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Enriched environment treatment reverses
depression-like behavior and restores reduced
hippocampal neurogenesis and protein levels of
brain-derived neurotrophic factor in mice lacking its
expression through promoter IV

S Jha, B Dong and K Sakata

Promoter IV-driven expression of brain-derived neurotrophic factor (BDNF), a major neuronal growth factor, is implicated
in the pathophysiology of major depression. We previously reported that mice lacking expression of BDNF through
promoter IV (BDNF-KIV mice) exhibit a depression-like phenotype. Here, we examined whether the depression-like
phenotype and decreased levels of BDNF because of promoter IV deficit could be rescued by enriched environment
(EE) treatment, a potential antidepressant intervention. Three weeks of EE treatment rescued depression-like behavior of
BDNF-KIV mice as assessed by the tail suspension test, open-field test and sucrose preference test. EE treatment
also increased BDNF transcripts driven by multiple endogenous promoters and restored BDNF protein levels in the
hippocampus (HIP) of BDNF-KIV mice. Further, we investigated adult hippocampal neurogenesis as a possible cellular
mechanism underlying the depression-like behavior and its recovery in BDNF-KIV mice. We found that the number of
surviving progenitors and their dendritic length in the dentate gyrus of the HIP were reduced in BDNF-KIV mice compared
with the control wild-type mice. EE treatment restored the reduction in cell survival and dendritic length and increased
cell proliferation in BDNF-KIV mice. In conclusion, this study demonstrated that EE rescued depression-like behavior,
decreased BDNF levels and defective neurogenesis in the HIP caused by lack of promoter IV-driven BDNF expression.
These results suggest that decreased BDNF levels because of one impaired promoter can be compensated by other BDNF
promoters and that BDNF levels may be one of the key factors regulating depression and antidepressant effects through
hippocampal neurogenesis.
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Introduction

Brain-derived neurotrophic factor (BDNF) is a major neuronal
growth factor in the brain that promotes neurogenesis,
neuronal maturation and synaptic plasticity.”> BDNF has
been implicated in both the pathophysiology of major
depression and the actions of antidepressants.®> However,
the lack of clear-cut depression-like behavior with manipula-
tion of BDNF levels (knockout (KO) and knockdown) in an
animal model has delayed studies connecting BDNF and
depression in vivo.® Recently, we showed direct evidence that
supports the BDNF hypothesis of depression by focusing on
an endogenous BDNF promoter; mice that lack promoter
IV-driven BDNF expression* and have reduced levels of
BDNF in the brain displayed depression-like behavior.®
Although the Bdnf gene is regulated by at least nine
different promoters,® promoter IV (previously classified as
promoter Ill) is most responsive to neuronal activity and
induces activity-dependent expression of BDNF.”® This

finding suggests the intriguing hypothesis that increased
neuronal activity induces activity-dependent BDNF expres-
sion, which further induces, through a feedback mecha-
nism, neuronal activity to maintain active brain function.
Any disruption to activity-dependent BDNF expression
would lead to decreased neuronal activity and function, which
could lead to depression. Decreased function of BDNF
promoter IV may occur in real life via reduced neuronal
stimuli, mutations in the promoter region and epigenetic
processes through stress. Supporting this, studies have
shown that social dominant stress and immobilization stress
decrease the function of promoter IV through epigenetic
regulation processes.'®"

However, questions remain. Can the depression-like
behavior caused by impaired promoter [V-driven BDNF be
rescued by antidepressant interventions? If so, what are the
underlying mechanisms? We addressed these questions by
using BDNF knock-in IV (BDNF-KIV) mice, which have a
unique feature: functional expression of BDNF protein via one
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specific promoter (promoter 1V) is ablated by insertion of a
green fluorescent protein gene, but other promoters and
the coding region of BDNF are kept intact (for details, see
Sakata et al.*). We hypothesized that one promoter deficiency
could be compensated by other intact promoters in the
Bdnf gene. Different types of antidepressant interventions,
which include antidepressant medications, electroconvulsive
therapy, exercise and enriched environment (EE), have been
reported to increase expression of BDNF transcripts, notably
in the hippocampus (HIP) through different promoters.'®™"®
Although BDNF induction by these interventions (approxi-
mately a 1.2- to 3-fold increase over several weeks) is not as
robust as the one caused by neural depolarization or seizure
through promoter IV (usually more than a 4-fold increase
within 3h after administering stimuli),” accumulation of a
small increase in BDNF protein may provide an antidepres-
sant effect. The antidepressant effect of BDNF has been
long suggested by evidence that direct infusion of BDNF
into the HIP produces antidepressant effects in behavioral
models of depression.'® If decreased BDNF expression leads
to depression, an increase in BDNF levels should reverse
the depression-like behavior and pathophysiology of
BDNF-KIV mice. However, this hypothesis—reduced BDNF
levels lead to depression and depression-like behavior
while restoration of BDNF levels has antidepressant
effects—has not yet been tested, most likely because no
animal model with reduced BDNF levels clearly shows
depression-like behavior®>'® until recently.52° Here, we
addressed whether treatment with an antidepressant inter-
vention could reverse the depression-like behavior and
reduced BDNF levels in BDNF-KIV mice. An EE (>3 weeks)
that includes a running wheel has been reported to increase
BDNF levels through multiple promoters (I, I, Ill, IV and VI)'®
and to produce antidepressant effects.?'™2® Therefore, we
used EE as a potential intervention to upregulate BDNF levels
by endogenous multiple promoters.

