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Major depressive disorder (MDD) is a common psychiatric illness characterized by low mood and loss of interest in pleasurable
activities. Despite years of effort, recent genome-wide association studies (GWAS) have identified few susceptibility variants or
genes that are robustly associated with MDD. Standard single-SNP (single nucleotide polymorphism)-based GWAS analysis
typically has limited power to deal with the extensive heterogeneity and substantial polygenic contribution of individually weak
genetic effects underlying the pathogenesis of MDD. Here, we report an alternative, gene-set-based association analysis of MDD
in an effort to identify groups of biologically related genetic variants that are involved in the same molecular function or cellular
processes and exhibit a significant level of aggregated association with MDD. In particular, we used a text-mining-based data
analysis to prioritize candidate gene sets implicated in MDD and conducted a multi-locus association analysis to look for
enriched signals of nominally associated MDD susceptibility loci within each of the gene sets. Our primary analysis is based on
the meta-analysis of three large MDD GWAS data sets (total N¼ 4346 cases and 4430 controls). After correction for multiple
testing, we found that genes involved in glutamatergic synaptic neurotransmission were significantly associated with MDD (set-
based association P¼ 6.9� 10� 4). This result is consistent with previous studies that support a role of the glutamatergic
system in synaptic plasticity and MDD and support the potential utility of targeting glutamatergic neurotransmission in the
treatment of MDD.
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Introduction

Major depressive disorder (MDD) is a common, disabling and
frequently recurrent mood disorder that affects up to one in six
individuals worldwide during their lifetime.1 A number of
antidepressant treatments exist, but due to modest rates of
remission and substantial rates of recurrence, there is a
pressing demand for new interventions with better efficacy.
Identification of specific genetic risk factors could help to
elucidate the neurobiological basis of MDD, which would
facilitate the development of novel treatment and possibly
even prevention strategies.2

To date, efforts to identify specific susceptibility genes in
MDD have had limited success. Linkage studies have
suggested several regions in the genome that may harbor
susceptibility genes forMDDbut generally without replication.3

Of note, two recent linkage studies4,5 have reported genome-

wide significant linkage to chromosome 3p26-3p25, with a

peak signal near the metabotropic glutamate receptor 7 gene

GRM7. Still, due to the small sample sizes and the discrepancy

in the phenotype classification in the two studies, larger family-

based samples will be needed to confirm this finding.6

Genome-wide association studies (GWAS) of MDD have

likewise reported largely inconclusive results.2,7–14 The

pathogenesis of MDD is likely to be characterized by extensive

etiological heterogeneity,11,15 complex interaction of genetic

and non-genetic factors,16 as well as substantial polygenic

contribution of individually weak effects,12,17 all of which are

difficult to capture with single-SNP (single nucleotide poly-

morphism)-based association tests typically used in current

GWAS analyses.
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Here we utilize a multi-locus, gene-set-based association
analysis—also known as pathway analysis18 or functional
gene group analysis19—that uses previous biological knowl-
edge of molecular function and cellular processes to facilitate
the genetic dissection of MDD. A number of statistical
strategies and methods exist for conducting gene-set-based
analysis,18,20,21 but the basic goal of the proposed methods is
to look for sets of biologically related genetic variants that, in
aggregate, show enriched association with a target phenotype
beyond what would be expected by chance. Typically, well-
established canonical pathways or functional annotations of
genes and proteins are used to define these sets of
biologically related genetic variants. Of note, recent applica-
tions of gene-set-based GWAS analysis have provided new
biological insights into the genetic basis of several major
psychiatric disorders, including schizophrenia,21,22 bipolar
disorder20 and autism.23,24

Gene-set-based association analysis has three major
advantages that complement standard single-locus-based
GWAS analysis. First, gene-set-based analysis has improved
statistical power to detect subtle and collective effects of
multiple genetic variants over single-locus-based tests under
various polygenic disease models.25 This is particularly
noteworthy given that recent GWAS studies have indicated
substantial polygenic contribution of thousands of common
genetic variants to major psychiatric disorders, including
MDD.17,26 We presume that such polygenic risk variants
underlying MDD would involve dysfunction of specific
molecular networks or cellular pathways, as appears to be
the case in other complex disorders.21,23 Secondly, gene-set-
based analysis is robust to the extensive genetic hetero-
geneity of complex disorders.20 Different combinations of
genetic variantsmay alter the function or the activity levels of a
given pathway or a molecular mechanism, making it difficult to
replicate associations with specific genes or variants across
multiple studies. Dysfunction at the level of biological path-
ways or molecular functions might be detected more
consistently regardless of heterogeneity in individual suscept-
ibility variants or risk genes. Finally, gene-set-based analysis
allows direct insight into disease mechanism and biology by
translating a list of statistically ascertained disease-asso-
ciated genomic regions into sets of cellular functions or
molecular pathways that may underlie disease pathogenesis.
In this work, we applied an integrative gene-set-based

