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Affecting about 1 in 12 Americans annually, depression is a leading cause of the global disease burden. While a range of effective
antidepressants are now available, failure and relapse rates remain substantial, with intolerable side effect burden the most
commonly cited reason for discontinuation. Thus, understanding individual differences in susceptibility to antidepressant
therapy side effects will be essential to optimize depression treatment. Here we perform genome-wide association studies
(GWAS) to identify genetic variation influencing susceptibility to citalopram-induced side effects. The analysis sample consisted
of 1762 depression patients, successfully genotyped for 421K single-nucleotide polymorphisms (SNPs), from the Sequenced
Treatment Alternatives to Relieve Depression (STAR*D) study. Outcomes included five indicators of citalopram side effects:
general side effect burden, overall tolerability, sexual side effects, dizziness and vision/hearing side effects. Two SNPs met our
genome-wide significance criterion (qo0.1), ensuring that, on average, only 10% of significant findings are false discoveries. In
total, 12 additional SNPs demonstrated suggestive associations (qo0.5). The top finding was rs17135437, an intronic SNP within
EMID2, mediating the effects of citalopram on vision/hearing side effects (P¼ 3.27� 10�8, q¼ 0.026). The second genome-wide
significant finding, representing a haplotype spanningB30 kb and eight genotyped SNPs in a gene desert on chromosome 13,
was associated with general side effect burden (P¼ 3.22� 10�7, q¼ 0.096). Suggestive findings were also found for SNPs at
LAMA1, AOX2P, EGFLAM, FHIT and RTP2. Although our findings require replication and functional validation, this study
demonstrates the potential of GWAS to discover genes and pathways that potentially mediate adverse effects of antidepressant
medications.
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Introduction

Associated with substantial co-morbidity1 and increased
mortality,2 major depressive disorder (MDD) imposes im-
mense costs in human suffering and economic productivity.
While the development of multiple classes of antidepressant
medications has greatly improved MDD treatment in recent
years,3,4 a substantial proportion of patients (B50%) fail to
attain adequate response to their initial antidepressant
therapy.5,6 Compounding the difficulty of identifying success-
ful treatment, antidepressant use is frequently associated with
adverse drug reactions, with the inability to tolerate side
effects being the most common reason for discontinuing
antidepressant therapy.7–10 Clinicians currently have no way
to predict individual efficacy and side effect profiles, and trial
and error switching often leaves MDD patients in psycholo-
gical distress for weeks ormonths. Clearly, improvedmethods
of patient–antidepressant matching to minimize side effects
would greatly improve depression treatment.
Previous studies have indicated that antidepressant

response is substantially heritable,11–14 suggesting pharma-
cogenomics research as a promising avenue toward individuali-
zing antidepressant treatment. Preliminary pharmacogenetic
research has, for instance, suggested an important role for

genes related to serotonin function in antidepressant side

effects.15–17 The serotonergic system is involved in the

regulation of physiological functions that are often disturbed

in antidepressant treatment, including neuroendocrine

mechanisms regulating reproductive events such as sperma-

togenesis, ovulation and sexual behavior.15,16,18–20 However,

to date, robust consistent evidence associating any specific

candidate gene or polymorphism to antidepressant side

effect response has been rare. This is due, at least in part,

to the inherent shortcomings of candidate gene approaches,

which are sharply restricted by current limitations in knowl-

edge of depression neurobiology and antidepressant

mechanism of action. Methods that systematically screen

variants across the whole genome for association with

antidepressant side effects are therefore critical to discover

novel variants. Such approaches have recently begun to yield

tangible results, with the number of replicated marker–

disease associations increasing dramatically since the intro-

duction of genome-wide association studies (GWAS),21 and

some initial applications in the context of psychiatric pharma-

cogenomics.22–27

In this paper, we use a GWAS approach to search for
genetic variation affecting the susceptibility for citalopram-
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induced side effects. Our study sample consists of the 1762
MDD patients in the level 1 citalopram medication trial of the
Sequenced Treatment Alternatives to Relieve Depression
(STAR*D).28 Analyses were performed on the five primary
side effect dimensions indicated by factor analyses of a
battery of side effect indicators.28

