www.nature.com/tp

Hippocampal subfields predict positive symptoms in schizophrenia: First evidence from brain morphometry

S Kühn^{1,2}, F Musso³, A Mobascher^{4,5}, T Warbrick⁵, G Winterer^{5,6} and J Gallinat¹

Alterations of hippocampal anatomy have been reported consistently in schizophrenia. Within the present study, we used FreeSurfer to determine hippocampal subfield volumes in 21 schizophrenic patients. A negative correlation between PANSS-positive symptom score and bilateral hippocampal subfield CA2/3 as well as CA1 volume was found on high-resolution magnetic resonance images. Our observation opens the gate for advanced investigation of the commonly reported hippocampal abnormalities in schizophrenia in terms of specific subfields.

Translational Psychiatry (2012) 2, e127; doi:10.1038/tp.2012.51; published online 12 June 2012

Introduction

Alterations of hippocampal anatomy have consistently been reported in schizophrenia.¹ It has been hypothesized that resulting memory problems lead to increases of illusory pattern completion and are therewith involved in the generation of psychotic symptoms due to dysfunctional association forming.² In particular, the so-called autoassociative learning mechanism within the subfield cornu ammonis (CA) 3 together with CA1 allows for rapid binding of events that co-occur. Postmortem studies have reported reduced size and altered dendritic arborization of CA3 pyramidal neurons, predominantly in patients with positive symptoms.³ However, the role of hippocampal CA subfields volume for positive symptoms has not been investigated *in vivo*.

Methods

We studied 21 schizophrenic patients (mean age = 34, 2 \pm 8.2 years; five female; number of episodes = 2.5 ± 2.0 ; age of onset = 26.4 ± 7.8 years; 19 medicated with atypicals) giving written informed consent with the Positive and Negative Syndrome Scale (PANSS).⁴ Hippocampal subfields volume was assessed fully automatic with FreeSurfer⁵ on the average of 2-4 (mean = 3.4 ± 0.9) T1-weighted magnetic resonance images (3 T Siemens Trio; MPRAGE, resolution $1 \times 1 \times 1$ mm³). The computational model by van Leemput⁵ incorporates a prior distribution that makes predictions about where neuroanatomical labels are expected to occur. This prior is based on a generalization of various probabilistic atlases, and is automatically learned from manual segmentations of the hippocampal formation in MRI images. A likelihood distribution then predicts how the labeled image, on which each voxel is assigned a unique neuroanatomical label, translates into an individual's MRI image. We focussed on the volume of the entire hippocampus, CA1, CA2/3, CA4/dentate gyrus, subiculum and presubiculum, disregarding fimbria and hippocampal fissure, because the later two are the smallest subfields that are considerably less reliably segmented⁵ and disregarding the so-called 'hippocampus' subsegment that contains mainly the tail of the hippocampus where subfields were not discernable.

Results

We observed a negative Pearson's correlation between PANSS-positive symptom score (M = 12.43, s.d. = 4.27) and bilateral hippocampal subfield CA2/3 volume (r(21) = -0.46, P < 0.05) as well as CA1 volume (r(21) = -0.44, P < 0.05, Figures 1 and 2, Table 1), indicating that patients with stronger positive symptoms have smaller CA2/3 and CA1 subfields. No other subfield showed significant correlations neither with the Positive Syndrome score (P>0.26) nor with the Negative Syndrome score (M = 16.05, s.d. = 4.74, P>0.42). Although the results do not survive conservative Bonferroni correction for multiple testing, the fact that not only bilateral CA2/3 and CA1 but also right and left structures separately survive statistical thresholding with P < 0.05 is remarkable. The subfield volumes do not correlate with chlorpromazine equivalents of neuroleptic medication (CA2/3: r(21) = 0.04, P = 0.86; CA1: r(21) = 0.00, P = 0.99).