GWAS analysis on MDD that utilizes statistical text-mining
analysis27 to prioritize the list of pathways and functional gene
sets to be tested for aggregated association with MDD. We
focused on biological mechanisms indexed by previous MDD
candidate genes selected from biological studies of the
pathogenesis of MDD. Although these genes have not
individually demonstrated genome-wide association with
MDD at a single variant/gene level,28 they have been
implicated in the etiology of MDD in a variety of biological
and pharmacological studies. As such, they may index
biological pathways that are relevant to genetic risk. Applica-
tion of the statistical text-mining tool enabled us to elucidate
the key biological relationships among the MDD candidate
genes, which were then used to compile a list of relevant Gene
Ontology29 (GO) gene sets. We then tested the enrichment of
these gene sets in a meta-analysis of our MDD GWAS data

sets. Such prioritized gene-set-based analysis thus avoids the
pitfall of reduced statistical power entailed by examining the
full range (tens of thousands) of GO gene sets.20,30

The primary goals of this analysis, thus, were: (i) to prioritize
biological pathways or molecular functions (that is, gene sets)
that might be involved in the pathogenesis of MDD using text-
mining analysis; and (ii) to test enriched association of the
compiled gene sets using a meta-analysis of three large MDD
GWAS studies (4346 cases and 4430 controls in total).

Materials and methods

Study samples. NESDA/NTR. The NESDA/NTR sample
consisted of 1738 MDD cases, mainly from the Netherlands
Study of Depression and Anxiety, and 1802 controls mainly
from the Netherlands Twin Registry.11 Cases met criteria for
a lifetime diagnosis of DSM-IV (Diagnostic and Statistical
Manual of Mental Disorders, fourth edition) MDD, assessed
with the Composite International Diagnostic Interview (CIDI),
and did not have a primary diagnosis of schizophrenia or
schizoaffective disorder, obsessive compulsive disorder,
bipolar disorder or severe substance use dependence.
Controls had no lifetime diagnosis of MDD or anxiety disorder
and were also assessed to carry a low genetic liability for
neuroticism, anxiety and depressive symptoms based on a
factor score derived from longitudinal phenotyping mea-
sures. Genotype data from the Perlegen platform were
obtained from dbGaP (http://www.ncbi.nlm.nih.gov/gap),
which consisted of 435,291 SNPs. All subjects were of self-
reported western European ancestry.
QIMR. The Queensland Institute of Medical Research

(QIMR) sample consisted of 1450 cases and 1703 controls
from the Australian Twin Registry. The sample represents the
QIMR cases and controls included in the analyses of the
Psychiatric GWAS Consortium for MDD13 and overlaps
considerably with the QIMR samples of the MDD2000þ
study.12 MDD cases and controls were identified through
psychiatric questionnaires administered to adult twins and their
families recruited through the Australian Twin Registry. All
cases met DSM-IV lifetime criteria for MDD based on the
shortened CIDI or the Semi-Structured Assessment for the
Genetics of Alcoholism-OZ interview instrument. The inter-
views were administered by trained telephone interviewers,
closely supervised by a clinical psychologist. In cases where
more than one family member met the criteria for being
included in the control group, the individual with lowest
neuroticism score was selected. Samples were genotyped
as part of multiple QIMR projects31 on Illumina platforms (San
Diego, CA, USA; 317K, CNV370-Quadv3 and Human610-
Quad). A set of 270,799 genotyped SNPs common across the
three Illumina platforms that survived quality control (QC) was
carried forward to the imputation phase.
STAR*D. The Sequenced Treatment Alternatives to

Relieve Depression (STAR*D) was a multisite, randomized
clinical trial of outpatients with MDD that enrolled 4041
participants.10 Blood samples were collected from 1953
patients and 1204 psychiatrically screened controls from the
National Institute of Mental Health (NIMH)-Genetics Reposi-
tory.10 Cases met DSM-IV criteria for MDD and had a
Hamilton Depression Rating Scale score of at least 14.
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Controls were screened for a range of psychiatric disorders
based on DSM IV criteria and were excluded if they reported a
previous diagnosis of schizophrenia, psychosis or bipolar
disorder, or met criteria for a history of major depressive
episodes. We included 1500 cases who were self-identified
Caucasians. After quality-control procedures, genotyping
data included 284,889 SNPs for 1223 MDD patients and
970 controls common across three Affymetrix (Santa Clara,
CA, USA) genotyping platforms (Affymetrix Genome-Wide
Human SNP 6.0, Affymetrix Genome-Wide Human SNP 5.0
and Affymetrix GeneChip Human Mapping 500K Array).

Data QC and imputation. QC procedures for the individual
data sets are described in the original GWAS studies.10–12 In
brief, subjects were excluded if they exhibit missing call rates
40.05, inconsistency in a genotype-based gender with a
self-reported one, incompatible levels of autosomal hetero-
zygosity (|F inbreeding coefficient estimates| 40.05), high
identity by descent estimates with other subjects (PI_HAT
40.25) or are population outliers based on five nearest
neighboring clustering on information by similarity (|Z-score|
43s). All study subjects were of self-reported non-Hispanic
European ancestry. SNPs were excluded if they exhibit
missing rates 40.05, minor allele frequencies (MAF) o0.01
and the Hardy–Weinberg equilibrium deviation Po1� 10� 6

in controls. SNPs were further excluded if they show
significantly different missingness between cases and con-
trols (Po1� 10� 6) or non-random missingness based on
genotypes (Po1� 10� 10). All QC steps were conducted
using PLINK.32 To remove potential biases from discrepan-
cies of SNP coverage across the three samples, we imputed
non-genotyped SNPs using BEAGLE33 version 3.11 and
Hapmap34 II CEU data (release 23, forward strand), except
for the QIMR data set, which was imputed using MACH.35

Further details on the imputation procedure for the QIMR
data set are given here.31 After QC, STAR*D, QIMR and
NESDA/NTR include 1223/970, 1450/1703, and 1673/1757
cases/controls, respectively. Imputation was conducted
within each sample. After filtering out SNPs with imputation
quality scores o0.8, 1,930,980 SNPs remained across the
three data sets. Our data analysis was based on 1,386,571
autosomal SNPs that exist in all of the three data sets.