Further, we investigated a possible cellular mecha-
nism underlying depression-like behavior and its recovery
in BDNF-KIV mice. One of the hypothesized cellular
mechanisms underlying major depression and its recovery
is hippocampal neurogenesis.>* Neurogenesis in the dentate
gyrus (DG) of the HIP is decreased by stress®® and increased
by antidepressant interventions including EE.?%728 This down-
and upregulation of neurogenesis are paralleled by changes
in BDNF expression levels; BDNF levels, in particular,
promoter |V-driven BDNF transcripts, are downregulated
by different types of stress,'®"'"29734 while different BDNF
promoter-driven BDNF levels are upregulated by many
antidepressant interventions including EE in the HIP.'27"°
Exogenous BDNF has been shown to increase neuro-
genesis in the DG.2 Thus, it has been suggested that
BDNF may regulate neurogenesis and, through this process,
might mediate the effects of stress and AD interventions.*®
Here, we examined whether promoter IV-driven BDNF
expression may be required for regulating basal levels of
neurogenesis in the HIP by using BDNF-KIV mice and
investigated whether the observed phenotype in adult
neurogenesis could be reversed by EE treatment. The levels
of proliferation, survival and differentiation of progenitors
were examined.
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Subjects and methods

Animals. The generation of BDNF-KIV mice has been
described previously.* Male adult age-matched (2-5 month-
old) BDNF-KIV (KIV) and control wild-type (WT) littermates
were group-housed (four to five animals per cage) for
3 weeks in either standard conditions (SCs) (regular cage;
27 x 16 x 12cm) or EE conditions. EE consisted of a larger
cage (44 x 22 x 16cm) containing a plastic running wheel,
nesting material, and an assortment of toys with different
colors and textures (igloo, dome, balls, tunnels, etc.,
Bio-Serve, Frenchtown, NJ, USA). Once a week, the toys
were changed, and mice in EE were given rodent Foraging
Crumble (Bio-Serve). All animals were housed in a normal
12:12 h dark—light cycle and had ad libitum access to food and
water. All animal experiments were approved by the University
of Tennessee Laboratory Animal Care and Use Committee.

Behavioral tests. The open-field test (OFT), tail suspension
test (TST), and sucrose preference test (SPT), were
conducted as described previously® with modifications.
In the previous SPT, two bottles were placed on the one
side of a cage grid, making one bottle closer to the center
and, therefore more accessible. In this study, both bottles
were placed toward the center of the cage and were equally
distributed to prevent difference in bottle accessibility.
Immobility time in the TST was measured by an observer
blind to the experimental groups.

RNA extraction and quantitative reverse transcriptase-
PCR (gqRT-PCR). Total RNA from each HIP was isolated
using the RNeasy Kit (Qiagen, Valencia, CA, USA). In all, 1 ug
of total RNA was reverse-transcribed into single-stranded
complementary DNA using the Transcriptor First Strand
cDNA Synthesis Kit (Roche, Indianapolis, IN, USA) following
the manufacturer’s instructions. gRT-PCR was performed in a
total volume of 5ul containing complementary DNA made
from 5 ng of total RNA, 1 x TagMan PCR master mix (Roche),
20nM of each Universal Probe Library probe (Roche) and
40nm of each primer. The sequences of primers and probes
are shown in Supplementary Table 1. Amplification was
carried out for 50 cycles using a Light Cycler 480 (Roche).
Each cycle consisted of the following steps: 95°C for 10s,
60°C for 30s and 72°C for 10s. Relative gene expression
values were determined using the 2724T method of Livak
and Schmittgen®® with CyclophilinD as a reference gene.

BDNF enzyme-linked immunosorbent assay. Protein
samples were prepared from the right HIP from each
mouse, as described previously.* BDNF protein levels were
determined by enzyme-linked immunosorbent assay (BDNF
Emax immunoassay system; Promega, Madison, WI, USA),
and total protein concentrations were measured by DC
protein assay (Bio-Rad Laboratories, Hercules, CA, USA),
following the manufacturer’s instructions. The BDNF signal
was normalized to the total soluble protein in each sample.

Bromo deoxyuridine (BrdU) labeling and immunohisto-
chemistry. BrdU labeling and immunohistochemistry were
performed as described previously.®” Briefly, mice received a



single intraperitoneal injection of BrdU (Fisher Scientific,
Pittsburgh, PA, USA; 100mgkg™" of body weight) during the
first 10 days or at the last day of the housing period in EE or
SC. Immunohistochemistry detecting BrdU-positive (BrdU +)
cells was performed 3 h or 2 weeks after the last injection of
BrdU (Figure 3, top panels). Free-floating coronal sections
(40 um for proliferation experiments and 50 um for survival
experiments) were used for immunohistochemistry with rat
anti-BrdU antibody (1:250; AbD Serotec, Raleigh, NC, USA)
and goat anti-rat fluorescein isothiocyanate antibody (1:500;
Millipore, Billerica, MA, USA). For double labeling, sections
from the survival experiment were incubated with anti-BrdU
antibody, then incubated with either mouse anti-NeuN
(neuronal nuclei) antibody (1:500; Millipore) or rabbit anti-
GFAP (glial fibrillary acidic protein) antibody (1:1000;
Millipore), followed by incubation with a cocktail of goat
anti-rat fluorescein isothiocyanate antibody (1:500; Millipore)
with either goat anti-mouse Alexa 555 antibody (1:500;
Invitrogen, Carlsbad, CA, USA) or goat anti-rabbit Cy3
antibody (1:500; Invitrogen) for BrdU/NeuN or BrdU/GFAP,
respectively. To detect doublecortin-positive (DCX +) cells,
after blocking in 10% goat serum, sections were incubated
with rabbit anti-DCX antibody (1:3000; Sigma, St Louis, MO,
USA) for 4 h at room temperature, followed by incubation with
goat anti-rabbit Cy3 antibody (1:500; Invitrogen).

