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Hybridization of Strength Pareto 
Multiobjective Optimization with 
Modified Cuckoo Search Algorithm 
for Rectangular Array
Khairul Najmy Abdul Rani1, Mohamedfareq Abdulmalek2, Hasliza A. Rahim3, Neoh Siew Chin4 &  
Alawiyah Abd Wahab5

This research proposes the various versions of modified cuckoo search (MCS) metaheuristic algorithm 
deploying the strength Pareto evolutionary algorithm (SPEA) multiobjective (MO) optimization 
technique in rectangular array geometry synthesis. Precisely, the MCS algorithm is proposed by 
incorporating the Roulette wheel selection operator to choose the initial host nests (individuals) that 
give better results, adaptive inertia weight to control the positions exploration of the potential best 
host nests (solutions), and dynamic discovery rate to manage the fraction probability of finding the best 
host nests in 3-dimensional search space. In addition, the MCS algorithm is hybridized with the particle 
swarm optimization (PSO) and hill climbing (HC) stochastic techniques along with the standard strength 
Pareto evolutionary algorithm (SPEA) forming the MCSPSOSPEA and MCSHCSPEA, respectively. All 
the proposed MCS-based algorithms are examined to perform MO optimization on Zitzler–Deb–Thiele’s 
(ZDT’s) test functions. Pareto optimum trade-offs are done to generate a set of three non-dominated 
solutions, which are locations, excitation amplitudes, and excitation phases of array elements, 
respectively. Overall, simulations demonstrates that the proposed MCSPSOSPEA outperforms 
other compatible competitors, in gaining a high antenna directivity, small half-power beamwidth 
(HPBW), low average side lobe level (SLL) suppression, and/or significant predefined nulls mitigation, 
simultaneously.

Recently, engineers and researchers have done many studies to design and fabricate an array antenna formed by 
a set of radiating elements or isotropic radiators circumscribed by certain geometrical structure. The antenna 
array is widely used to detect and process signals arriving from various directions of arrival (DoA) in various 
fields, such as communications, radar, sonar, and navigation systems due to its higher levels of gain, directiv-
ity, and signal-to-noise ratio (SNR) compared to single-antenna structures1. Overall, the primary objective of 
conducting array geometry synthesis is to determine the physical characteristics of the array and selection of 
elements or radiators, which can emit an electromagnetic radiation pattern almost similar to the desired pattern. 
The antenna array pattern synthesis problem consists of finding weights that satisfy a set of specifications on 
the beam pattern2. The individual elements of the array can be of any form of wires, and apertures3. Then, there 
will be a determination of the element excitations required for achieving a particular performance, sometimes 
under a given constraint4. Theoretically, no antenna is able to radiate all the energy in one preferred direction. 
Some energy is inevitably radiate in other directions with lower levels than the main beam. These smaller peaks 
are referred to as side lobes, commonly are specified in decibel (dB) down from the main lobe. Furthermore, in 
an antenna radiation pattern, there is a zone in which the effective radiated power is at a minimum known as a 
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null. The null is useful for suppressing interfering signals in a predefined direction5. The analysed array pattern 
ideally should demonstrate a high power gain or directivity, lower side lobe level (SLL), controllable beamwidth6, 
particular pattern characteristics4, and good azimuthal symmetry, respectively. This is required to cater the high 
bandwidth and quality of service (QoS) significant demands for long distance wireless communications3. Hence, 
it is critical to optimize antenna array element locations (based on λ​/2 inter-element spacing), excitation current 
amplitudes, and excitation current phases with a random distribution, respectively7.

Evolutionary computing also referred as evolutionary computation (EC) or evolutionary algorithm (EA) is 
the field of research that draws ideas from evolutionary biology in order to develop search and optimization 
techniques for solving complex problems8. More than 40 years ago, computer scientists and engineers began 
developing EC/EA to generate solutions to problems, which were too difficult and complicated to tackle using 
conservative analytical methods. EC/EA then rapidly has become a major field of machine learning and system 
optimization. EC/EA basically tries to combine basic heuristic methods in exploring optimal solutions in a search 
space. These heuristic methods are nowadays commonly called “metaheuristics”. The term “metaheuristic” is 
originally derived from the composition of two Greek words9. “Heuristic” comes from the verb “heuriskein”, 
which means “to find”, while the suffix “meta” means “beyond, in an upper level”. Before this term was widely 
adopted, metaheuristics were often called modern heuristics10. Because of featuring high adaptability, flexibility 
and capability to optimize complex multidimensional problems with a nonlinear and a nonconvex dependence 
of design parameters11, modern metaheuristic techniques, such as genetic algorithm (GA)12, grey wolf optimi-
zation (GWO)13, artificial neural network (ANN)14, and particle swarm optimization (PSO)15, have been applied 
for antenna array synthesis. These EC/EA techniques are proven outperform the original gradient methods and 
conventional numerical techniques. Moreover, through the stochastic search process, the EC/EA techniques are 
capable to deal with large number of optimization parameters via relatively easy computer simulations16.

System Description
Problem Mathematical Formulation for Proposed MCS Algorithms.  Recent studies show that 
cuckoo search (CS) algorithm capable to be an alternative of other existing EC/EA techniques for complex mul-
tidimensional optimization due to its high efficiency. An efficient optimization algorithm is critical to ensure that 
optimal solutions are reachable in search space17. For an example, CS algorithm outperforms PSO in achieving 
the global convergence. In this case, PSO algorithm converges prematurely to a local optimum (stuck in local 
optima predicament), while CS algorithm converges up to the global optimality for a multimodal optimization17. 
This is because CS algorithm has two crucial search capabilities, which are local search and global search con-
trolled by a fraction probability or discovery rate, Pa internal parameter. Another advantage is CS algorithm uses 
Lévy flights motion with infinite mean and variance rather than standard random walks motion for global search. 
Consequently, CS algorithm can explore the search space more efficiently than some EC rivals, which use stand-
ard Gaussian process17.