Materials and methods

Study design and subjects. Subjects came from the
STAR*D study, which has been described in detail
elsewhere.28 In short, STAR*D is a multistage trial of
different treatment options for patients with nonpsychotic
MDD. STAR*D enrolled a total of 4041 outpatients with
MDD.29 In level 1, all patients were given only citalopram.
Those patients who did not have an efficacious response or
could not tolerate side effects to citalopram were then
randomized to other treatment options in other levels, 2a or
2–4. Other treatment options included, but were not limited to,
sertraline, buproprion, buspirone, cognitive therapy, various
combinations of these treatments and using one of these
treatments in combination with citalopram. To maximize
power, this study focuses exclusively on the 1762 patients
participating in the initial, level 1, citalopram-only trial, for
whom genome-wide genotype data were collected.

Clinical measures. Side effect presence and tolerance was
measured by the Patient-Rated Inventory of Side Effects
(PRISE).28 For each of the eight biological systems assessed
(gastrointestinal, heart, skin, nervous system, vision/hearing,
genital/urinary, sleep and sexual functioning), patients were
asked two types of questions, one relating to specific side
effects (for example, dizziness, anorgasmia) and one relating
to the overall tolerability of side effects for a given biological
system. For the specific side effects, patients were asked to
indicate whether the side effect was present (0¼ no side
effect; 1¼ side effect present). There were four items for the
gastrointestinal system, three for heart, four for skin, four for
the nervous system, two for vision/hearing system, four for
the genital/urinary system, two for sleep and three for sexual
functioning. In addition, an overall score of side effect
tolerability was given for each of the eight biological
systems as a trichotomous item, scored: 0¼ no side effects;
1¼ tolerable side effects; or 2¼ distressing side effects.29

Specifying side effect phenotypes. Specifying side effect
phenotypes for GWAS proceeded in two steps. The first was
to condense the 34 side effect indicators of the PRISE using
factor analysis, thereby improving measurement through
identifying the latent phenotypic constructs underlying the
side effect indicator.30,31 The second was to analyze
longitudinal change in side effect phenotypes, to derive
treatment effects for each drug based on the obtained factor
scores.32

Identifying valid and reliable side effect measures was
essential for optimizing power in the GWAS. This required
data reduction, as using individual PRISE items as GWAS
outcomes would provide minimal statistical power, given the
presence of substantial measurement error in self-report

measures combined with the inherently weak statistical
power of dichotomous outcomes.30,33 Given the limitations
of using individual items as GWAS outcomes, collapsing
the items into symptom class sums corresponding to clinical
experience (for example, central nervous system, gastro-
intestinal) may seem an appealing, intuitive approach.
However, preliminary analyses indicated that the internal
consistency of many of these symptom class measures
was poor, despite their intuitive appeal (for example,
Cronbach’s a¼ 0.61 for gastrointestinal items and ¼ 0.66 for
central nervous system items). Thus, we employed a more
rigorous psychometric approach to identify robust latent side
effect constructs.
Using Mplus 6.0,34 exploratory factor analyses were

conducted to empirically examine the factor structure of the
34 side effect indicators of the PRISE. Of the several potential
factors emerging from the exploratory analysis, five were
retained based on overall fit to the data, interpretability and
having a Cronbach’s a40.70, which indicates good reliability
for the factor.35 The five factors were: (1) a general side effect
burden factor in which all of the 26 symptom measures
served as factor indicators; (2) an overall tolerability factor
based on the eight system-specific tolerability indicators;
(3) a sexual factor; (4) a dizziness factor; and (5) a factor
relating to vision\hearing (that is, ocular\auricular) side
effects. Once the optimal factor structure was determined,
factor scores for each of the five factors were calculated
using the standard regression scoring approach. The factor
loadings and Cronbach’s a for each factor are displayed
in Table 1.
Factor analysis results presented in Table 1 were based on