TUNEL staining. For terminal deoxynucleotidyl transferase-
mediated dUTP nick-end labeling (TUNEL), sections were
pretreated with 0.1M trisodium citrate (pH 6.0, boiling in
microwave) for 5 min, and staining was performed using the
Dead-End Fluorometric TUNEL System (Promega) following
the manufacturer’s instructions.

Quantitation. Images of the DG were acquired on an
Olympus microscope (IX50, Center Valley, PA, USA)
equipped with a video camera. BrdU + cells in the granule
cell layer and the subgranule cell layer (SGZ) in the HIP were
counted from these images. For double-labeling, at least
100 BrdU+ cells per animal were analyzed for the
colocalization of both BrdU and the markers NeuN or
GFAP on a confocal microscope (Nikon, Melville, NY, USA)
with z-plane sectioning. To analyze DCX + cells, the number
of DCX+ cells and dendritic extension were measured in
each DG. Dendritic extension was analyzed by counting the
number of dendrites crossing at 50, 100, 150 and 200 pm
from the SGZ. TUNEL-positive cells were counted using an
Olympus microscope. Quantification of data was performed
by an observer blinded to the genotype and experimental

group.

Statistical analysis. Student’s ttests were performed
on the two data groups. Two-way analysis of variance
(ANOVA) was performed using Prism (GraphPad Software,
La Jolla, CA, USA) for genotype effect and EE effect, and,
when warranted, post hoc Bonferroni multiple comparisons
were carried out. One-way ANOVA was performed with
three or more data groups, followed by Bonferroni multiple
comparisons. Data are presented as means * s.e. (standard
error of mean). Statistical significance was set at *P<0.05
and *P<0.01.
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Results

We examined the effects of the lack of promoter 1V-driven
BDNF expression by comparing BDNF-KIV and WT
littermates in SC and EE conditions. We compared the
effects of EE treatment on both genotypes by using two-way
ANOVA. The statistical values are presented in Supple-
mentary Table 2.

EE reversed depression-like behavior in BDNF-KIV
mice. First, we examined whether the depression-like
behavior of BDNF-KIV mice® could be reversed by EE
treatment at the end of the 3-week period in EE and SC by
the OFT and TST. The OFT measures explorative locomotor
activity in a novel open field,*® and the TST measures stress-
related despair (time of immobility) when mice are
suspended by their tails.®*® We replicated our previous
report* that BDNF-KIV mice in SC displayed significantly
reduced locomotor activity in the OFT (P<0.01, Figure 1a)
without changing the time spent in the center (P>0.05,
Supplementary Figure 1a) and significantly increased
immobility in the TST (P<0.05, Figure 1b) compared with
WT mice. When the effects of EE on the depression-like
behavior was assessed by the OFT, two-way ANOVA
revealed a significant effect of genotype (P<0.05) and a
trend toward a genotype—EE interaction (P=0.053). The
post hoc test showed that EE treatment significantly
increased total activity of BDNF-KIV mice (KIV-EE vs
KIV-SC, P<0.05; Figure 1a). There was no difference
among the WT-SC, WT-EE and KIV-EE groups (Figure 1a,
one-way ANOVA), which indicated that EE treatment
reversed the reduced locomotor activity observed in
BDNF-KIV mice, while it had no effect in WT mice. When
effect of EE on total time spent in center was examined, two-
way ANOVA revealed a significant effect of EE (P<0.05).
The post hoc test showed that EE treatment increased time
in center in WT mice with a significance (WT-SC vs WT-EE,
P<0.05) and in BDNF-KIV mice with a trend (KIV-SC vs
KIV-EE, P>0.05 by Bonferroni multiple comparison;
P=0.03 by Student’'s ttest, Supplementary Figure 1a).
BDNF-KIV mice showed reduced frequency to enter the
center compared with WT mice (P<0.05), and this reduction
was reversed be EE (Supplementary Figure 1b), mirroring
the results of total activity in the OFT (Figure 1a). In the TST,
EE significantly decreased the immobility time in both
WT (P<0.05) and BDNF-KIV (P<0.01) mice (Figure 1b),
indicating the antidepressant effect of EE in both geno-
types. BDNF-KIV mice in EE exhibited no difference in the
immobility time when compared with WT mice in SC (P=0.6;
Figure 1b), indicating that the depression-like phenotype
observed in BDNF-KIV mice in the TST was reduced by
EE treatment. The results of OFT and TST suggested a
possibility that EE treatment only increased loco-
motor activity rather than providing antidepressant effect.
Therefore, we further conducted the SPT, which measures
anhedonia (reduced preference to pleasurable sucrose
water) and is locomotion-independent.*® We replicated our
previous report* that BDNF-KIV mice in SC displayed
significantly reduced sucrose preference in the SPT
(P<0.01, Figure 1c) compared with WT mice in SC. When

w

Translational Psychiatry



Environment, BDNF, neurogenesis and depression
SJhaetal

|9

effect of EE on SPT was examined, two-way ANOVA ANOVA (Supplementary Table 2), indicating that EE
revealed a genotype-EE interaction (P<0.01) and a trend treatment rescued the reduced preference for sucrose
toward a significant effect of genotype (P=0.07). The post observed in BDNF-KIV mice. The total liquid intake was
hoc test showed that EE treatment significantly increased significantly higher in WT-EE compared with other groups
percent sucrose consumption in BDNF-KIV mice (KIV-EE vs (P<0.01) while no difference was observed among the other
KIV-SC, P<0.01; Figure 1c). There was no difference groups (P>0.05, Supplementary Figure 2).

among the WT-SC, WT-EE and KIV-EE groups by one-way

EE increased expression of BDNF mRNA and protein

a go- I**_ ol through multiple promoters. Although BDNF-KIV mice
| lack promoter IV-driven BDNF expression, they possess