As a newly evolved stochastic technique, the CS metaheuristic algorithm is inspired by the obligate brood 
parasitism behavior of some cuckoo species by laying their eggs in the nests of other host birds (of other spe-
cies)18. Principally, the unique behavior of some host birds reacting to the invading cuckoos becomes the key 
notion. In this case, if a host bird discovers the eggs are not their own, it will respond either throw these alien eggs 
away or simply leave its nest, and make a new nest in other place. Conceptually, the CS algorithm acts as a Markov 
process of animal motion known as Lévy flight18, where after a large number of steps, the distance from the origin 
of random walk tends to reach a stable distribution. Consequently, such behavior has been emulated to perform 
optimization and global optimal search with a promising capability19,20.

As a matter of fact, the original CS algorithm has three drawbacks, which have been improved in this study. 
First, the original CS algorithm uses fixed value for both discovery rate, Pa and Lévy flight Gaussian distribution, 
α parameters. Both internal parameters are critical and sensitive in fine-tuning a local and global explorative 
random motion towards optimal solutions, and adjusting convergence rate21. In this case, the initialization of 
both Pa and α parameters are fixed, hence cannot be amended in the next iterations. Consequently, the main 
predicament appears in terms of number of iterations required to find optimal solutions. In a case where the 
value of Pa is small and the value of α is large, the performance of the original CS algorithm will be ineffective, 
which leads to significant increase in number of iterations. In contrast, if the value of Pa is large and the value of 
α is small, the convergence rate will be high (small number of iterations needed) but still unable to find optimal 
solutions22. In this research, an adaptive Pa is introduced to control the convergence rate so that optimal solutions 
can be found at a reasonable number of iterations. Hence, the dynamic Pa can increase the diversity of solutions 
and approximation capability.

Second, based on the assumption that a cuckoo lays one egg at a time at a nest of other host bird, the possibility 
of the egg to survive is quite low. In other words, it is barely for one egg to hatch successfully after being discov-
ered by the host bird. In this regard, there is a need to introduce a dynamic parameter along with the fixed step 
size, 𝛼​ for cuckoos to search around the potential good nests (solutions) for laying egg. Precisely, this can been 
achieved by introducing and embedding an adaptive inertia weight, w parameter along with the fixed 𝛼​ to search 
for new nests (optimal solutions), x(t +​ 1) via the Lévy flight motion. Hence, cuckoos are capable to explore more 
rigorously for a better environment if the current habitat is not suitable for breeding.

Third, the assumption is made in the original CS algorithm where the number of available random host nests 
is fixed. The host birds spot the cuckoos’ eggs with a probability of Pa ∈​ [0, 1]. For such incidents, the host birds 
will either evict the parasitic eggs or abandon the nests totally and seeks for a new site to rebuild the nests23. In this 
case, there is a missing mechanism to select the fittest nests (solutions) with the best probability of cuckoos’ eggs 
survival. This becomes crucial if the number of host nests is scarce. In this research, a Roulette wheel selection 
operator is introduced to do an initial stochastic selection of highly potential host nests (solutions).
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In this study, all the postulated Pareto-based modified cuckoo search (MCS) algorithms deploy some unique 
parameters, which are Roulette wheel selection operator, dynamic discovery rate, Pa, and the inertia weight, w 
to perform iterative optimizations for rectangular antenna array synthesis. The new solution x(t+1) for a cuckoo i, 
where the Lévy flight integrated with adaptive weight, w is derived as below24

α λ= . + ⊕+ éx w x L vy( ) (1)i
t

i
t1

where α (must be greater than zero) is the step size related to the scales of the problem of interest and the product 
⊕​ is the entry-wise multiplication operator. The larger w means the greater capability for the proposed algorithms 
to explore or exploit host nest positions (solutions) and vice versa. Based on (2), w is linearly decreased from a 
relatively large value to a small value through the course so that all the proposed Pareto MCS-based algorithms 
have a dynamic performance. The mathematical notation is as follow

= − − ×w w w w[( ) iter]/maxIter (2)max max min

where wmax denotes the maximum weight and wmin denotes the minimum weight, respectively. Besides, the 
dynamic discovery rate or fraction probability, Pa is also applied, which is calculated as follow

= − 
 − × 

P P P P( ) iter /maxIter (3)a a a amax max min

where Pamax
 is the maximum discovery rate, and Pamin

 is the minimum discovery rate, respectively.
Recently, CS algorithm has also been prolonged and formulated as multiobjective cuckoo search (MOCS) 

algorithm to solve multiobjective (MO) optimization problems through Pareto front approach25. In this study, 
the proposed MOCS algorithm non-dominated solutions are validated against a set of MO benchmark test func-
tions, which are Zitzler–Deb–Thiele’s 1 (ZDT 1) and Zitzler–Deb–Thiele’s 3 (ZDT 3) test functions, respectively. 
The proposed MOCS are then applied to solve structural design nonpolynomial (NP)-hard problems, which are 
beam design and disc brake design. The simulations for these benchmarks and test functions proved that MOCS 
algorithm can optimize highly nonlinear problems with complex constraints and diverse Pareto optimal sets25.