Primary association analysis. PLINK32 was used to
conduct single-SNP-based logistic regression of imputed
allele dosage within individual samples (that is, NESDA/NTR,
QIMR and STAR*D). To control for potential population sub-
stratification, 10 multi-dimensional scaling analysis compo-
nents were calculated using PLINK. The first four multi-
dimensional scaling components showed inflated association
with genetic data and thus were included as covariates in
regression analysis. Meta-analysis was conducted using a
fixed effect model on the dosage analysis results from the
three data sets using PLINK.

Candidate gene set compilation. To compile a list of gene
sets that are potentially most relevant to MDD pathogenesis,
we analyzed a list of well-known MDD candidate genes using
the text-mining analysis method GRAIL (Gene Relationships
Among Implicated Loci).27 The detailed gene-set-compilation

procedure is as follows: First, we assembled the list of 188
MDD candidate genes examined in five previous GWAS
studies of MDD.2,7,10,12,28 The authors compiled their MDD
candidate genes through literature search either because the
genes have been implicated in susceptibility to MDD due to
their biological function and/or association with MDD in
previous candidate gene association studies. The list was fed
to the GRAIL analysis to identify functional keywords that
index the common biological relationships among the MDD
candidate genes. The GRAIL analysis parameters were set
as follows: genome assembly: release 22/hg18; HapMap
population: CEU; functional data-source: PubMed text
(December 2006); gene-size correction: on; gene list: all
human genes within database. Basically, GRAIL quantified
the functional relationships between the input candidate
genes using a text-based similarity metric and extracted a list
of functional keywords that occur significantly more often
than would be expected by chance in the text literature
describing the functionally related candidate genes. We used
each of the identified keywords as a search term to retrieve
relevant candidate gene sets from the GO resource (http://
www.geneontology.org).29

Interval-based gene-set-enrichment analysis. To quantify
the statistical significance of aggregated MDD association
signals for candidate gene sets, we used a GWAS-specific
set-based association analysis tool, INRICH36 (http://
atgu.mgh.harvard.edu/inrich). The INRICH analysis proce-
dure comprises three major steps: (i) linkage disequilibrium
(LD)-based interval data generation to identify unique regions
of association; (ii) empirical enrichment calculation using an
interval-based permutation strategy; and (iii) second-step
permutation for multiple testing correction at the gene-set
level. First, PLINK LD-based clumping was used to generate
a list of LD-independent-associated genomic regions from
the meta-analysis results (clump-p1¼ 0.005; clump-p2¼
0.05; clump-r2¼ 0.5; clump-kb¼ 250). Next, the enrichment
statistics of each target gene set was calculated as a P-value
that indicates the probability of observing a given number of
overlaps between the MDD-associated genomic intervals and
the reference genes mapped to the examined gene set under
the null hypothesis of no-disease association. We defined gene
regions as 20kb up/downstream of the RefSeq transcription
starting/ending sites for 17,529 genes on autosomal chromo-
somes based on the Human Genome Browser build hg18
(Note that recent expression quantitative trait loci studies have
shown that 95% of common genetic variation affecting
transcript expression resides within 20kb of the transcription
start and end sites of genes37). Finally, resampling-based
second-step permutation was conducted to adjust the path-
way-level empirical P-values for testing multiple candidate
gene sets. Figure 1 illustrates our data analysis procedure.

Results

Primary association analysis. No SNP demonstrated
genome-wide significant association with MDD in a single-
SNP-based meta-analysis of NESDA/NTR, QIMR and
STAR*D. Supplementary Figures S1 and S2 show the
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Manhattan and quantile-quantile plots for the meta-analysis
of these data sets, respectively. The genomic control inflation
factor l (that is, the ratio of the observed median w2 to that
expected by chance) was 1.046, while l1000 was 1.011 (that
is, l rescaled to a sample size of 1000 cases and 1000
controls38), indicating negligible inflation of association test
statistics due to potential confounding factors.

Candidate gene-set compilation. Supplementary Table
S3.1 summarizes the list of 188 MDD candidate genes
assembled from five previous MDD studies.2,7,10,12,28 Using
these genes as input, GRAIL quantified their functional

relationships using a text-based similarity measure
(Supplementary Tables S3.2 and S3.3), and identified 11
keywords that are commonly associated with the MDD
candidate genes in the literature: ‘serotonin’, ‘dopamine’,
‘NMDA (N-methyl-D-aspartate)’, ‘glutamate’, ‘neuron’,
‘GABA’, ‘adrenergic’, ‘agonist’, ‘cGMP’, ‘synaptic’ and ‘phos-
phodiesterase’. Table 1 lists these 11 keywords and their
associated MDD candidate genes. Using each of these
keywords as a search term, we identified 178 GO terms (that
is, gene sets) with at least three human reference genes in
the domains of biological process, molecular function and
cellular complex (Supplementary Table S3.4).