700 < intact protein-coding sequence and other promoters for
BDNF.* We examined whether the antidepressant effects
600 = of EE were correlated to increased levels of BDNF mRNA
through other BDNF promoters. When total BDNF mRNA
levels were measured by expression levels of exon IX (the
400 owr common BDNF protein-coding region) using gRT-PCR
significant increases by EE treatment were observed in
300 - both WT (43% increase; P<0.01, Figure 2a) and BDNF-KIV
WK mice (30% increase; P<0.05; Figure 2a). When the
200 contribution of each BDNF promoter was examined by
measuring mMRNA levels of respective exons, significant
increases by EE were detected in exons | (101% increase),
0 lla (61% increase), llb (59% increase), llc (62% increase)

SC EE and lll (112% increase) in WT-EE mice and in exon | (66%

increase) and exon Ill (88% increase) in BDNF-KIV mice

b * as compared with their counterparts in SC (Figure 2b,

200 = | ** Supplementary Table 2). Taken together, these results
x| \ indicate that EE treatment significantly induced BDNF

500 =

Movement (beam-breaks)

100 =

mRNA expression through multiple promoters both in WT
and BDNF-KIV mice.

Next, we measured the BDNF protein levels in the HIP
by enzyme-linked immunosorbent assay to determine if
increased BDNF mRNA levels by EE were translated into
100 - OwTr enhanced BDNF protein levels. Two-way ANOVA revealed
significant effects of both genotype (P<0.01) and EE
(P<0.05) in BDNF protein levels. Post hoc tests revealed a
significant decrease (35%) in BDNF-KIV mice in SC com-
pared with WT mice in SC (P<0.01; Figure 2c) and a
significant increase (36%) in BDNF-KIV mice by EE treatment
(KIV-EE vs KIV-SC, P<0.05; Figure 2c). No significant
0 difference was observed in WT-EE and KIV-EE mice
compared with WT-SC (P> 0.05). These results indicate that
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Figure 1 Effect of enriched environment (EE) on depression-like behavior in
75 - brain-derived neurotrophic factor knock-in IV (BDNF-KIV) and wild-type (WT) mice.
(a) The open-field test measuring total locomotor activity of mice for 10 min. Note

that KIV-standard condition (SC) (BDNF-KIV mice in standard condition) showed
reduced locomotor activity compared with WT-SC (WT mice in SC), while KIV-EE
50 4--1  ‘wbm------. Owr (BDNF-KIV mice in enriched environment) as well as WT-EE (WT mice in EE)
showed similar locomotor activity compared to WT-SC (n= 12 per group). (b) The
tail suspension test measuring immobility time of mice for 6 min. Note the increased
B KV immobility time in KIV-SC but similar immobility time in KIV-EE compared with WT-
o5 SC. (n=12 per group). (c) The sucrose preference test measuring % sucrose
preference (total intake of sucrose water/total liquid intake of sucrose water and
water) of mice over 3h. The 50% dotted line is shown to indicate the equal
preference for water and sucrose. Note that KIV-SC showed reduced sucrose
0 preference compared with WT-SC, while KIV-EE as well as WT-EE showed sucrose
sc EE preference similar to WT-SC (n=8 per group). Results are expressed as

mean + s.e. *P<0.05; **P<0.01.
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Figure 2 Effects of enriched environment (EE) on expression of brain-derived neurotrophic factor (BDNF) transcripts and protein levels in the hippocampus.
(a) Quantitative reverse transcriptase (qRT)-PCR results showing total BDNF mRNA levels (protein-coding exon IX, n=4 per group). (b) gRT-PCR results showing mRNA
levels of BDNF exons |, lla, lIb, llc, Ill, IV, VI, VIl and IXa in the hippocampus (HIP). Results are expressed as % wild-type-standard condition (WT-SC) for WT-EE and %
knock-in IV (KIV)-SC for KIV-EE. Note that EE significantly increased levels of total BONF mRNA levels in both genotypes through multiple promoters. (n=4 per group).
() Enzyme-linked immunosorbent assay (ELISA) quantification of BDNF protein levels in the HIP. Note that the BDNF protein levels were reduced in BDNF-KIV mice in SC
compared with WT mice in SC. BDNF protein levels were increased in BDNF-KIV mice in EE compared with those in SC (n= 12 per group). *P<0.05; **P<0.01.
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Figure 3 Survival and proliferation of progenitors in brain-derived neurotrophic factor knock-in IV (BDNF-KIV) mice and effects of enriched environment (EE). Top panels:
BrdU labeling paradigm. Middle panels: representative images displaying BrdU positive ( + ) cells (arrows) from the four groups. Lower panels: quantification of BrdU + cells
in the dentate gyrus (DG). (a) Number of surviving progenitor cells (3 weeks). Note the decreased number of surviving BrdU + cells in KIV-standard condition (SC) compared
with wild-type (WT)-SC and the significant increase in the number of BrdU + cells in KIV-EE mice compared with both KIV-SC and WT-SC (18-20 DG in 9-10 sections from
each brain, n=5 per group). (b) Number of proliferating cells (3 h). Note the significant increase in the number of BrdU + cells in KIV-EE compared with KIV-SC and WT-SC
(8-10 DG in 4-5 sections from each brain, n=3 per group). Results are expressed as % of WT-SC + s.e. Scale bar in (a) and (b) =250 um. *P<0.05, **P<0.01.

EE restored decreased BDNF protein levels in the HIP of
BDNF-KIV mice.