Principally, this study introduces the implementation of the modified cuckoo search (MCS) algorithm via 
the global Pareto front approach to determine the three non-dominated alternate solutions, which are optimal 
positions, excitation amplitudes, and excitation phases of rectangular antenna array elements, respectively. The 
Pareto front approach has shown to be promising in solving MO optimization problems by accelerating con-
vergence and maintaining a high degree of diversity selected from a set of non-dominated solutions. This study 
primarily extends the research related to the MO optimization via weighted-sum approach for symmetric linear 
antenna synthesis26 by deploying the strength Pareto trade-offs of three objective functions, f1, f2, and f3. Precisely, 
the robustness of hybridization of MCS and PSO known as MCSPSO algorithm is found to have a superior per-
formance than the original CS algorithm after undergoing the weighted-sum MO optimization approach26 in 
terms of side lobes suppression, null mitigation, and half-power beamwidth (HPBW) reduction. Alternatively, in 
this research we put a more concern on the simultaneous trade-off optimization to prevent the possibility of bias 
among objective functions in weighted sum-approach due to different units or parameters used for each function. 
Therefore, this research scrutinizes the Pareto front approach to obtain the trade-offs between the three objective 
functions. The trade-offs feature could give a better observation and comparison of different objective functions 
performance since many real world applications including electromagnetic (EM) optimization involve conflicting 
objective functions. In this case, the increase of certain objective function will bring to the decrease of another 
objective function simultaneously. Consequently, this research focuses specifically on a trade-off optimization of 
MO functions in which we only observe the objective functions trade-off changes as a whole instead of the indi-
vidual fitness changes as in weighted-sum approach. Precisely, the objective function, f1 is defined as

=f directivitymin{1/ } (4)1

where the directivity of antenna beam solid angle is given by

θ ϕ θ ϕ π θ ϕ
= =D U
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In (5), U(ϕ, θ) =​ BoF(ϕ, θ) is the antenna radiation intensity per unit solid angle in direction while Uavg is the 
average antenna radiation intensity or average total power over all directions. The directivity in decibel (dB) unit 
for an antenna can be measured through a formula

θ ϕ θ ϕ=D D( , ) 10 log ( , ) (6)dB 10

In addition, the fitness function, f2 is expressed as
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Looking on the right-hand side of (7), the first-term highlights on average SLL suppression whereas the 
second-term controls prescribed nulls or interferers, respectively. Furthermore, the formula of objective func-
tion, f3 is defined as
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= −f min{1 DRR} (8)3

where the dynamic range ratio (DRR) is directly calculated through a formula below

=DRR max excitation amplitude/min excitation amplitude (9)

Ideally, the DRR is one where the maximum current amplitude equals to the minimum current amplitude for 
all 2(M ×​ N) =​ 20 ×​ 20 rectangular antenna array isotropic radiators. In order to obtain the Pareto trade-off for 
f1, f2, and f3, the strength Pareto evolutionary algorithm (SPEA) method is implemented as a basis of the global 
Pareto front approach to perform the MO optimization for the planar array geometry synthesis. Generally, the 
concept of Pareto-optimality for a maximization problem with two decision vectors a, b ∈​ X is derived as below27

> ∀ ∈ … ≥ ∧ ∃ ∈ … >a b a b i n f a f b j n f a f bdominates ( )iff {1, 2, , }: ( ) ( ) {1, 2, , }: ( ) ( ) (10)i i j j

≥ > =a b a b a bcovers (a b)iff or (11)

All decision vectors, which are not dominated by any other decision vector in (10) or (11) are called 
non-dominated or Pareto-optimal. The family of all non-dominated alternate solutions is denoted as 
Pareto-optimal set (Pareto set) or Pareto-optimal front (Pareto front). It describes the trade-off surface with 
respect to the n objectives27. Analogically, for a minimization problem, a dominates b is written as a <​ b whereas 
a covers b is denoted as a <​ b.

In this research, the postulated MCS algorithm is hybridized with the SPEA method forming MCSSPEA to 
find the Pareto front non-dominated solutions. Furthermore, an integration of this approach together with the 
hill climbing (HC) stochastic algorithm producing MCSHCSPEA is investigated to improve the local search capa-
bility. Finally, we further assess the performance of evolutionary search by incorporating the PSO metaheuristic 
algorithm into MCS and SPEA, also known as MCSPSOSPEA to analyze the robustness of hybridization. The 
MCSSPEA, MCSHCSPEA, and MCSPSOSPEA hybrid algorithms deploy exhaustively the dynamic discovery 
rate, Pa, and the inertia weight, w, simultaneously. In this case, the dynamic Pa reduces the possibility of host 
birds of other species to discover the cuckoo’s egg as the iteration increases. Precisely, the dynamic discovery rate 
is getting smaller gradually as the number of iteration rises initiating the brood-parasitism behavior successes 
as defined in (3). Moreover, the dynamic inertia weight, w is calculated using (2). There is a mechanism for 
MCSSPEA, MCSHCSPEA, and MCSPSOSPEA optimizers to increase the spread of Pareto front to reduce the 
local trap predicament as sometimes appeared in the original SPEA. The distance for three MO functions with p 
non-dominated solutions is calculated as below

∑∑ ∑∑ ∑∑= − + − + −
= = = = = =
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The following eqs (13)–(15) show the Pareto front spread fitness formulation of p non-dominated solutions28