all observations, irrespective of the time spent on a treatment.
Given that side effects sometimes vary by duration of
treatment with a specific drug,36 additional factor analyses
were performed, which divided the STAR*D sample based on
the number of days on a given treatment. This was carried out
to confirm that the factor solution was robust across treatment
duration and not artifactual because of heterogeneity across
time (see Supplementary Tables A1–A5). Another potentially
confounding issue in evaluating side effects to antidepressant
treatment is the presence of somatoform symptoms, which
commonly co-occur with depression and may influence
perception of the presence and severity of side effects,
independently of actual side effects.37,38 Thus, the factor
analyses discussed above were repeated controlling for
baseline somatoform and hypochondriasis diagnoses,
assessed using the Psychiatric Diagnostic Screening Ques-
tionnaire39 (see Supplementary Tables A6–A7). Comparable
factors emerged with similar patterns of loadings when the
sample was stratified by the number of days on drug and when
controlling for somatoform symptoms, supporting the robust-
ness of the factor structures.

Generating treatment effect measures. To maximize
power for pharmacogenomic GWAS, we developed a
method to estimate medication treatment effects from all
available information32 using mixed modeling.40,41 Our
method first determines the optimal functional form of
overtime drug response, then screens many possible
covariates to select those that improve the precision of the
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treatment effect estimates, and finally generates the
individual treatment effect estimates based on the best
fitting model using best linear unbiased predictors.42 As this
approach takes advantage of all available information in
STAR*D, it results in more precise estimates than traditional
approaches that estimate treatment effects using only two
assessments (for example, subtracting pre- from post-
treatment observations).43 In addition, as treatment effects
are based on mixed-model trajectory slopes, they are more
robust to early dropout/discontinuation than competing
approaches.44,45

To determine the optimal model of overtime drug response
for each side effect outcome, we fit a series of models
specifying linear change for a given number of days on drug
and flat thereafter. This series began with a model assuming
that maximal drug response was achieved at day 1. Each
subsequent model specified an incrementally longer duration
until maximal drug response was achieved, with the final
model assuming that the drug effect did not plateau (that is,
linear change throughout the trial). The function produced by
the log likelihoods of this series was then optimized to

determine the best estimate of the average number of days
until maximal drug response. This duration varied across
side effect outcomes with dizziness plateauing earliest
(36 days on drug), and general side effect burden and overall
tolerability plateauing latest (137 days on drug) (Supplemen-
tary Figure B1).
After determining the optimal functional form of overtime

drug response, 55 covariates collected during STAR*D were
screened to identify those that improved the precision of the
treatment effect estimates, using a criterion based on
reduction in residual error variance relative to treatment
randomeffect variance.23,32 Screened covariates consisted of
trial design characteristics, socio-demographic measures,
clinical information, health-care access and reason for study
exit (Supplementary Table B1 for full list). The number of
selected covariates was 6 for vision/hearing and sexual side
effects, 7 for general side effect burden and overall tolerability
and 8 for dizziness. Design characteristics and concurrent
psychiatric diagnoses (particularly drug abuse and hypochon-
driasis) comprised the vast majority of selected covariates
(Supplementary Table B2 for full list).

Table 1 Factor loadings for side effect factors

System Item GSE Tolerability Dizziness Sexual Vision\hearing

GI Diarrhea 0.24
Constipation 0.27
Dry mouth 0.38
Nausea/vomiting 0.31
GI tolerability 0.55

Heart Palpitations 0.29
Dizziness on standing 0.58 0.83
Chest pain 0.35
Heart tolerability 0.58 0.74

Skin Rash 0.23
Increased perspiration 0.3
Itching 0.38
Dry skin 0.35
Skin tolerability 0.49

CNS Headache 0.37
Tremors 0.32
Poor coordination 0.43
Dizziness 0.56 0.68
CNS tolerability 0.60

Vis\Hear Blurred vision 0.44 0.65
Ringing in ears 0.35 0.63
Eyes\ear tolerability 0.51 0.92

Gen\Urin Difficulty urinating 0.25
Painful urination 0.21
Menstrual irregularity 0.08
Frequent urination 0.33
Gen\Urin. tolerability 0.45

Sleep Difficulty sleeping 0.3
Sleeping too much 0.07
Sleep tolerability 0.42

Sex Loss of sexual desire 0.26 0.65
Trouble achieving orgasm 0.18 0.56
Trouble with erections 0.22 0.44
Sex tolerability 0.35 0.88
a 0.74 0.72 0.80 0.71 0.75