Figure 1 Multi-locus association analysis procedure for major depressive disorder (MDD). Our analysis consisted of two major steps: (1) candidate gene-set compilation
and (2) enrichment association analysis. The gene-set-compilation step aims to prioritize groups of biologically relevant genes that are most relevant to MDD pathogenesis.
First, a list of widely studied MDD candidate genes was assembled from previous GWAS (genome-wide association studies) studies. The text-mining tool GRAIL (Gene
Relationships Among Implicated Loci) was used to identify biological relationships between the selected genes. We used the GRAIL biological keywords to select relevant
gene sets from the Gene Ontology database. The second enrichment analysis step aims to identify gene sets that show aggregated association with major depression than
would be expected by chance. In order to control for different gene sizes, SNP density and linkage disequilibrium (LD) across genomic region and LD-independent MDD
association regions were generated using PLINK. Enrichment of the candidate gene sets was examined using GWAS-specific multi-locus association analysis tool, INRICH,
based on the LD-independent regions. The second-step permutation strategy in INRICH was conducted for correcting the testing of multiple gene sets that are not
independent of each other.
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Gene-set enrichment analysis. PLINK LD-clumping of the
MDD meta-analysis results (4346 cases and 4430 controls in
total) yielded 1477 genomic regions with independent
association signals; 539 intervals among them overlap with

annotated genic regions according to the NCBI Entrez
RefSeq Gene database (hg18, Homo Sapiens). After gene-
set-based association analysis and multiple testing correc-
tion, only one of the 178 target gene sets, the glutamatergic

Table 1 List of text-mining-based biological keywords representing MDD candidate genes

Serotonin (72 genes )

GRIA3, GPR50, MAOA, MAOB, HTR6, OPRD1, LEPR, CREB1, HTR2B, PER2, POMC, TACR1, ADRA2B, SLC6A1, GSK3B, CCK, ITPR1, NFKB1,
ADRA2C, CLOCK, DRD5, NR3C1, SLC6A3, HTR4, GRIA1, ADRA1B, GABRA6, DRD1, HTR1A, OPRM1, DTNBP1, TNF, HTR1B, CNR1, LEP, NOS3,
HTR5A, IL6, NPY, CRHR2, TAC1, ADRA1A, GRIN1, NTRK2, ADRA2A, ADRB1, HTR7, CYP2C9, DRD2, HTR3B, HTR3A, TPH1, TH, BDNF, DRD4,
NOS1, AVPR1A, GNB3, TPH2, HTR2A, ESR2, CHRNA7, SLC6A2, GRIN2A, CRHR1, NGFR, ACE, PER1, GRIN2D, GNAS, COMT, ADORA2A

Dopamine (92 genes )
HTR2C, GRIA3, GABRA3, MAOA, MAOB, AVPR1B, OPRD1, GRIK3, IL1B, GAD1, CREB1, HTR2B, PER2, POMC, TACR1, ADRA2B, SLC6A1, GSK3B,
AGTR1, CCK, ITPR1, CCKAR, ADRA2C, CLOCK, DRD5, PAM, NR3C1, SLC6A3, HTR4, GRIA1, ADRA1B, GABRA6, DRD1, HTR1A, CRHBP, ESR1,
OPRM1, GABBR1, TNF, HTR1B, CNR1, LEP, CHRM2, NOS3, HTR5A, IL6, NPY, CRHR2, ABCB1, TAC1, ADRA1A, FGFR1, OPRK1, PENK, GRIN1,
NTRK2, ADRA2A, ADRB1, HTR7, GRIA4, CD3E, GRIK4, TPH1, TH, BDNF, CCKBR, DRD4, NOS1, CACNA1C, LRP1, TPH2, KCNC2, HTR2A, AKT1,
ESR2, CHRNA7, NTRK3, ADCY9, SLC6A2, GRIN2A, SLC6A4, CRHR1, NGFR, ACE, GRIN2C, GNAL, GRIK5, GRIN2D, GNAS, COMT, ADORA2A,
SYN3

N-methyl-D-aspartate (NMDA) (57 genes )
GRIA3, GABRA3, OPRD1, GRIK3, IL1B, GAD1, CREB1, TACR1, SLC6A1, GSK3B, ITPR1, GRM7, NFKB1, GRIA2, DRD5, NR3C1, SLC6A3, GRIA1,
DRD1, CRHBP, GRIK2, ESR1, OPRM1, GABBR1, HTR1B, CNR1, LEP, NOS3, IL6, NPY, CRHR2, TAC1, PENK, GRIN3A, NTRK2, GRIA4, DRD2,
HTR3A, GRIK4, BDNF, CCKBR, DRD4, NOS1, GRIN2B, CACNA1C, LRP1, DAOA, HTR2A, AKT1, CHRNA7, GRIN2A, CCL2, NGFR, GRIK5, GRIN2D,
GRIK1, ADORA2A