=Min Distance Distancemin (13)i i j,

δ
=

+
Density

Min Distance
1

( ) (14)i
i

= +Spread Fitness Raw Fitness Densit y (15)i i i

Equation (14) shows that the smaller the distances between the inter-Pareto raw points, the higher the density 
would be. The denominator of (14) has the minimum distance added with a constant value, δ to ensure the density 
is enough to spread the raw points as calculated in (15). The setting and formulation is desired to achieve the big 
spread of optimal non-dominated solutions in the Pareto front trade-offs search domain. The RawFitnessi in (15) 
is derived originally from the f1, f2, and f3 values of the strength Pareto front. Since this study involves Pareto-based 
multiobjective (MO) optimization, hypervolume indicator or hypervolume measure of the dominated portion of 
the objective space is applied as a quality measure for Pareto set approximations. In this analysis, the hypervolume 
indicator IH(A) of a solution set A ⊆​ X can be defined as the hypervolume of the space with 3 objective functions 
that are dominated by the set A and is bounded by a reference point r =​ (r1, r2,.r3) ∈ 3 defined by29

∪= ν × ×∈I A f a r f a r f a r( ) ol( [ ( ), ] [ ( ), ] [ ( ), ]) (16)H a A 1 1 2 2 3 3

where ν​ol(.) is stated as the Lebesgue measure and × ×f a r f a r f a r([ ( ), ] [ ( ), ] [ ( ), ])1 1 2 2 3 3  is the k-dimensional 
hypercuboid (where k =​ 3 in this study) consisting of all Pareto front points, which are weakly dominated by the 
point a but not weakly dominated by the reference point.

In this experiment, we assign the 2(M ×​ N) array elements or isotropic radiators on xy-plane symmetrically as 
depicted in Fig. 1. The M refers to the number of radiators located at the x-axis whereas the N signifies the number 
of radiators located at the y-axis, respectively. In this case, for uniformity, both M and N are assumed to be equal 
in terms of number of quantity and inter-element distance. For 2(M ×​ N) =​ 20 ×​ 20 planar antenna, it means that 
each x and y-axis has 20 symmetric array elements. The array factor (AF) for the azimuth plane is formulated as
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where k (equals to 2π/λ) is the calculated wave number, and Im, In, ϕm, ϕn, xm, and xn are the excitation amplitude, 
excitation phase, and location of both the m and n−​th array elements on xy-plane, respectively. Based on (17), 

Figure 1.  Geometry of 2(M × N) Rectangular Antenna Arrays. In this experiment, we deploy the inter-
element spacing with respect to the λ/2 distance of both the m and n-th elements to avoid mutual coupling 
occurs in the rectangular antenna array.

Figure 2.  Strength Pareto Evolutionary Algorithm Front Approximations on ZDT1 Test Function (10 
evaluations, maxIter = 1000). (a) The verification and comparison of the proposed MCSSPEA, MCSHCSPEA, 
and MCSPSOSPEA with the standard SPEA in evaluation no. 9. (b) The verification and comparison of the 
proposed MCSSPEA, MCSHCSPEA, and MCSPSOSPEA with the standard SPEA in evaluation no. 10. (c) We 
map the trade-off data distribution in boxplot for evaluation no. 9. (d) We map the trade-off data distribution in 
boxplot for evaluation no. 10.
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the MCS MO algorithm is postulated to optimize Im, In, ϕm, ϕn, xm, and xn values of the rectangular antenna array 
elements with minimum average SLL, HPBW and significant nulls mitigation.

Proposed MCS Algorithms via Global Pareto Front Approach.  Below is the postulated pseudo-code 
of MCSPSOSPEA algorithm, which is validated and simulated in this study:

begin.  Let iter denote the iteration no. of MCSPSOSPEA.
iter ←​ 1;
Init. pop. of host nests with size n at iter=​1;
for each iteration
Operate the Roulette wheel selection to obtain the “fittest” host nests with size n;
Generate a new set of solutions (host nests) but keep the Current best (say, i) randomly by Lévy flights incor-

porating with inertia weight, w, which controls the search ability according to (1);
Evaluate new solution MO fitness, fi according to (4), (7), and (8);
Get a selected set of host nests among n (say, j) and calculate its MO fitness, fj according to (4), (7), and (8);
if (fi ≤ fj) % fitness minimization %
Replace j by the new set of solutions, i;
end
A dynamic fraction probability, Pa of worse nests is abandoned and a new nest (set of solution) is built;
Keep the best nests with quality solutions;
Let the best nests become as initial particles;
for each particle
Calculate MO fitness value according to (4), (7), and (8);
if the fitness value is better than the best MO fitness value (pbest) in history
Set current value as the new pbest;
end
end
for each particle
Calculate particle velocity;
Update particle position;
end
Evaluate the updated current MO fitness value according to (4), (7), and (8);
if the new current MO fitness value is better than the fitness of pbest;
Set current value as the new pbest;
end
Keep the best particles with quality solutions;
Rank the solutions and find the current best particle;
Population ←​ Current best particle;
Archive ←​ Ø;
for Si∈​ Population
Siobjectives

 ←​ CalculateObjectives (Si);
end
Union ←​ Population +​ Archive;
for Si ∈​ Union
Siraw