Discussion

The results are compatible with models of hippocampal CA3 processes interacting with CA1 in the generation of positive symptoms.² These hippocampal subfields have been suggested to act as a binding module for cortical circuits containing weakly related sensory representations. CA3 in particular has been proposed to create representations of space and time as a basis of conscious awareness.⁶

¹Charité University Medicine, St Hedwig-Krankenhaus, Clinic for Psychiatry and Psychotherapy, Berlin, Germany; ²Department of Experimental Psychology, Ghent Institute for Functional and Metabolic Imaging, Ghent University, Ghent, Belgium; ³Department of Psychiatry, University of Düsseldorf, Düsseldorf, Germany; ⁴Department of Psychiatry, University of Mainz, Mainz, Germany; ⁵Institute of Neurosciences and Medicine, Helmholtz Research Centre Jülich, Jülich, Germany and ⁶Cologne Center for Genomics, University of Cologne, Cologne, Germany

Correspondence: Dr S Kühn, Faculty of Psychology and Educational Sciences, Department of Experimental Psychology, Ghent Institute for Functional and Metabolic Imaging, Ghent University, Henri Dunantlaan 2, 9000 Gent, Belgium.

E-mail: simone.kuhn@ugent.be

Keywords: CA1; CA2/3; FreeSurfer; hippocampus; schizophrenia; volumetry

Received 23 January 2012; revised 18 April 2012; accepted 21 April 2012

Figure 1 Negative correlation between the positive symptom subscale of the Positive and Negative Syndrome Scale (PANSS) and bilateral hippocampal CA2/3 and CA1 subfield volume.

Figure 2 Left hippocampal subfield segmentation of two exemplary subject.

 $\label{eq:table_to_stability} \begin{array}{l} \textbf{Table 1} & \text{Mean} \pm s.d. \text{ of bilateral larger hippocampal subfield volumes (in mmł)} \\ \text{and its correlation with Positive and Negative Syndrome Score} \end{array}$

Hippocampal subfields	Mean (s.d., in mm ³)	Correlation with positive symptoms (Pearson's correlation coefficient)	Correlation with negative symptoms (Pearson's correlation coefficient)
Whole hippocampus	7010 (817)	-0.26	-0.07
CA1	350 (46)	-0.44*	0.03
CA2/3	1013 (149)	-0.46*	-0.07
CA4, dentate gyrus	563 (78) [′]	-0.20	-0.08
Subiculum	669 (73)	-0.13	-0.19
Presubiculum	453 (40)	-0.19	-0.11

*Indicates correlations with P<0.05.

A subfield dysfunction would integrate sensory representations abnormally resulting in positive symptomatology; for instance, hallucinations.² Furthermore, it has been suggested that the disinhibition of hippocampal regions can stimulate hyperdopaminergic states and therewith produce psychosis.⁷

Our observation opens the gate for advanced investigation of the commonly reported hippocampal abnormalities in schizophrenia in terms of specific subfields. However, replication of results is needed in a larger sample of unmedicated patients with further differentiation of CA2/3 volumes. Furthermore, a limitation of the present study is the relatively low, albeit common, resolution of $1 \times 1 \times 1$ mm³. Future studies should consider using a sequence with a higher spatial resolution.

Conflict of interest

The authors declare no conflict of interest.

- Klär AA, Ballmaier M, Leopold K, Häke I, Schaefer M, Brühl R et al. Interaction of hippocampal volume and N-acetylaspartate concentration deficits in schizophrenia: A combined MRI and 1H-MRS study. *Neuroimage* 2010; 53: 51–57.
- Tamminga CA, Stan AD, Wagner AD. The hippocampal formation in schizophrenia. Am J Psychiatry 2010; 167: 1178–1193.
- Kolomeets NS, Orlovskaya DD, Rachmanova VI, Uranova NA. Ultrastructural alterations in hippocampal mossy fiber synapses in schizophrenia: A post-mortem morphometry study. Synapse 2005; 57: 47–55.
- Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987; 13: 261–276.
- Van Leemput K, Bakkour A, Benner T, Wiggins G, Wald LL, Augustinack J et al. Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus 2009; 19: 549–557.
- Behrendt RP. Contribution of hippocampal region CA3 to consciousness and schizophrenic hallucinations. *Neurosci Biobehav Rev* 2010; 34: 1121–1136.
- Lisman JJE, Coyle J, Green RW, Javitt DC, Benes FM, Heckers S et al. Circuit-based framework for understanding neurotransmitter and risk gene interactions in schizophrenia. *Trens Neurosci* 2008; 31: 234–242.

Translational Psychiatry is an open-access journal published by Nature Publishing Group. This work is licensed under the Creative Commons Attribution-Noncommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/