Reduced survival of progenitor cells in BDNF-KIV mice
that was reversed by EE. Next, we sought to determine the
effect of EE on neurogenesis as a possible cellular
mechanism underlying the depression-like behavior and its
recovery in BDNF-KIV mice. Distinct stages of heurogenesis
including the survival, proliferation and differentiation of

newly born cells were examined using BrdU, a marker of
dividing cells. When survival of BrdU + cells was examined
following 3 weeks of housing in SC or EE (Figure 3, top
panel), a significant effect of EE (P<0.01) and a genotype-
EE interaction (P<0.01) were detected. BDNF-KIV mice
showed a significant decrease (23%) in the number of
BrdU + cells compared with WT mice in SC (P<0.01,
Figure 3a) but not in EE (P=0.12). EE treatment significantly
increased the number of BrdU + cells in BDNF-KIV mice

o
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(P<0.01, KIV-EE vs KIV-SC) and WT mice (P<0.05,
WT-EE vs WT-SC, Figure 3a). Strikingly, the increased
rate of surviving progenitors by EE was greater in BDNF-KIV
mice compared with WT mice (2.1-fold increase in BDNF-KIV
mice vs 1.4-fold increase in WT mice, Student’s t-test,
P<0.05). KIV-EE mice also showed a significant increase
(1.6-fold) in the number of BrdU+ cells compared with
WT-SC (P<0.01, Figure 3a). These results indicate that EE
not only reversed the reduction in the number of BrdU + cells
observed in BDNF-KIV mice but also increased BrdU + cells
more than the levels in WT mice.

Normal proliferation in BDNF-KIV mice that was
increased by EE. Next, we examined whether the
reduced BrdU + cell population in BDNF-KIV mice was the
result of reduced progenitor proliferation. The number of
BrdU + cells 3 h after BrdU injection was counted (Figure 3b,
top panel); 3h are sufficient for actively dividing cells to
incorporate BrdU but not long enough to undergo the second
round of mitosis.*' No difference was observed in the
number of BrdU + cells between KIV-SC and WT-SC mice
(P=0.90, Student’s ttest, Figure 3b), indicating that the
decreased number of BrdU + cells at 3 weeks observed in
BDNF-KIV mice in SC (Figure 3a) was not the result
of reduced proliferation but rather the result of reduced
survival of the progenitors. Further, a significant effect of
EE (P<0.05) was detected. Remarkably, EE treatment
significantly increased the number of BrdU+ cells in
BDNF-KIV mice compared with both BDNF-KIV mice in SC
(1.4-fold, P<0.05) and WT mice in SC (1.4-fold; P<0.05,
Figure 3b), whereas EE had no effect on proliferation
of progenitors in WT mice (WT-EE vs WT-SC; P=0.28,
Student’s t-test, Figure 3b). These data indicate that EE has
an effect on DG cell proliferation in BDNF-KIV mice but not in
WT mice and that the increased BrdU + cells after 3 weeks
of EE in BDNF-KIV mice were the result of cumulative effects
of EE on both proliferation and survival of the progenitors.

Normal differentiation of progenitor cells in
BDNF-KIV mice and EE had no influence on cell
differentiation. Newly born cells in the DG either die or
differentiate into neurons or glia.** To determine the fate
of newborn cells, we examined the percentage of BrdU +
cells that acquired neuronal or glial phenotypes 3 weeks
after the first BrdU injection, a time point at which most
progenitors undergo terminal differentiation.*>*® Double-
labeling for BrdU and the neuronal marker NeuN or glial
marker GFAP was performed. Most of the BrdU-stained cells
(>90%) were found to co-express NeuN, indicating a
neuronal phenotype and no difference was observed in
the differentiation of progenitors into NeuN+ or GFAP +
cells among the groups (BrdU-+/NeuN+: WT-SC,
92.9+0.7%; KIV-SC, 92.0+0.7%; WT-EE, 91.8+1.0%;
KIV-EE, 91.9+1.8%, P>0.05 and BrdU+/GFAP +: WT-
SC, 3.5+ 0.6%; KIV-SC, 5.5+ 0.9%; WT-EE, 5.6 +1.0; KIV-
EE, 3.4+0.7, P>0.05, Supplementary Table 2) These
results indicate that lack of promoter IV-driven BDNF
expression impaired the survival of the progenitors but did
not affect the proportion of those cells differentiating into
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neurons or glia. The cell fate of DG progenitors was not
affected by housing conditions (SC vs EE) in either genotype.

Dendritic arborization of newly born neurons was
impaired in BDNF-KIV mice. Newly born neurons send
dendrites to the molecular layer and receive synaptic input
as part of the maturation process.*? We next examined the
impact of promoter IV-driven BDNF expression on dendrite
development of newly born neurons in the DG by using DCX,
a marker of immature neurons.** DCX + cells in the DG
exhibited dendrites that projected to the granule cell layer or
crossed the granule cell layer to the molecular layer, with the
axis of the body perpendicular to the SGZ in all groups
(Figures 4a and b). Quantification of the number of DCX +
cells revealed no difference between WT and BDNF-KIV
mice in SC (P=0.28, Student’s t-test, Figure 4c), indicating
that cell survival was unchanged at this stage of neuronal
development in BDNF-KIV mice. The extent of dendritic
extension was then analyzed by counting the number of
dendrites of DCX + cells that extended 50, 100, 150 and
200um from the SGZ. Dendritic extension was most
commonly found up to 150um from the SGZ in both
genotypes. BDNF-KIV mice in SC exhibited a significantly
reduced number of dendrites crossing at 50 um compared
with WT-SC mice (Ps0,.m)<0.01, Figure 4d).