 ←​ CalculateRawFitness (Si, Union);
Sidensity

 ←​ CalculateSolutionDensity (Si, Union);
Si fitness

 ←​ Siraw
 +​ Sidensity

;
end
Archive ←​ GetNonDominated (Union);
if Size (Archive) <​ Archivesize
PopulateWithRemainingBest (Union, Archive, Archivesize);
elseif Size (Archive) >​ Archivesize
RemoveMostSimilar (Archive, Archivesize);
end
Return (GetNonDominated (Archive));
end
Post–process result (Archive) and visualization;
end
On the other hand, the following is the proposed pseudo-code for the MCSHCSPEA hybrid algorithm, which 

is also developed and validated in this study:
begin
Let iter denote the iteration no. of MCSHCSPEA.
iter ←​ 1;
Init. pop. of host nests with size n at iter =​ 1;
for each iteration
Operate the Roulette wheel selection to obtain the “fittest” host nests with size n;
Generate a new set of solutions (host nests) but keep the Current best (say, i) randomly by Lévy flights incor-

porating with inertia weight, w, which controls the search ability according to (1);
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Evaluate new solution MO fitness, fi according to (4), (7), and (8);
Get a selected set of host nests among n (say, j) and calculate its MO fitness, fj according to (4), (7), and (8);
if (fi ≤​ fj) % fitness minimization %
Replace j by the new set of solutions, i;
end
A dynamic fraction probability, Pa of worse nests is abandoned and a new nest (set of solution) is built;
Keep the best nests with quality solutions;
Let the best nests become as initial particles;
X’ ←​ perturbation (x)
for each individual, x’
Calculate MO fitness, fx’ value according to (4), (7), and (8);
end
if (fx’ ≤​ fx) % fitness minimization%
Replace x by the new set of solutions, x’;
end
Keep the best individuals with quality solutions;
Rank the solutions;
Population ←​ Current best individual;
Archive ←​ Ø;
for Si ∈​ Population
Siobjectives

 ←​ CalculateObjectives (Si);
end
Union ←​ Population +​ Archive;
for Si ∈​ Union
Siraw

 ←​ CalculateRawFitness (Si, Union);
Sidensity

 ←​ CalculateSolutionDensity (Si, Union);
Si fitness

 ←​ Siraw
 +​ Sidensity

;
end
Archive ←​ GetNonDominated(Union);
if Size(Archive) <​ Archivesize
PopulateWithRemainingBest (Union, Archive, Archivesize);
elseif Size (Archive) >​ Archivesize
RemoveMostSimilar (Archive, Archivesize));
end
Return (GetNonDominated (Archive));
end
Post–process result (Archive) and visualization;
end.

Results
Simulation of the Proposed Algorithms on Both the ZDT1 and ZDT3 Test Functions.  In the first 
stage, we evaluated the proposed MCSSPEA, MCSHCSPEA and MCSPSOSPEA along with the original SPEA to 
perform MO Pareto optimization using the ZDT1 and ZDT3 benchmark test functions. In this experiment, we 
simulated ten evaluations with 1000 iterations of optimization for each evaluation to ensure the consistency of the 
Pareto trade-offs for minimization of MO in this case f1 and f2 defined as30

=f x f x f xmin ( ) [ ( ), ( )] (18)1 2

when f1 and f2 reach the optimal simultaneously, the optimal solution will become Pareto non-dominated 
solutions30.

The convex Pareto-optimal front ZDT1 objective functions with the domain [0, 1] are defined as30,31

∑= = − = + −=( )f x x f x g x x g x g x x n( ) ; ( ) ( )[1 / ( ) ]; ( ) 1 9 /( 1) (19)i
n

i1 1 2 1 2

The ZDT3 function adds a discreteness feature to the Pareto-optimal front that consists of few noncontiguous 
convex parts. The introduction of sine function causes discontinuities in the front not in the parameter space. The 
objective functions in Pareto front ZDT3 with the domain [0, 1] are defined as30,31

∑π= =




 − −




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g x
x g x x n( ) ; ( ) ( ) 1 / ( )
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1

1 2

Figure 2a to d shows the Pareto trade-off and boxplot of the proposed algorithms testing on convex ZDT1 
functions for evaluation number 9 and 10, respectively. The proposed MCSPSOSPEA clearly outperformed other 
competitors including the original SPEA by having the most minimum Pareto-optimal front. Statistically, the 
boxplot shows that the MCSPSOSPEA has the smallest minimum, 1st quartile, median, 3rd quartile, and maxi-
mum convergence values of distributed solutions. On the other hand, Fig. 3a to d shows the Pareto trade-off and 
boxplot of the proposed algorithms testing on the ZDT3 functions for evaluation number 7 and 8, respectively. 
Once again, the MCSPSOSPEA surpassed other rivals with the most minimum Pareto-optimal front. The boxplot 
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displays that the MCSPSOSPEA had the smallest minimum, 1st quartile, median, 3rd quartile, and maximum 
convergence values of distributed solutions. Overall, the proposed MCSPSOSPEA, MCSHCSPEA, and MCSSPEA 
visibly had smaller convergence values than the standard SPEA in MO Pareto optimal front of ZDT1 and ZDT3 
test functions, respectively.