Abbreviations: CNS, central nervous system; Gen, genital; GI, gastrointestinal; GSE, general side effect burden; Vis vision.
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Finally, treatment effects were generated by employing a
unique feature of the mixed-model random effects. Briefly, the
mixed model estimates two types of parameters, coefficients
that describe the predictors’ average effects for the full sample
(that is, fixed effects) and deviations from the average effects
for each subject (that is, random effects). Thus, for each of the
antidepressants investigated, we were able to output treat-
ment effects as random drug effects. Intuitively, these
treatment effects quantify how much each subject’s side
effect phenotype changes in response to a given drug, relative
to the average effect for all subjects who took the drug.
Treatment effects estimated in the manner described here
have been published previously both in former GWAS of the
currently analyzed STAR*D study24 and several GWAS of the
CATIE antipsychotic clinical trial.23,26,46,47

Genotyping and quality control. Details of the STAR*D
genotyping and quality control methods have been described
previously.27 Briefly, approximately half the sample (N¼ 964)
was genotyped on the Affymetrix Human Mapping 500k
Array Set, and the other half was genotyped using the
Affymetrix Genome-Wide Human Array 5.0 (N¼ 975). Both
versions genotype the same set of SNPs, the only difference
being that the later 5.0 version accomplishes this with one,
rather than two, microarray/s. As preliminary examination
indicated differences in data quality between the two
platforms, we conducted additional data cleaning routines
separately by platform, in PLINK. Subjects were excluded for
low (o0.95) genotype call rates (3 and 85 subjects excluded
in the 500K and 5.0 arrays, respectively), and SNPs were
excluded for low (o0.01) minor allele frequency (14 562 and
12 012 SNPs excluded in the 500K and 5.0 arrays,
respectively) and low genotype call rate (19 113 and 54 447
SNPs excluded in the 500K and 5.0 arrays, respectively).
SNPs were not excluded based solely on deviations from
the Hardy–Weinberg equilibrium given the possibility
of informative reasons for departures from the Hardy–
Weinberg equilibrium.48,49 PLINK was also used to identify
89 potential genotype–clinical sex disagreement, which were
excluded from analysis. While the default PLINK sex
disagreement settings (that is, X-chromosome inbreeding/
homozygosity estimate 40.8 for female and o0.2 for male)
are conservative, they ensure that no unambiguous data are
included in the analysis. After cleaning and merging, our
analysis included 421789 SNPs from 1762 subjects with a
successful genotyping rate of 99.6%.

Statistical analyses and multiple testing. All association
testing was conducted in PLINK,50 using a linear regression
model of additive SNP effects. As STAR*D is an ethnically
heterogeneous sample (79% Caucasian, 15% African
American and 6% ‘Other’), in the GWAS we adjusted for
ancestral background, which can otherwise cause spurious
associations due to population stratification. Specifically, we
used the multi-dimensional scaling approach implemented
in PLINK (http://www.pngu.mgh.harvard.edu/~purcell/plink/
strat.shtml#mds), which is essentially equivalent to principal
component method implemented in Eigensoft.51 Input data
for the multi-dimensional scaling approach were the genome-
wide average proportion of alleles shared identical by state

between any two individuals. The first multi-dimensional
scaling dimension from this genetic similarity matrix captures
the maximal variance in the genetic similarity; the second
dimension is orthogonal to the first and captures the
maximum amount of residual genetic similarity, and so on.
We included the first five ancestral multi-dimensional scaling
dimensions as covariates in the GWAS, based on analyses
showing that additional dimensions neither predicted
response nor explained significant additional covariance
between SNPS.24