Glutamate (70 genes )
GABRA3, PLA2G2A, OPRD1, GRIK3, IL1B, GAD1, CREB1, PER2, TACR1, ADRA2B, CD47, SLC6A1, GSK3B, ITPR1, GRIA2, CCKAR, ADRA2C,
NR3C1, SLC6A3, GRIA1, GABRA6, DRD1, HTR1A, GRIK2, ESR1, OPRM1, DTNBP1, GABBR1, TNF, HTR1B, CNR1, CHRM2, HTR5A, NPY, ABCB1,
TAC1, ADRA1A, PENK, GRIN3A, GRIN1, NTRK2, HTR7, GRIA4, DRD2, HTR3A, GRIK4, TH, BDNF, CNTF, DRD4, NOS1, P2RX7, P2RX4, GRIN2B,
CACNA1C, AVPR1A, DAOA, HTR2A, AKT1, CHRNA7, SLC6A2, GRIN2A, NGFR, GRIN2C, PER1, GRIK5, GRIN2D, GNAS, GRIK1, ADORA2A

Neuron (118 genes )
HTR2C, GRIA3, GABRA3, MAOA, MAOB, HTR6, PLA2G2A, AVPR1B, OPRD1, GRIK3, LEPR, PER3, IL1B, GAD1, CREB1, HTR2B, PER2, POMC,
TACR1, ADRA2B, CD47, SLC6A1, DRD3, GSK3B, CCK, ITPR1, GRM7, GRIA2, FGFR3, CCKAR, ADRA2C, CLOCK, DRD5, PAM, SLC6A3, HTR4,
GRIA1, ADRA1B, GABRA6, DRD1, FGFR4, HTR1A, CRHBP, GRIK2, OLIG3, ESR1, OPRM1, DTNBP1, PDE10A, GABBR1, TNF, HTR1B, CNR1, LEP,
CHRM2, HTR5A, IL6, NPY, CRHR2, TAC1, ADRA1A, FGFR1, OPRK1, PENK, GRIN3A, GRIN1, NTRK2, ADRA2A, FGFR2, HTR7, GRIA4, DRD2,
HTR3B, HTR3A, GRIK4, TPH1, BDNF, CNTF, DRD4, PDE2A, NOS1, P2RX7, P2RX4, GRIN2B, CACNA1C, CCND2, LRP1, AVPR1A, TPH2, KCNC2,
M6PR, HTR2A, AKT1, ESR2, GABRA5, CHRNA7, NTRK3, ADCY9, SLC6A2, GRIN2A, SLC6A4, STAT3, CRHR1, GRIN2C, PER1, GNAL, GRIK5,
GSK3A, APOE, GRIN2D, GNAS, GRIK1, OLIG2, OLIG1, PDE9A, COMT, ADORA2A, SYN3

GABA (62 genes )
GRIA3, GABRA3, OPRD1, GRIK3, IL1B, GAD1, POMC, TACR1, DRD3, CCK, GRM7, GRIA2, ADRA2C, DRD5, SLC6A3, HTR4, GRIA1, ADRA1B,
GABRA6, DRD1, HTR1A, CRHBP, GRIK2, ESR1, OPRM1, HTR1B, CNR1, LEP, CHRM2, HTR5A, IL6, NPY, CRHR2, GRIN1, NTRK2, DRD2, HTR3A,
TH, BDNF, CNTF, CCKBR, DRD4, NOS1, P2RX7, GRIN2B, AVPR1A, KCNC2, HTR2A, AKT1, GABRA5, CHRNA7, SLC6A2, GRIN2A, SLC6A4,
GRIN2C, PER1, GNAL, GRIK5, GRIN2D, GRIK1, OLIG2, ADORA2A

Adrenergic (69 genes )
HTR2C, MAOA, MAOB, OPRD1, LEPR, IL1B, GAD1, CREB1, TACR1, ADRA2B, DRD3, GSK3B, AGTR1, ITPR1, GRM7, PDE5A, ADRA2C, DRD5,
NR3C1, HTR4, GRIA1, DRD1, HTR1A, ESR1, OPRM1, GABBR1, HTR1B, CNR1, LEP, CHRM2, NOS3, IL6, NPY, CRHR2, TAC1, ADRA1A, OPRK1,
GRIN1, NTRK2, ADRA2A, HTR7, CYP2C9, DRD2, HTR3A, TH, BDNF, CCKBR, DRD4, PDE2A, NOS1, P2RX4, CACNA1C, AVPR1A, GNB3, HTR2A,
AKT1, ESR2, CHRNA7, NTRK3, ADCY9, MMP2, SLC6A2, CRHR1, ACE, PER1, APOE, GNAS, COMT, ADORA2A