EE reversed impaired dendritic extension of newly born
neurons in BDNF-KIV mice. When the effect of EE on the
number of DCX+ cells was examined, two-way ANOVA
revealed a significant effect of EE (P<0.01) and genotype-
EE interaction (P<0.01). EE significantly increased the
number of DCX + cells in BDNF-KIV mice compared with
BDNF-KIV mice in SC (1.9-fold, P<0.01, Figure 4c), as well
as compared with WT mice both in SC (P<0.01) and EE
(P<0.01, Figure 4c). These data are in line with the results
that EE increased cell proliferation and survival in BDNF-KIV
mice. When the effect of EE on dendritic extension
was analyzed at 50, 100 and 150 um from the SGZ, effects
of EE (P(50um)<0.05, P(100Hm)<0'01' P(150“m)<0.01) and
genotype (Psoum) <0.01, P100,m) <0.05) were observed. EE
significantly increased the number of dendrites in BDNF-KIV
mice compared with those in SC at 50 and 100 um from
the SGZ (P(50pm)<0.01, P(100Hm)<0‘01) and in both
genotypes at 150um (WT, P<0.01; KIV, P<0.01;
Figure 4d). Dendrites extending up to 200um were
observed in WT mice with EE treatment but not in other
groups (Figures 4a, b and d). No difference in the number of
dendrites was observed between WT-EE and KIV-EE at any
of these points (Figure 4d, Supplementary Table 2). These
results indicate that EE reversed the reduced dendrite
extension in BDNF-KIV mice and that EE increased the
dendrite extension in both genotypes at the measurement
points most distal from the SGZ.

No change in effect of EE on TUNEL + cells in the
DG. To determine if the decreased or increased survival of
progenitors in BDNF-KIV mice in SC or EE, respectively, was
the result of increased or decreased apoptosis, we examined
the number of TUNEL+ apoptotic cells in the DG. The
number of TUNEL + cells detected in the DG was low and
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Figure 4 Doublecortin-positive (DCX +) cells and dendritic extension in the dentate gyrus (DG) and effect of enriched environment (EE). (a) Representative images
showing DCX + cells and their dendrites from the four groups. Scale bar =250 um. (b) Magnified view of boxed area in (a) showing DCX + cells and their dendrites
(arrowheads). (c) Quantification of DCX + cells in the DG. Note the significantly increased number of DCX + cells in knock-in IV (KIV)-EE mice compared with KIV-standard
condition (SC) and wild-type (WT)-SC groups. Results are expressed as % of WT-SC + s.e. (d) Quantification of the extension of apical dendrites of DCX + cells into the
molecular cell layer of the DG. Note the significantly reduced numbers of dendrites in KIV-SC compared with WT-SC at 50 um from the subgranular zone (SGZ), which was
rescued by EE. EE increased the number of dendrites of both genotypes at 150 um from the SGZ. (Two DG from each brain, n=4 per group). Results are expressed as

mean s.e. **P<0.01.

was similar in all groups (WT-SC, 2.6+0.4; KIV-SC,
2.8+0.5; WT-EE, 3.2+0.5; KIV-EE, 3.3+0.4; values
are meanzts.e.; P>0.05 for each comparison, one-way
ANOVA).

Discussion

Results of this study demonstrated that 3 weeks of exposure
to EE normalized decreased BDNF levels, decreased
neurogenesis and depression-like behavior in a single line
of mutant mice that lack promoter IV-driven BDNF expression.
To our knowledge, this is the first study that shows these
three factors (BDNF, neurogenesis and depression)
correlated in a single animal model with a Bdnf gene
manipulation. Our results showed that the depression-like
phenotype caused by impaired promoter IV-driven BDNF
expression could be reversed by EE treatment. EE treatment
increased BDNF mRNA levels driven by BDNF promoters
other than promoter IV and restored BDNF protein levels in
the HIP of BDNF-KIV mice. This indicates that one promoter
deficiency can be compensated by other multiple promoters in
the Bdnf gene. Our results showed that lack of activity-
dependent promoter |V-driven BDNF leads to reduced
survival and dendritic maturation of newly born neurons in
the HIP. This suggests that reduced neurogenesis is one of

the underlying mechanisms of depression-like behavior.
EE treatment reversed decreased neurogenesis and BDNF
levels, and restored depression-like behavior in BDNF-KIV
mice. This suggests that increased BDNF and adult hippo-
campal neurogenesis may mediate the effects of EE
on depression-like behavior. Whether increased BDNF
levels and neurogenesis are sufficient to produce the entire
effects of EE or whether they are parallel phenomena remain
to be addressed.

In this study, we observed that EE normalized depression-
like behavior in BDNF-KIV mice, by increasing loco-
motor activity in the OFT, decreasing the immobility time in
the TST and increasing sucrose consumption in the SPT,
which is in line with the suggested antidepressant-like effect
of EE.?>%5 While the results in the OFT and TST suggest that
EE increased overall locomotor activity, the results of the
SPT indicate that EE rescue an anhedonia-like phenotype. EE
did not change locomotor activity in the OFT in WT mice,
which is similar to previous studies that have shown no effect
of EE on locomotor activity in the OFT in WT rodents, 647
although other studies have reported that EE reduced
locomotor activity in the OFT.212348 |n the TST, we observed
that EE also decreased immobility time of WT mice as well as
of BDNF-KIV mice, which was similar to the previous studies
that have shown exercise and antidepressant medications
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decreased immobility in WT mice.22° In the SPT, EE did not
increase sucrose preference of WT mice, which is similar to
the previous reports where EE did not influence sucrose
intake in control but showed recovery of reduced sucrose
intake following chronic stress.*®*“° In contrast, some of the
effects (increased time in the center in the OFT and increased
total liquid intake) of EE were observed only in WT mice.
These results suggest that the behavioral effects of EE may
be different depending on the behavioral baseline of the
animal. To our knowledge, this is the first study to demon-
strate that EE reverses the depression-like phenotype in a
rodent model with reduced BDNF levels. Most other rodent
models with reduced BDNF levels (for example, conditional
BDNF KO mice, BDNF heterozygous mice and knockdown by
injection with BDNF blockers) do not show depression-like
behavior (for a review, see Duman and Monteggia®). A few
studies have examined the antidepressant effects of EE on
other rodent models with reduced BDNF levels; BDNF
heterozygous mice have been reported to show no change
in locomotor activity in the OFT after EE treatment*”*® and no
change in immobility time in the forced swim test after
voluntary exercise on a running wheel (an integral component
of most EE paradigms),?® compared with those held in SC.
The effects of EE may appear significant only to those mice
that show depression-like behavior, and/or those retaining
both alleles of the intact BDNF protein-coding region. A limited
number of recent studies have shown depression-like
behavior in rodents with reduced BDNF levels;?%-50-52
however, the antidepressant-like effects of EE on these
rodent models have not yet been reported. The biggest
difference between BDNF-KIV mice and other rodent models
with reduced BDNF levels is that, in BDNF-KIV mice, the gene
manipulation was made on an endogenous promoter without
affecting other promoters and the protein-coding region of the
Bdnf gene, while other rodent models lack some or all of the
BDNF protein-coding region. In conditional KO mice, this
deletion is regulated by promoters of other genes. Focusing
on endogenous BDNF promoters may be critical to under-
standing the effects of the Bdnf gene regulation and
antidepressant interventions, because epigenetic regulatory
processes occur under stress and antidepressant treatments
including EE.10.11:16:53