Simulation for 2(M × N) = 20 × 20 Rectangular Array under the Dolph-Chebyshev Window.  In 
the second stage of the global Pareto MO simulation, the postulated MCSPSOSPEA, MCSHCSPEA, and 
MCSSPEA using Mantegna’s algorithm as the α–stable distribution method constrained by host nest (popu-
lation) =​ 20, length step factor =​ L/100 or 0.01, and α =​ 2.0 (Lévy flight Gaussian distribution) were synthe-
sized and verified on the 2(M ×​ N) =​ 20 ×​ 20 rectangular antenna array. In this case, the proposed MCSSPEA, 
MCSHCSPEA and MCSPSOSPEA optimizers with the dynamic inertia weight, w magnitude domain of [0.80 
1.20] were directly compared with the standard SPEA and conventional arrays in the Dolph-Chebyshev sig-
nal processing window with the relative SLL, R =​ −​30 dB for array elements on each of x and y-axis. The big-
ger, w magnitude domain leads the MCS algorithms to gain a more control on the Lévy flight motions with 
a heavy-tailed and α-stable distribution towards the best host nest (candidate solution) in search space. The 
MCSPSOSPEA optimizer applied the particle swarm optimization (PSO) algorithm restricted by the dynamic 
random particle velocity domain of [−​0.1 +​ 0.1]. All the proposed algorithm source codes were composed using 
the MATLAB 7.14 (R2012a) software and executed via a notebook with the Intel®​ Core ™​ i5-3210 M (X64−​based 
processor) operating at 2.50 GHz processing cycle and deploying 4.00 GB of random access memory (RAM). In 
this test precisely, the MATLAB simulation executed 1000 iterations of strength Pareto optimization to find the 
set of three non-dominated solutions simultaneously, which were rectangular or planar array elements locations, 
excitation amplitudes, and excitation phases, respectively.

Overall, the spread Pareto fitness domain for all optimizers were f1 ∈​ [0.08, 0.24], f2 ∈​ [0.012, 0.040], and 
f3 ∈​ [2.0, 3.0], respectively. Figure 4a and b show the three-dimensional (3D) Pareto fronts plot for MCSPSOSPEA 
and MCSHCSPEA, respectively. Precisely, we calculated the hypervolume of the Pareto front 3D plot for all the 
tested optimizers. Ideally, the hypervolume closed to zero was preferred for a global Pareto minimization pro-
cess. In the simulation, the MCSPSOSPEA had the hypervolume of 4.0000 ×​ 10−3 unit3, the MCSHCSPEA had 
the hypervolume of 2.1894 ×​ 10−4 unit3, and each of the MCSSPEA and SPEA optimizers had the hypervolume 

Figure 3.  Strength Pareto Evolutionary Algorithm Front Approximations on ZDT3 Test Function (10 
evaluations, maxIter = 1000). (a) The verification and comparison of the proposed MCSSPEA, MCSHCSPEA, 
and MCSPSOSPEA with the standard SPEA in evaluation no. 7. (b) The verification and comparison of the 
proposed MCSSPEA, MCSHCSPEA, and MCSPSOSPEA with the standard SPEA in evaluation no. 8. (c) We 
map the trade-off data distribution in boxplot for evaluation no. 7. (d) We map the trade-off data distribution in 
boxplot for evaluation no. 8.
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of 2.6352 ×​ 10−4 unit3, respectively. Looking at the Pareto trade-offs aspect, the MCSPSOSPEA has some Pareto 
optimal points that were dominated by MCSHCSPEA, which had the smallest hypervolume. In sum, every tested 
SPEA-based optimizer had a very small hypervolume, which closed to zero after reaching the maximum itera-
tion. Moreover, all the strength Pareto optimizers were almost similar with the estimated differences less than 
3.8000 ×​ 10−3 unit3.

Based on Fig. 5a, the overall normalized radiation pattern for the hypothesized MCSPSOSPEA optimizer evi-
dently outperformed other optimizers through executing the substantial low average SLL suppression and highest 
directivity of the main beam, simultaneously. Mathematically, the half-power beamwidth (HPBW) is defined as 
the angular separation where the magnitude of the normalized radiation pattern decreased by 50% (or −​3 dB) rel-
atively from the peak of the main beam. Based on Fig. 5b, the MCSPSOSPEA optimizer formed the radiation pat-
tern significantly decreased to −​3 dB at 88.5537° and 91.4476° with the HPBW of 91.4476°−​88.5537° =​ 2.8939°. 
Figure 3b also depicts the MCSPSOSPEA-based array generated the highest directivity measurement of 9.3810 dB. 
This is followed by the MCSHCSPEA counterpart with the directivity of 7.7416 dB. Moreover, the postulated 
MCSPSOSPEA optimizer had the slightly best average SLL suppression between 0.7173 dB and 4.1547 dB lower 
than the conventional array within the suppression domains of [45° 85°] and [95° 135°] as shown in Fig. 5a and c,  
respectively. Moreover, Fig. 6a till 6d display the three-dimensional (3D) normalized radiation plot for all the 
tested SPEA-based rectangular array optimizers. Graphically, the MCSPSOSPEA optimizer generated relatively 
the narrowest main lobe due to the smallest HPBW and highest directivity. Moreover, the MCSPSOSPEA tech-
nique also executed the thinnest main and side lobes compared to other tested SPEA optimizers.

Figure 7a and b show that compared to other opponents, the proposed MCSPSOSPEA optimizer deviated 
furthest its Dolph-Chebyshev current amplitude with respect to the conventional array. Furthermore, it also had 
the biggest optimal excitation phase deviations compared to other rivals as depicted in Fig. 8a and b. All of these 
findings become the key factor for the MCSPSOSPEA optimizer using the selected Pareto optimal solutions to 
design a rectangular antenna array, which can suppress the lowest average side lobes while enhancing the main 
beam intensity. In fact, the MCSPSOSPEA has better global Pareto front trade-offs specifically with the smallest 
f1 and f3 values despite having a slightly bigger Pareto front 3D plot hypervolume. As a result, the MCSPSOSPEA 
produced the highest antenna directivity, smallest HPBW, and lowest average SLL, respectively.