Agonist (102 genes )
HTR2C, GRIA3, GPR50, GABRA3, MAOA, MAOB, AR, PLA2G4A, HTR6, PLA2G2A, AVPR1B, OPRD1, GRIK3, LEPR, IL1B, GAD1, CREB1, HTR2B,
POMC, TACR1, ADRA2B, CD47, DRD3, GSK3B, AGTR1, CCK, ITPR1, GRM7, NFKB1, GRIA2, CCKAR, ADRA2C, DRD5, NR3C1, HTR4, GRIA1,
ADRA1B, GABRA6, HTR1A, GRIK2, ESR1, OPRM1, GABBR1, TNF, HTR1B, CNR1, LEP, CHRM2, NOS3, HTR5A, IL6, NPY, CRHR2, TAC1, ADRA1A,
OPRK1, PENK, GRIN3A, GRIN1, NTRK2, ADRA2A, HTR7, GRIA4, DRD2, HTR3B, HTR3A, CD3E, TH, BDNF, CCKBR, DRD4, PDE2A, P2RX7, P2RX4,
GRIN2B, CACNA1C, AVPR1A, GNB3, HTR2A, AKT1, PRKCH, ESR2, GABRA5, CHRNA7, ADCY9, MMP2, SLC6A2, GRIN2A, SLC6A4, CCL2, STAT3,
CRHR1, NGFR, GRIN2C, PER1, GNAL, GRIK5, APOE, GRIN2D, GNAS, GRIK1, ADORA2A

cGMP (29 genes )
LEPR, IL1B, PDE11A, PDE1A, CREB1, HTR2B, POMC, ADRA2B, ITPR1, NFKB1, HTR1A, PDE10A, NOS3, ADRB1, PDE6C, CNTF, NOS1, GNB3,
HTR2A, AKT1, CHRNA7, SLC6A4, CRHR1, ACE, GRIN2C, GSK3A, APOE, GNAS, PDE9A

Synaptic (78 genes )
HTR2C, GRIA3, GABRA3, PLA2G4A, DISC1, GRIK3, IL1B, GAD1, CREB1, PER2, TACR1, CD47, SLC6A1, CCK, ITPR1, GRM7, GRIA2, ADRA2C,
DRD5, SLC6A3, HTR4, GABRA6, DRD1, HTR1A, CRHBP, GRIK2, OPRM1, DTNBP1, PDE10A, GABBR1, HTR1B, CNR1, CHRM2, NOS3, NPY,
CRHR2, TAC1, GRIN3A, GRIN1, NTRK2, ADRB1, HTR7, PDE6C, GRIA4, DRD2, HTR3A, GRIK4, TPH1, TH, BDNF, DRD4, PDE2A, NOS1, P2RX7,
P2RX4, GRIN2B, CACNA1C, LRP1, KCNC2, HTR2A, AKT1, ESR2, GABRA5, CHRNA7, NTRK3, SLC6A2, GRIN2A, SLC6A4, CRHR1, NGFR, GRIN2C,
GRIK5, APOE, GRIN2D, GNAS, OLIG1, ADORA2A, SYN3

Phosphodiesterase (22 genes )
DISC1, LEPR, PDE11A, PDE1A, CREB1, ESR1, LEP, NOS3, HTR7, PDE6C, CNTF, PDE2A, NOS1, CCND2, GNB3, AKT1, ADCY9, MMP2, PER1,
GNAS, PDE9A, ADORA2A

Abbreviation: MDD, major depressive disorder.
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synaptic transmission set, remained significant (GO:0035249;
empirical enrichment P¼ 6.90� 10–4; corrected enrichment
P¼ 2.89� 10–2). This glutamatergic synaptic transmission
set comprised of 16 genes, of which 6 genes include
LD-independent MDD-associated genomic regions at a
P-valueo5� 10–3. Varying the regulatory genic regions from
0kb, 20kb, 50kb to 100kb of up/downstream of transcription
starting/ending sites resulted in similar enrichment results
(data not shown). Table 2 summarizes the set-based
association analysis results for the top 10 gene sets (see
Supplementary Table S4.1 for the top 30 gene sets).

Discussion

In recent years, genome-wide association analysis has
transformed our understanding of the genetic etiology of
various common and complex human disorders, but progress
has been less rapid for studies of MDD. Along with several
practical issues (for example, insufficient sample size,
substantial phenotypic heterogeneity or large environmental
factors), we presume that common genetic variants confer
individually very small effects on risk of MDD, and therefore,
standard single-locus-based association analysis is likely to

have limited power to dissect the pathogenesis of MDD. Using
a text-mining-based statistical analysis and the GO resource,
we compiled a collection of 178 GO sets that represent
potential biomolecular mechanisms underlying MDD patho-
genesis. Multi-locus enrichment analysis on these gene sets
uniquely implicated genes involved in glutamatergic synaptic
neurotransmission (enrichment P¼ 6.9� 10–4).
A pathophysiological role of the glutamate system in MDD

has been suggested consistently in pre-clinical and clinical
studies. The glutamatergic system is a critical mediator of
stress responses through regulating the hypothalamic–
pituitary–adrenal axis function.39–41 In animal models of
depression, alterations in glutamatergic neurotransmission
proteins induce depressive-like behaviors.42,43 Abnormal
activity of the glutamatergic system has been attributed to
impairments in synaptic and neural plasticity often observed in
patients with severe or recurrent mood disorders.44 Post-
mortem MDD studies have reported dysregulation of gluta-
mate levels and glutamate signaling genes, as well.45–47

Perhaps the most convincing evidence comes from studies
suggesting rapid antidepressant effects of glutamatergic
interventions, including riluzole48 and, more recently, intrave-
nous ketamine.49–51