We observed that EE treatment increased total BDNF
mRNA (exon IX) levels in the HIP of both BDNF-KIV and WT
mice compared with those in SC. This increase was attributed
to the increased levels of almost all exons, with significant
effects of EE on exons I, Il and Il (1.5-2-fold). These results
are partially consistent with another study that has shown
exercise (4 weeks of running) induces relatively strong BDNF
expression through promoters I, 1l and Il (about two-fold) but
not through promoters IV and VI in the HIP, while novel
objects (for example, toys) without a running wheel induces
moderate BDNF expression through promoter I, 11, IIl, IV and
VI (1.2—1.5-fold)."®* Our results showing less effects of EE
on promoter V- and VI-driven BDNF transcripts suggests that
exercise on a running wheel may be the leading cause of the
induction of BDNF expression in our EE condition. One may
expect that EE will increase neuronal activity and will therefore
induce activity-dependent promoter IV-driven BDNF expres-
sion. Therefore, no significant induction in promoter IV-driven
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BDNF transcripts by EE may sound contradicting. However,
this could be explained by the different time course of BDNF
upregulation by different stimuli. For example, neuronal
activity with calcium influx induced by glutamate and
depolarization robustly induces promoter IV- and I-driven
BDNF expression in an acute phase (3-6 h, usually > 6-fold),
while BDNF induction by EE, antidepressants, electroconvul-
sive therapy and exercise is not robust and requires longer
time (1.2-3-fold increase over several weeks) and may
involve cAMP (cyclic adenosine monophosphate) cascades
(details in Sakata®®), although the exact signaling pathways
by which EE activates BDNF promoters remain to be
addressed. It is interesting to note that EE induced BDNF
mRNA through multiple promoters rather than through one or
two promoters, which is in contrast to the effects of
antidepressant medications that have been reported to use
a relatively restricted set of BDNF promoters. For example,
chronic desipramine treatment induces promoter I-driven
BDNF expression, while chronic fluoxetine administration
induces promoter ll-driven BDNF expression in the HIP.™
EE may have stronger antidepressant effects than medica-
tions do by increasing expression of BDNF driven by multiple
promoters, which can compensate the decreased function of
promoter IV under stress and lack of neuronal activity.

The increased BDNF mRNA levels by EE treatment were
reflected in BDNF protein levels. Although BDNF-KIV mice in
SC showed significantly reduced BDNF protein levels
compared with WT mice in SC, this reduction was restored
to levels similar to those in WT mice in SC. Reports have
shown that 30 days or 8 weeks of EE did not increase
hippocampal BDNF protein levels in BDNF heterozygous
mice®® or CaMKIl promoter-conditional BDNF KO mice.5”
Although the exact reason for this difference in BDNF protein
induction by EE is not clear, it can be speculated that both
alleles of the Bdnf gene including the protein region may be
necessary to induce BDNF protein levels. We observed
that EE treatment did not significantly increase BDNF protein
levels in WT mice. Reports have shown that 8 weeks,>®
but not 30 days,%” of EE treatment resulted in increased
hippocampal BDNF protein levels in WT rodents. It is possible
that longer EE treatment may be required to significantly
increase BDNF protein levels in WT mice.

Our results showed that BDNF-KIV mice showed a
decrease in surviving progenitors but no change in cell
proliferation or differentiation as compared with WT. This
indicates that promoter IV-driven BDNF expression is critical
for long-term survival of progenitors but not for proliferation or
differentiation. Studies using BDNF mutant mice have
reported conflicting results regarding the effects of reduced
BDNF levels on neurogenesis: BDNF heterozygotes and
conditional KO mice with a ~50% reduction in BDNF levels
compared with WT have shown either decreased®”®® or
unchanged56 survival of progenitors, with decreased,®
increased®® or unchanged® proliferation of progenitors. A
recent study showed BDNF knockdown in the dorsal DG
causes a significant reduction in differentiation of newborn
progenitors into immature neurons without affecting prolifera-
tion and cell survival measured at 24 h and 7 days after BrdU
injections.2® It is not clear whether these differences are
attributed to methodological differences or to different BDNF



levels in the HIP. Our results showing decreased dendritic
length of DCX immunoreactivity in BDNF-KIV mice indicate
that promoter IV-driven BDNF is critical for dendritic develop-
ment during adult neurogenesis. This idea is supported by
other studies that have shown reduced arborization in
conditional BDNF KO mice under the CaMKIl-promoter.57-6°
Overall, our results showed a correlation between reduced
neurogenesis in the HIP and depression-like behavior in
promoter IV-deficient mice.