We used a false discovery rate (FDR)52 approach to declare
significance. In comparison to controlling a family-wise error
rate (for example, Bonferroni correction), FDR (a) provides a
better balance between finding true effects versus controlling
false discoveries, (b) results in comparable standards for
declaring significance across studies because it does not
directly depend on the number of tests, and (c) is relatively
robust against having correlated tests.53 FDR is commonly
used in many high-dimensional applications and has been
successfully applied in the context of GWAS.54–56 We set an
FDR threshold of 0.1 for declaring genome-wide significance.
This specifies that, on average, 10% of the SNPs declared
significant are expected to be false discoveries. In addition,
we discuss suggestive associations at an FDR threshold of
0.5 to reduce the probability of Type II statistical errors, while
explicitly noting reduced confidence in these associations.
Operationally,57 FDRwas controlled using q-values.Q-values
are FDRs calculated using the P-value of the markers
as thresholds for declaring significance,58,59 and can be
described as:

qðpÞ ¼ pFDRðpÞ ¼ p0p
PrðP � pÞ

¼ p0p
p0p þ ð1� p0Þ PrðP � pjH1Þ

where p0 is an estimate of the proportion of null associations, p
is the observed P-value, P is a random normally distributed
variable, H0 is the null hypothesis that the SNP–side effect
association b¼ 0 and H1 is the alternative hypothesis that
ba0. Thus, the numerator equals the product of the
proportion of null associations� the observed P-value, and
the denominator is the weighted sum of the probability of
obtaining a test statistic at least as extreme as the one
observed, given the null hypothesis, and of the probability of
obtaining a test statistic at least as extreme as the one
observed given the alternative hypothesis, weighted by the
proportion of null associations (see Storey58 for formal
derivation). While p0 may be empirically estimated, we have
assumed the most conservative value p0¼ 1; thus, the
formula simplifies to the observed P-value divided by the
probability of obtaining a test statistic at least as extreme as
the one observed given the null hypothesis.
For the most promising SNPs, we performed a variety of

additional analyses to examine the robustness of the signal.
First, we tested the SNPs separately in the subjects who self-
identified as European Americans (EA) only and African
American (AA) only (Supplementary Tables C1 and C2). In
addition, for each SNP, we performed haplotype (proxy)
analyses that incorporate information from other SNPs in
that region (http://www.pngu.mgh.harvard.edu/~purcell/plink/
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proxy.shtml). Such analyses may provide a technical valida-
tion of the single SNP result or point to a particularly
informative haplotype.

Results

Table 2 provides details on those SNPs that were genome-
wide suggestive (qo0.5). Figure 1 shows quantile–quantile
plots for all analyses. The plots show that the distribution of P-
values from the GWAS are generally on a straight line,
indicating the expected P-value distribution under the null
hypothesis assuming no effects of the markers. However, in
four of these five plots, there is also evidence that markers in
the right upper corner have P-values smaller than would be
expected under the null hypothesis, suggesting true associa-
tion between these markers and the outcome variable. The
plots also display l values (that is, the ratio of the median
observed P-value of the distribution to the expected P-value
under the null hypothesis) approximately equal to 1
(l¼ 0.996–1.033), indicating no systematic test statistic
inflation and suggesting that population stratification was
generally well-controlled. The full set of GWAS P-values
considered in this study is available for download at: http://
www.people.vcu.edu/~ejvandenoord/.
The top significant finding, rs17135437, exhibited positive

association between vision/hearing side effects and minor
allele count. This SNP is located in an intron of EMID2 on
chromosome 7, as described in Table 2 (P¼ 3.27� 10�8,
q¼ 0.026). Examination of linkage disequilibrium (LD) in the
surrounding region showed no other assayed SNPs in LDwith
this locus (R2o0.06). Consistent with this LD information,
proxy haplotype tests showed that none of the adjacent SNPs
evidenced more than modest association to citalopram-
induced vision/hearing side effects (Figure 2a). Also, the
SNP’s minor allele frequency (MAF) is low in the study sample
(MAF¼ 0.019), and somewhat greater for AA than EA.
However, separating the sample by racial/ethnic ancestry
and reanalyzing the SNP shows that the direction and
magnitude of the effect is consistent between AA and EA.

