Cell cycle regulation, oxidative stress, focal adhesion and axon
guidance in schizophrenial# 16, 17. 144

MicroRNA in schizophrenia®!

Phosphatidylinositol signaling pathway in bipolar disorder*

Mitochondrial function, oxidative stress and xenobiotic metabolism
in Alzheimer’s and Parkinson’s diseases'® 2?

Epigenetic markings —————> Histone methylation in schizophrenia'**

Figure 3.

milieu and contain neurobiological signatures of the in vivo
condition. As such, they can serve as a point of reference for
in vivo and in vitro OM findings, bridging the gap between these
two approaches. Second, OM biopsies, though limited by the
quantity of tissue available, can be safely obtained from the same
subjects multiple times (monthly, up to three consecutive times in
our human subjects protocols) and can be fitted with longitudinal
clinical study designs. In this approach, OM biopsies are obtained
in specific phases of the illness, while patients’ clinical conditions
are carefully characterized. Interpretation of neurobiological
parameters in the context of clinical changes is a rare opportunity
in neuropsychiatric research. Examples of such use include but are
not limited to the collection and examination of OM biopsies from
(1) individuals at risk for schizophrenia and unaffected relatives
before and after the onset of illness, (2) mood disorder patients
before, during and after disease episode (such as in depressive
disorders or bipolar disorder), (3) any neurodevelopmental or
psychiatric disease before, during or after treatment. Finally, one
promising aspect of using ex vivo OM tissues in psychiatric illness
involves their relation with the broader olfactory neurocircuitry:
olfactory mucosa — olfactory bulb — olfactory cortex. Disease-
associated alterations within the ON may not occur in isolation,
and may reflect brain abnormalities within the broader olfactory
neurocircuitry. Indeed, numerous structural and functional decre-
ments associated with neuropsychiatric diseases are reported in
many of these brain regions. Olfactory circuitry can now be
interrogated by psychophysical testing, electroolfactogram and

Translational Psychiatry (2015), 1-12

Examples of the use of ex vivo olfactory tissues and in vitro OM-derived cells in psychiatric research.

evoked potentials. Combining these measures with molecular and
cellular measures derived from OM biopsy tissues can help us to
link molecules to cellular changes and then to circuit activity.

An important consideration in using ex vivo tissues is that the
human ON is patchy and thus some biopsy tissues may not
contain OSNs. Approximately 70 to 80% of ON biopsy tissues
obtained from nasal septum or middle turbinate yield olfactory
receptor neurons when dissociated immediately from the biopsy
(unpublished observations). This is an important consideration,
however, particularly for histologic examination of OE tissues. As
the neuroepithelial patches are intermixed with respiratory
epithelium, quantitative assessment of protein immunoreactivity
or mRNA needs to be conducted by delimiting neuroepithelial
versus respiratory patches in histologic sections. Under in vitro
conditions, however, such limitations do not appear to figure
greatly into the overall cellular composition of resultant culture
cells. Nonetheless, quantitative assessment of cell type-specific
proteins, whether neuronal, glial or epithelial, should be a guide
for including cell lines for between-group comparison studies.

As noted in the preceding sections, the in vitro ON paradigm is
particularly informative in studies of active cellular processes and
pathways, where pharmacologic manipulations are to be tested or
where larger numbers of cells from an individual are required.
Importantly, as these cells are of neuronal and glial lineages they
better represent the molecular dysregulations of neuropsychiatric
disease than those of other cell types used in in vitro studies, such
as blood cells. Indeed gene expression profiles of cells derived
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Table 2.

General comparison of some characteristics of olfactory mucosa (OM)-derived, induced pluripotent (iPS) and induced neural (iN) stem cells
relevant to the use of these cells in the study of psychiatric, neurodevelopmental and neurodegenerative disorders

Adult human iPS cells

Adult human iN cells

Characteristic Adult human OM-derived cells
Ease of collection Moderate® High
Current cost to prepare Low-moderate High

cells for assay
Extent of in vitro
modification

Little modification: only the
influence of in vitro conditions

Availability of ex vivo Yes No
neural reference tissue
Proliferative capacity of
cells used for assays
Capacity to be driven to
neuronal differentiation
Cellular phenotype
commonly used in assays
Action potential
generation

Moderate-high Moderate

Varying between protocols
Proliferative putative neural

progenitor cell
To be further demonstrated®®  Yes

Substantial modification:
reprogramming for pluripotency plus the
influence of in vitro conditions

Robust, high efficiency

Differentiated neuron

High
Moderate

Substantial modification: reprogramming
for somatic conversion plus the influence
of in vitro conditions

No

None

Robust, moderate efficiency

Differentiated neuron

Yes

Detailed discussion of iPS and iN cell paradigms is beyond the scope of this review, but these paradigms have been reviewed extensively elsewhere.'? See text
for details and references for OM-derived cell studies. ?Collection of OM tissues is performed by a qualified otorhinolaryngologist using local anesthetic.

from OM biopsy more closely resemble brain tissue, stem cells and
neurons derived from stem cells than blood cells (see Horiuchi
et al.”° for a comparison of gene expression profiles of brain
tissue, OM cells, stem cells and iPSCs). While iPS and induced
neuronal cell paradigms offer unparalleled opportunities to
generate differentiated neurons in vitro from living individuals,
there has been considerably less study of the capacity of OM cells
to generate differentiated neurons. Nevertheless, OM cells have
distinct advantages (Table 2). The timeline from OM biopsy to
availability of proliferated precursor cells is ~4 weeks, whereas
iPSC reprogramming protocol timelines are considerably longer,
varying on the basis of source cells and methods. In addition, OM
cells are readily proliferative and can be rapidly expanded over
multiple passages. Thus OM studies have lower costs and require
less time and labor (Table 2).

Most importantly, OM tissues are obtained as neural tissues
(Table 2) and thus they do not require genomic reprogramming as
with iPS or induced neuronal cells. A challenge in the iPS and
induced neuronal paradigms is to determine to what degree
phenotypes of these cells have been modified compared with
those of brain cells. In the OM approach, however, neurobiological
properties, such as epigenomic profiles, may be less modified than
in the cells genetically reprogrammed. Given that the ex vivo
tissues are available as the source of in vitro cells, the extent of
modification could at least be evaluated in OM cells.

There are a number of challenges for researchers working with
in vitro OM cells. Differences in protocols between research groups
must be understood and controlled for, in particular during
studies with OM-derived cells since such cells may be susceptible
to variation in the means of cell harvest and the culture
environment. To what degree OM-derived cells assume character-
istics of differentiated neurons or glia is not entirely clear at
present. As discussed earlier, for these olfactory paradigms to
provide consistent insight into the pathophysiology and treat-
ment of neuropsychiatric illnesses, additional characterization of
OM-derived cells in different protocols is required to determine
the characteristics of their molecular phenotypes and the
similarities and differences between protocols. Ultimately, the
key question surrounding the use of OM tissues and OM-derived
cells in the study of psychiatric illness will be in what way findings
from these studies can shed light on abnormalities in other
important brain regions and neural circuits in psychiatric illness.
This will involve the examination of olfactory-derived tissues and

function at multiple levels of the olfactory circuit, as well as direct
parallels between OM findings and brain pathology.
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