Table 2 Gene-set-based association analysis results of the top 10 gene sets for major depressive disorder

Gene set Gene number Enrichment
P-value

Annotated genes

GO term Name All Sig

GO:0035249 Synaptic transmission,
glutamatergic

16 6 6.90e-04 NAPB,GRM8,CACNA1A, GRID2, PLAT, UNC13A, UNC13B,
GRIN2D, PARK2, ADRB2, SLC1A4, P2RX1, CDK5, GRIN1,
CNIH2, SHC3

GO:0021953 Central nervous system neuron
differentiation

7 2 3.66e-02 MET, NR4A2, TULP3, MNX1, LMX1A, SMO, BCL11B,

GO:0021522 Spinal cord motor neuron
differentiation

6 2 5.77e-02 GIGYF2, CACNA1A, NKX2–2, SOX4, MDGA2, ABT1,

GO:0004115 3’,5’-cyclic-AMP phosphodiesterase
activity

10 3 7.70e-02 PDE1B, PDE4B, PDE8A, PDE4A, PDE4C, PDE4D, PDE3B,
PDE7A, PDE3A, PDE7B

GO:0035254 Glutamate receptor binding 5 2 1.16e-01 CAMK2A, ATP2B2, GRIN2A, RASGRF1, C16orf70

GO:0051968 Positive regulation of synaptic trans-
mission, glutamatergic

12 3 3.01e-01 ADORA2A, DRD1, OXTR, CCKBR, PTGS2, GRIA4, NRXN1,
NLGN1, NLGN2, NTRK2, TNR, SHANK3

GO:0005234 Extracellular-glutamate-gated ion
channel activity

18 4 3.26e-01 GRIA2, GRIK3, GRIA1, GRIA3, GRID1, GRIK1, GRID2,
GRIN2D, GRIA4, STX1B, GRIN1, GRIN2A, GRIK2, GRIN2B,
GRIN2C, GRIK4, GRIK5, GRIN3A

GO:0043525 Positive regulation of neuron
apoptosis

33 2 3.27e-01 AGRN, ATM, BAX, BCL2L11,NCF2, NR3C1, CASP2, CASP6,
CASP7, MAP3K11, RHOC, HRK, MAP2K7, MUSK, TNF,
TP53, JUN, PTPRF, NQO1, NF1, FASLG, ASCL1, ITGA1,
UBE2M, TGFB2, SRPK2, CDK5, RAPSN, PMAIP1, IL18,
CDK5R1, EPHA7, PCSK9

GO:0030672 Synaptic vesicle membrane 41 4 3.47e-01 AMPH, BCAN, C16orf70, DMXL2, DOC2A, DTNBP1, GAD2,
ICA1, OTOF, RPH3A, SCAMP5, SEMA4C, SLC17A6,
SLC17A7, SLC17A8, SLC30A3, SLC32A1, SNAPIN, STX1A,
SV2A, SV2B, SV2C, SVOP, SYN1, SYN3, SYNGR1, SYNPR,
SYT1, SYT10, SYT11, SYT12, SYT2, SYT3, SYT4, SYT5,
SYT6, SYT7, SYT9, VAMP1, VAMP2, ZNRF1

GO:0004972 N-methyl-D-aspartate selective
glutamate receptor activity

6 2 3.81e-01 GRIN1, GRIN2A, GRIN2B, GRIN2C, GRIN3A, GRIN2D

Abbreviations: AMP, adenosine monophosphate; MDD, major depressive disorder.For each of the examined gene sets, Gene Ontology (GO) identifier, name, the
number of all annotated genes, the number of genes that overlap with MDD-associated genomic regions, set-based association significance and the list of member
genes are listed. Note that the genes intersecting with MDD-associated genomic regions (Po1�10�3) are in bold.
GO term: Gene Ontology identifier.
Name: Gene Ontology name.
Gene number: (i) All: the total number of genes annotated by the corresponding GO gene sets; and (ii) Sig: the number of genes that overlap with LD-independent
MDD-associated genomic regions at a MDD meta-analysis P-value o5�10� 3.
Enrichment P-value: statistical significance of aggregated set-based association for gene sets, calculated by INRICH.
Annotated genes: list of genes associated with each gene set.
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Our analysis supports these previous findings by demon-
strating the statistical enrichment of glutamatergic synaptic
genes in a meta-analysis of over 8700 MDD cases/
controls. The glutamatergic synaptic transmission gene set
(GO:0035249) includes 16 genes (Table 3), of which six
genes, SLC1A4, CACNA1A, GRM8, PARK2, UNC13A and
SHC3, showed nominal association with MDD in our meta-
analysis (Po5e-03). Two genes GRM8 and SHC3 have
previously been implicated in depression-related phenotypes.
The metabotropic glutamate receptor GRM8 inhibits presy-
naptic glutamate release.52 Nominal association was reported
for GRM8 with trait depression in a recent GWAS meta-
analysis of European and US samples.53 Multiple studies
reported that GRM8 knock-out mice exhibit anxiety-related
phenotypes.54–56 SHC3 is a signaling adaptor involved in the
signal transduction pathways in neurons. It has been
implicated in modulating hippocampal synaptic plasticity
underlying learning and memory57 and associated with
nicotine dependence.58