Thus, this association provides mixed evidence of true
discovery, with the lack of the availability of SNPs in high LD
(to check for possible technical errors) and low MAF
suggesting a degree of caution, but the consistency across
racial/ethnic groups offering some reassurance.
Among the other strongest associations was a pair of SNPs

in high LD (R2¼ 0.978) at LAMA1, on chromosome 18. Both of
these SNPs showed strong positive associations between
overall tolerability to citalopram side effects and minor allele
count (rs4398173: P¼ 5.99� 10�7, q¼ 0.315; rs3810046:
P¼ 4.78� 10�7, q¼ 0.281). MAF was high for both SNPs
(40.45), and exhibited only minor differences across racial/
ethnic groups. Consequently, the direction, magnitude and
significance of the associations were consistent in racial/
ethnic stratified reanalysis. Examination of the LD structure in
the study sample showed modest, but significant LD between
six assayed SNPs, spanning B15 kb. All SNPs identified in
PLINK proxy haplotype analyses showed systematic associa-
tion to the overall tolerability phenotype (Po0.05), but did not
approach genome-wide significance, except in the case of the
two markers described above. Of note, while the two SNPs
approaching genome-wide significance are located slightly
downstream (B10 kb) of LAMA1, the haplotype that they
represent clearly overlaps the gene boundary by B5 kb,
suggesting that the reported hits may be associated with
proximate regulatory sequence or a functional variant within
the gene’s downstream end (Figure 2b).
The strongest signal for citalopram-induced dizziness

comprised two highly proximate SNPs (B4 kb apart) at
AOX2P, on chromosome 2. Both of these SNPs showed
strong positive associations between dizziness and minor
allele count (rs13430864: P¼ 5.12� 10�7, q¼ 0.181;
rs13423450: P¼ 7.57� 10�7, q¼ 0.228). Racial/ethnic
stratified analyses indicated different haplotype structures
between EA and AA, with AA evidencing a B6 kb proxy
haplotype including four assayed SNPs, but no discernable
LD in the same region among EA. The association involving
rs13430864 demonstrated consistent direction and effect
magnitude across EA andAA. However, rs13423450, part of a

Table 2 GWAS results with q-value o0.5

Side effect Locus Test

Chr Position SNP ID Gene MAF MA N P-value q-value Effect

Vision\hearing 7 100902714 rs17135437 EMID2 0.019 A 1675 3.27E-08 0.026 +
Overall tolerability 18 6931108 rs4398173 LAMA1 0.460 G 1691 5.99E-07 0.315 +
Overall tolerability 18 6931662 rs3810046 LAMA1 0.456 T 1700 4.78E-07 0.281 +
Overall tolerability 16 13564386 rs2903308 0.461 T 1687 1.69E-06 0.496 +
GSE 5 38488651 rs7715172 EGFLAM 0.071 G 1706 2.91E-06 0.358 +
GSE 3 59896060 rs4502542 FHIT 0.017 T 1690 1.62E-06 0.262 +
GSE 13 83028233 rs6563353 0.177 A 1666 2.06E-06 0.299 +
GSE 13 104605024 rs16965962 0.030 T 1706 3.22E-07 0.096 +
GSE X 116106291 rs6646773 0.076 C 1704 1.30E-06 0.231 +
GSE 4 187575329 rs11935103 0.262 T 1705 1.33E-06 0.234 +
GSE 3 188896685 rs6764050 RPT2 0.023 G 1706 8.73E-07 0.182 +
Dizziness 20 11105011 rs6040399 0.308 T 1684 6.89E-07 0.216 +
Dizziness 2 201356884 rs13430864 AOX2P 0.040 G 1671 5.12E-07 0.181 +
Dizziness 2 201360698 rs13423450 AOX2P 0.040 C 1689 7.57E-07 0.228 +

Abbreviations: Chr, chromosome number; effect, direction of the effect of minor allele; GSE, general side effect burden; GWAS, genome-wide association study; LD,
linkage disequilibrium; MA, minor allele; MAF, minor allele frequency; N, sample size; SNP, single-nucleotide polymorphism. Locus information includes Chr and
location of SNP (bp, Genome Build 36.3). Direction of effect is properly interpreted as ‘+’, indicating that the MA is associated with increased side effect burden. Rows
in bold indicate SNPs in high LD (r240.8) with each other.
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common haplotype with rs13430864 in AA but not EA, only
evidenced association among AA. This combined with
moderate differences in MAF by racial/ethnic status suggests
variability in the structure and function of this locus—thus, this
association should be regarded as tentative, pending further
evidence (Figure 2c).
Suggestive associations for general side effect burden