In this experiment, the proposed MCSPSOSPEA generated 6 non-dominated solutions whereas the 
MCSHCSPEA counterpart produced 14 non-dominated solutions, respectively. Table 1 shows the selected 
fitness trade-off values for comparing the tested Pareto algorithms demonstrated in Fig. 5 till 8. Precisely, the 
MCSPSOSPEA had the smallest relative global Pareto front values with respect to f1 and f3 after 1000 iterations. 
As enlisted in Table 2, the proposed MCSPSOSPEA algorithm executed the largest optimal location deviations 

Figure 4.  Strength Pareto Evolutionary Algorithm Front Approximations 2(M × N) = 20 × 20, Dolph-
Chebyshev, maxIter = 1000). (a) The three objective functions trade-off simulation for the MCSPSOSPEA 
optimizer. (b) The three objective functions trade-off simulation for the MCSHCSPEA optimizer.
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Figure 5.  Normalized Pattern for SPEA-based Rectangular Arrays 2(M × N) = 20 × 20, Dolph-Chebyshev, 
maxIter = 1000). (a) Overall normalized radiation pattern. (b) Half–power beamwidth pattern. (c) Average side 
lobe level pattern.

Fitness f1 f2 f3

SPEA 0.1524 0.0138 2.5550

MCSSPEA 0.1310 0.0135 2.7271

MCSHCSPEA 0.1292 0.0180 2.6517

MCSPSOSPEA 0.1066 0.0235 2.4824

Table 1.   Selected Optimal Pareto Fitness for SPEA-based Rectangular Arrays 2(M × N) = 20 × 20, Dolph–
Chebyshev, maxIter = 1000).

Element 1 2 3 4 5

xm or xn [λ/2] ±​0.5000 ±​1.5000 ±​2.5000 ±​3.5000 ±​4.5000

SPEA ±​0.5321 ±​1.5964 ±​2.6607 ±​3.7250 ±​4.7893

MCSSPEA ±​0.4910 ±​1.4731 ±​2.4551 ±​3.4372 ±​4.4192

MCSHCSPEA ±​0.5328 ±​1.5985 ±​2.6641 ±​3.7298 ±​4.7954

MCSPSOSPEA ±​0.8026 ±​2.4078 ±​4.0130 ±​5.6182 ±​7.2234

Element 6 7 8 9 10

xm or xn [λ/2] ±​5.5000 ±​6.5000 ±​7.5000 ±​8.5000 ±​9.5000

SPEA ±​5.8535 ±​6.9178 ±​7.9821 ±​9.0464 ±​10.1107

MCSSPEA ±​5.4013 ±​6.3834 ±​7.3654 ±​8.3475 ±​9.3295

MCSHCSPEA ±​5.8610 ±​6.9267 ±​7.9923 ±​9.0580 ±​10.1236

MCSPSOSPEA ±​8.8286 ±​10.4338 ±​12.0390 ±​13.6442 ±​15.2494

Table 2.   Optimal Symmetric Location for SPEA-based Rectangular Arrays 2(M × N) = 20 × 20, Dolph-
Chebyshev, maxIter = 1000).
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(with respect to λ/2) compared to the conventional array in both x and y-axes. Precisely, the MCSPSOSPEA 
had the deviations between |±​0.3026| and |±​5.7494| for all 2 N =​ 20 rectangular array elements. Practically, 
MCSPSOSPEA planar antenna had the drawback where its largest optimal inter-element distance led to the big-
gest aperture size. Furthermore, Tables 1 and 2 also show that both SPEA and MCSHCSPEA were almost similar 
(the selected fitness differences were less than 0.01 and location differences were less than ±​0.01 between each 
other). This was mainly because the non-dominated points (optimal solutions) of both algorithms were chosen 
closer to each other in the Pareto front. Table 3 shows that the MCSPSOSPEA hybrid algorithm also attained the 

Figure 6.  3D Normalized Antenna Pattern for SPEA-based Rectangular Arrays 2(M × N) = 20 × 20, 
Dolph-Chebyshev, maxIter = 1000). We simulate four SPEA-based rectangular arrays, which are (a) Original 
SPEA. (b) Hybrid MCSSPEA. (c) Hybrid MCSHCSPEA. (d) Hybrid MCSPSOSPEA.

Figure 7.  Optimal Excitation Amplitude for SPEA-based Rectangular Arrays 2(M × N) = 20 × 20, Dolph-
Chebyshev, maxIter = 1000). (a) We compare four SPEA-based and conventional rectangular antenna arrays 
excitation amplitude in 2D plot. (b) The proposed MCSPSOSPEA rectangular array excitation amplitude in 3D 
plot.
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biggest optimal amplitude deviations in regard to the conventional array. In this case, the MCSPSOSPEA had the 
deviations between 0.5296 and 2.0655. Based on Table 3, the MCSPSOSPEA planar antenna also had another 
downside where it consumed relatively the most power (highest feed current amplitude) applied on isotropic 
radiators. Besides, Table 4 shows the postulated MCSPSOSPEA also produced the largest optimal phase variations 
in regard to the conventional array with the variations between 0° and 66.1753°, respectively. In this case, the 
proposed MCSPSOSPEA-based optimizer had the widest phase domain of [0° 180°] for all 2 N =​ 20 rectangular 
array elements.