Three weeks of EE treatment increased survival of
progenitors in both BDNF-KIV and WT mice without changing
the neuron-glia ratio. Strikingly, the effect of EE on the survival
of progenitors was significantly greater in BDNF-KIV mice
(2.1-fold increase) than in WT mice (1.4-fold increase). This
may be attributed to increased proliferation of progenitors
stimulated by EE in BDNF-KIV mice, as well as increased
survival rates, while proliferation was unaffected in WT mice. It
is not clear why the effects of EE on neurogenesis are larger in
BDNF-KIV mice compared with WT mice. Promoter IV
deficiency did not enhance compensational expression of
BDNF through other promoters as BDNF-KIV mice showed no
difference in RNA induction rate and BDNF protein levels
compared with WT-SC and WT-EE (Figure 2). One possibility
is that the effect of EE may be enhanced by compensational
mechanisms, such as increased availability of the BDNF
receptor, TrkB, in BDNF-KIV mice where basal levels of
BDNF are low. Interestingly, a study has implied a similar
homeostatic regulation of BDNF in neurogenesis: long-term
delivery of exogenous BDNF in the DG attenuated an
ischemia-induced increase in neurogenesis, suggesting
that increased BDNF levels reduce the intrinsic neuroregen-
erative response.®' Conversely, the reduced basal BDNF
levels in BDNF-KIV mice may increase the neuroregenerative
response. Effects of increased BDNF levels might be different
between normal and abnormal brains. Our study also showed
that EE treatment increased dendritic length of DG neurons
in both WT and BDNF-KIV mice, indicating its effect
of enhancing neuronal maturation and integration. Taken
together, our results suggest that EE treatment increases the
population of functional newly born neurons in the DG.

The antidepressant-like effects of EE tested in several
behavioral paradigms, including the TST, are coupled with a
significant increase in neurogenesis in the HIP.2"?249 These
consistent observations suggest a correlation between the
antidepressant-like effects of EE and increased neurogen-
esis. However, it is still unclear whether increased adult
neurogenesis is mediating the EE-induced antidepressant-
like effects or whether the EE-induced antidepressant-like
behavioral change leads to increased neurogenesis. A study
has suggested that hippocampal adult neurogenesis is not
required for the antidepressant and anti-anxiety effects of EE,
because blocking neurogenesis with hippocampal X-irradia-
tion did not alter EE-induced reduction of latency to food in the
novelty suppressed feeding test.?? As BDNF enhances
synaptic plasticity,®® it is possible that EE treatment causes
its antidepressant effects without neurogenesis by increasing
BDNF levels and enhancing the synaptic plasticity of existing
mature cells. On the other hand, a recent study suggested that
neurogenesis is required for the behavioral effects of EE after
psychosocial stress exposure because the antidepressant
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effects of EE in the SPT were not observed when adult
neurogenesis was selectively ablated by ganciclovir (a toxin to
proliferating cells).®* The difference in these results may be
attributed to methodological differences; however, these
studies suggest that adult neurogenesis is required for
EE-induced antidepressant-like effects only when under a
stress condition but not in the basal condition. BDNF-KIV mice
lacking promoter IV-driven BDNF expression may mimic the
stress condition because promoter |V activity is decreased by
different types of stress.'®""

Whether endogenous induction of BDNF levels in the HIP
by EE is sufficient and necessary to increase neurogenesis
and produce antidepressant effects is yet to be determined.
However, studies have suggested this causal relationship by
showing that direct infusion of the BDNF protein into the HIP
produced increased neurogenesis® and antidepressant-like
responses in several behavioral paradigms.'® Interestingly, a
more recent study demonstrated that even peripheral BDNF
administration®® increased neurogenesis in the HIP and
produced an antidepressant-like effect. In addition, a study
has reported that deleting the BDNF receptor, TrkB, specifi-
cally in hippocampal neuronal progenitor cells was sufficient
to blunt the effects of antidepressant medications.®® This
suggests that BDNF-TrkB signaling is required for the
antidepressant-like behavioral effects of these interventions.
It will be interesting to see whether increased BDNF levels
through other promoters inducted by EE is required for the
antidepressant effect in BDNF-KIV mice in the future by
testing whether the EE-induced antidepressant effect can be
blocked by specific BDNF-TrkB signaling inhibitors (for
example, TrkB-blocking antibody) or RNA interference meth-
ods. Alternatively, the increase in neurogenesis and anti-
depressant effects of EE in BDNF-KIV mice may occur
independently regardless of increased BDNF levels by
recruiting other growth factors and monoamines. For exam-
ple, vascular endothelial growth factor,®” insulin-like growth
factor-1,8 serotonin and norepinephrine® are upregulated by
EE and have been shown to provide antidepressant-like
effects,”®”" where vascular endothelial growth factor®” and
insulin-like growth factor®® also increase neurogenesis.
Whether these factors are involved in the EE-induced
antidepressant effects in BDNF-KIV mice remains to be
examined. Either way, from a therapeutic point of view, it is
exciting to note that the depression-like behavior caused by
the lack of promoter IV-driven BDNF expression can be
reversed by EE treatment.

In conclusion, 3 weeks of EE treatment normalized the
depression-like behavior, reduced BDNF protein levels and
decreased neurogenesis in the HIP exhibited by BDNF-KIV
mice. These results provide critical evidence for a pathophy-
siology of depression-like behavior—impaired promoter
IV-driven BDNF expression results in decreased neurogen-
esis—and a possible mechanism of recovery; increased
neurogenesis in the HIP by EE through increased BDNF
levels driven by multiple BDNF promoters.
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