included rs7715172, at EGFLAM, on chromosome 5
(P¼ 2.91� 10�6, q¼ 0.358). Reanalyzing the data separately
by race/ethnicity indicated that the association was in the
same direction and magnitude in both subsamples. Examina-
tion of LD structure indicated the presence of a relatively large
haplotype, with seven adjacent assayed SNPs in moderate
LD (¼ 0.11–0.59) to the implicated SNP. The haplotype
spanned B5 kb, and three assayed SNPs in the haplotype
were located within the gene boundary of EGFLAM (Supple-
mentary Figure D1). Consistent with this LD structure, proxy
haplotype analyses indicated six of the surrounding SNPs to
exhibit moderate association to the general side effect burden
(Po0.05). However, MAF was relatively low (¼ 0.071) and
moderate racial/ethnic difference were evident; thus, this
finding should be considered suggestive, conditional on
further evidence. Additional suggestive associations
were found between general side effect burden and SNPs at
RPT2 (rs6764050: P¼ 8.73� 10�7, q¼ 0.182) and FHIT
(rs4502542: P¼ 1.62� 10�6, q¼ 0.262), as well as several
intergenic SNPs (Supplementary Figures D1 and D2). Among

the intergenic associations was a genome-wide significant
finding at rs16965962, located in a gene desert on chromo-
some 7 (P¼ 3.22� 10�7, q¼ 0.096). As shown in the regional
plot (Figure 2d), this intergenic SNP represented a distinct
susceptibility haplotype spanningB30 kb, with eight assayed
SNPs showing clear, systematic association general side
effect burden.

Discussion

To maximize the benefit of antidepressant therapy to the
individual patient, not only should themost efficacious drug be
prescribed at the time of first presentation, but also the drug
with the minimal side effect profile. Understanding individual
differences in the development of side effects following
antidepressant therapy is therefore essential to personalizing
the treatment of depression. In this study, we performed
GWAS on five side effect factors, including general side effect
burden, overall tolerability, sexual adverse reactions, dizzi-
ness and vision/hearing-related side effects. We detected two
SNPs, which according to our pre-identified criteria (FDR
controlled at qo0.1) can be considered genome-wide
significant.
Our top genome-wide finding involved rs17135437, an SNP

within the gene EMID2, with minor allele count positively
associated with the severity of citalopram vision/hearing side
effects. EMID2 encodes the protein collagen a-1(XXVI) chain

Figure 1 Quantile–quantile (Q–Q) plots for genome-wide association studies (GWAS) results of five citalopram-induced side effect measures. Points represent �log10(P-
values) for each single-nucleotide polymorphism (SNP)–side effect outcome association test. Red lines represent the expected P-value distribution under the null hypothesis of
no true associations. Blue lines represent 95% confidence intervals for rejecting the null hypothesis at each P-value rank. The genomic inflation parameter (l) is defined as the
ratio of the median observed P-value to the expected median under the null distribution, thus quantifying systematic test statistic inflation.
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in humans,60 which has been found to regulate corneal
collagen fibrillogenesis.61 Variation in the gene has also been
associated with ataxia in neurodegenerative disorders.62

Moreover, EMID2 has shown evidence of pharmacogenetic
side effect moderation, albeit to a pharmacodynamically
distinct phenotype, aspirin-induced asthma.63 On balance,
considering the strength of association, links with ocular and
neurocognitive functions and tentative evidence of pharma-
cogenetic activity, rs17135437, may be considered a reason-
able candidate in future pharmacogenomic studies of
selective serotonin-reuptake inhibitors.
The associations of two high-LD LAMA1 SNPs to overall

tolerability also suggest credible biological mechanisms.
LAMA1 encodes a vital component of laminin proteins—
laminin subunit a-1. Binding to cells via a high-affinity
receptor, laminin is thought to mediate cell attachment,
migration and differentiation of cells into tissues during
embryonic development by interacting with other extracellular
matrix components, as well as maintenance of tissue
phenotype and promotion of tissue survival.64,65 This rela-
tively frequently studied gene has been linked to several
cancers including non-small-cell lung and colorectal,66,67 as
well as cardiovascular pathophysiology.68 LAMA1 has also
been associated with pharmacogenetic moderation of thiazo-
lidinedione-induced side effects to diabetes treatment and,69

more relevantly, with moderating the effects of antidepressant
buproprion on smoking cessation.70 Thus, robust GWAS
support and prior evidence of antidepressant moderation
suggest LAMA1 as a plausible candidate for future pharma-
cogenetic and functional analyses.