Some limitations should be noted when interpreting the
current findings. First, although our analysis indicates
statistically enriched association of glutamatergic synaptic
genes, we were unable to determine how these genes confer
risk of MDD. Functional analysis of glutamatergic genes in
MDD is necessary to decipher the underlying disease biology.
Secondly, our analysis resorts to predefined GO sets that are

indexed by biological keywords representing previous MDD
candidate genes. This type of targeted subset analysis
increases statistical power to detect true biological gene sets
if true sets are included in the examined list. However, other
disease gene sets not related to previous MDD candidate
genes could have been missed in our analysis. Another
caveat is that by using established GO sets, previously
unknown relationships among genes could not be examined.
Lastly, the present work defines regulatory SNP regions to
20kb up/downstream of transcription starting/ending sites.
Most common genetic variations affecting gene expression
are known to reside close to transcription starting and ending
sites, but the optimal boundaries for defining regulatory
regions likely vary by genes. Nevertheless, we observed
similar results for a range of gene region windows (0–100 kb
up/downstream of coding regions). As regulatory regions are
further refined, additional findings may emerge. For example,
incorporating known expression quantitative trait loci or
methylation quantitative trait loci data is a promising way to
assign non-genic, functional SNPs to gene loci.
In conclusion, the present work provides novel evidence for

a potential etiological role of glutamate-mediated synaptic
neurotransmission in MDD. Further characterization of the
molecular and cellular mechanisms of this glutamatergic
synaptic system in the brain will be imperative to understand
the disease biology of MDD. Given increasing evidence that

Table 3 MDD association results of 16 genes involved in glutamatergic synaptic transmission GO gene set

Symbol Minimum association P-value Gene name Genomic locus (20 kb) MDD-associated Region

GAIN STAR*D QIMR META

SLC1A4 0.06729 0.03046 0.05934 0.00089 Solute carrier family 1
(glutamate/neutral amino acid

chr2:65050097.65124503 chr2:65098869.65233861

GRID2 0.00035 0.02806 0.00760 0.01973 Glutamate receptor, ionotropic, delta 2 chr4:93424572.94932672 none

ADRB2 0.03455 0.19090 0.04661 0.2975 Adrenergic, beta-2, receptor, surface chr5:148166348.148208381 none

PARK2 0.00074 0.00176 0.00389 0.00317 Parkinson disease (autosomal recessive,
juvenile) 2, parkin

chr6:161668579.163088824 chr6:162001468.162009689

GRM8 0.00460 0.01781 0.00379 0.00464 Glutamate receptor, metabotropic 8 chr7:125845887.126699664 chr7:126471344.126629287

CDK5 0.09839 0.47840 0.07756 0.03576 Cyclin-dependent kinase 5 chr7:150361831.150405929 none

PLAT 0.05833 0.09617 0.12330 0.27460 Plasminogen activator, tissue chr8:42131392.42204351 none

GRIN1 0.37960 0.89950 0.14820 0.66710 Glutamate receptor, ionotropic, N-methyl-D-
aspartate 1

chr9:139133429.139203029 none

UNC13B 0.04341 0.05830 0.19580 0.18260 Unc-13 homolog B (Caenorhabditis elegans) chr9:35131988.35415332 none

SHC3 0.05547 0.02948 0.01609 0.00427 SHC (Src homology 2 domain containing)
transforming

chr9:90797888.91003502 chr9:90802459.90826962

CNIH2 0.18710 0.11400 0.07725 0.20100 Cornichon homolog 2 (Drosophila) chr11:65782271.65828259 none

P2RX1 0.01168 0.68050 0.08987 0.05608 Purinergic receptor P2X, ligand-gated ion
channel, 1

chr17:3726633.3786709 none

CACNA1A 0.01359 0.03251 0.00223 0.00059 Calcium channel, voltage-dependent,
P/Q type, alpha 1A

chr19:13158256.13498274 chr19:13304770.13360045

UNC13A 0.08735 0.01120 0.10920 0.00409 Unc-13 homolog A (C. elegans) chr19:17553136.17680401 chr19:17589502.17595848

GRIN2D 0.32020 0.12270 0.19300 0.17740 Glutamate receptor, ionotropic, N-methyl-D-
aspartate 2D

chr19:53569943.53660000 none

NAPB 0.23100 0.20230 0.20040 0.51580 N-ethylmaleimide-sensitive factor attachment
protein, beta

chr20:23283164.23370081 none

Abbreviations: GO, Gene Ontology; LD, linkage disequilibrium; MDD, major depressive disorder; SNP, single nucleotide polymorphism.
Symbol: HUGO gene symbol.
Minimum association P-value: most significant association P-value of the SNPs mapped to each genic region (including 20 kb up/downstream region).
Gene name: gene name.
Genomic locus: chromosomal location of gene, including 20 kb upstream and downstream regions.
MDD-associated region: LD-independent (r 2o0.5) genomic regions that are associated with MDD at a nominal P-value threshold of 5� 10�3 in the meta-analysis.
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modulators of NMDA receptor function has rapid antidepres-
sant effects, glutamatergic systems also merit further inves-
tigation as therapeutic targets.
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