The two high-LD candidates at pseudogene AOX2P, on
chromosome 2, are relatively poorly characterized, but
variants within the pseudogene have been identified and
analyzed in two bioinformatic studies based on a targeted
nonsynonymous SNP approach,71 and a large-scale identifi-
cation and characterization of putative alternative promoters
of human genes.72 Given that pseudogenes, by definition,
lack protein-coding function, this finding should be viewedwith
a degree of skepticism. However, considering that functional
genes have been misclassified as pseudogenes,73 pseudo-
gene transcripts have demonstrated trans-regulation of
homologous coding genes,74 and some endogenous small
interfering RNA are derived from pseudogene transcription,75

it would be premature to dismiss this result as a false positive.
Similarly, we view the association of variants in EGFLAM to

citalopram-induced general side effect burden as tentative
because of MAF differences between racial/ethnic groups.
However, there are potential side effect mechanisms involving
EGFLAM suggested by previous research, including studies
of ocular structure and function (for example, murine eye
pathophysiology76 and photoreceptor ribbon synapse forma-
tion).77 Thus, this gene remains a plausible candidate for
future consideration. Finally, the second genome-wide sig-
nificant SNP (rs16965962) was located in a gene desert on
chromosome 7. While the lack of involvement in protein-
coding sequence somewhat diminishes this marker’s prior
probability of being a true discovery, there is precedent for
such intergenic associations to replicate in independent
samples, such as found with a region on chromosome 9 in
Type 2 diabetes mellitus.78 Furthermore, the association
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signal here was notably robust, including eight assayed SNPs
spanning a B30 kb haplotype (Figure 2d). Thus, this finding
may be evidence of long-range regulatory elements, consis-
tent with recent research identifying gene desert enhancer
hotspots associated with coronary artery disease.79

Beyond individual findings, it is also worth noting that all top
associations exhibited positive effects of minor allele count
and side effect severity, rather than the expected mix of
positive and negative effects (Table 2). Further inspection of
the GWAS output confirmed the legitimacy of this finding, and
demonstrated that, as expected, negative and positive
coefficients were equally likely in the full GWAS results. The
pattern was largely supported in the ethnically stratified
analyses as well, where all coefficients, except general side
effect burden—rs16965962, were positive. Although the
binomial probability of arriving at this result by chance is
small, the lack of precedent in previous pharmacogenomic
research suggests that the finding may be due to sampling
error. However, it is also possible that the result is due to
uncommon polymorphisms having an increased probability of
deleterious effect. Future research will be required to
adjudicate between these possibilities.
Currently, it is premature to suggest direct clinical applica-

tions of these findings for prescribing antidepressants. On the
contrary, actualizing the promise of pharmacogenomics and
translating academic findings into clinical applications will
require a cumulative process of aggregating and jointly
considering large bodies of evidence using meta-analytic and
data integration techniques. Thus, it is crucial to conduct and
rapidly disseminate GWAS results from large, well-designed
clinical trials with genomic data, such as STAR*D. To facilitate
this process, we provide all P-values (http://www.people.
vcu.edu/~ejvandenoord/) as a resource for investigators with
the requisite samples to carry out replication or meta-analysis.
As with any genetic associations, our findings will require

replication and functional validation. However, this study
shows the potential of GWAS to discover genes and pathways
that mediate adverse effects of antidepressant medication. A
better understanding of these mechanisms and the roles of
specific polymorphisms will facilitate the development of
improved biomarker-based approaches to personalize anti-
depressant therapy. It is hoped that this research will
eventually contribute, however incrementally, to reducing
the global health burden of depression, facilitating efficient
prescription of the most efficacious and least toxic antide-
pressant medication to MDD patients.
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