Figure 8.  Optimal Excitation Phase for SPEA-based Rectangular Arrays 2(M × N) = 20 × 20, Dolph–
Chebyshev, maxIter = 1000). (a) We compare four SPEA-based and conventional rectangular antenna arrays 
excitation phase in 2D plot. (b) The proposed MCSPSOSPEA rectangular array excitation phase in 3D plot.

Element 1 2 3 4 5

Im or In 1.0000 0.8771 1.2009 1.5497 1.9052

SPEA 0.9515 0.8486 1.2416 1.5357 1.9395

MCSSPEA 0.9951 0.8602 1.1706 1.5646 1.9606

MCSHCSPEA 1.0924 0.9338 1.2310 1.6770 1.9488

MCSPSOSPEA 1.6454 1.4067 1.8543 2.5261 2.9355

Element 6 7 8 9 10

Im or In 2.2465 2.5522 2.8022 2.9793 3.0712

SPEA 2.3027 2.6042 2.8458 3.0166 2.9654

MCSSPEA 2.3304 2.6700 2.8287 3.0153 3.1945

MCSHCSPEA 2.4240 2.7245 3.0340 3.2316 3.4101

MCSPSOSPEA 3.6514 4.1040 4.5702 4.8679 5.1367

Table 3.   Optimal Excitation Amplitude for SPEA-based Rectangular Arrays 2(M × N) = 20 × 20, Dolph-
Chebyshev, maxIter = 1000).

Element 1 2 3 4 5

ϕm or ϕn 0° 163.0425° 22.8576° 164.4077° 113.8247°

SPEA 0° 173.5232° 24.3269° 174.9760° 121.1415°

MCSSPEA 0° 157.5868° 22.0928° 158.9062° 110.0158°

MCSHCSPEA 0° 173.7452° 24.3581° 175.2000° 121.2965°

MCSPSOSPEA 0° 180° 36.6911° 180° 180°

Element 6 7 8 9 10

ϕm or ϕn 17.5573° 50.1297° 98.4387° 172.3512° 173.6799°

SPEA 18.6859° 53.3521° 104.7665° 180° 180°

MCSSPEA 16.9698° 48.4522° 95.1447° 166.5840° 167.8682°

MCSHCSPEA 18.7098° 53.4204° 104.9005° 180° 180°

MCSPSOSPEA 28.1830° 80.4683° 158.0140° 180° 180°

Table 4.   Optimal Excitation Phase for SPEA-based Rectangular Arrays 2(M × N) = 20 × 20, Dolph-
Chebyshev, maxIter = 1000).
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Simulation for 2(M × N) = 20 × 20 Rectangular Array with Predefined Nulls under the Uniform 
Window.  In the third stage, a more extensive simulation was done on the 2 M ×​ N =​ 20 ×​ 20 rectangular 
broadside antenna array with a main beam steered at 90° along with four prescribed interferers occurred at 55°, 
60°, 120°, and 125°, respectively. In this simulation, the MCSPSOSPEA, MCSHCSPEA, and MCSSPEA optim-
izers applied the Mantegna’s α-stable distribution method with setting internal parameters of host nest or pop-
ulation =​ 20, length step factor =​ L/100 or 0.01, and α =​ 2.0 (Lévy flight Gaussian distribution). Besides, all the 
proposed MCS-based optimizers were bounded by a dynamic Pa amount within the domain of [0.01 0.25] and a 
dynamic w amount within the domain of [0.80 1.20] to control the exploration and exploitation of optimal solu-
tions within search space. The postulated MCSPSOSPEA optimizer deployed the standard PSO algorithm limited 
by the dynamic random particle velocity domain of [−​0.1 +​ 0.1].

After executing 1000 iterations, the MO trade-off domains for all Pareto optimizers became f1 ∈​ [0.12, 0.18], 
f2 ∈​ [0.015, 0.045], and f3 ∈​ [0.0, 0.2], respectively. Fig. 9a and b depicts the 3D Pareto fronts plot for MCSPSOSPEA 
and MCSHCSPEA, respectively. Precisely, the original SPEA had the smallest hypervolume of 5.9083 ×​ 10−6 unit3 
whereas the postulated MCSPSOSPEA had the hypervolume of 7.9002 ×​ 10−6 unit3 followed by the MCSSPEA 
counterpart with the hypervolume of 2.1662 ×​ 10−5 unit3, and the MCSHCSPEA algorithm with the hypervolume 
of 2.3462 ×​ 10−5 unit3, respectively. Generally, all the hypervolume values were so small (near to zero) due to the 
strength Pareto fitness minimization process, and were almost similar with the estimated differences less than 
1.8000 ×​ 10−5 unit3.

Figure 10a shows that the MCSPSOSPEA-based array produced the best SLL suppression particularly com-
pared to other rectangular antenna arrays between the [50° 85°] and [95° 130°] regions, respectively. Figure 10a 
and c clearly shows that the MCSPSOSPEA-based array yielded the average SLL between 1.0300 and 9.7884 dB 
below the conventional array, respectively. Based on Fig. 10b, the MCSPSOSPEA-based array also produced the 
highest main beam intensity due to the smallest HPBW of 91.4382°−​88.5093° =​ 2.9289° and the highest planar 
array directivity of 7.7381 dB, respectively. This was followed by the MCSHCSPEA counterpart that had the larger 
HPBW of 91.6171°−​88.3928° =​ 3.2243°, and the smaller directivity of 7.2534 dB, respectively. Based on Fig. 10d, 
the proposed MCSPSOSPEA optimizer executed the significant predefined null mitigation of −​88.7293 dB nearly 
at direction of arrival (DoA) of 55.0039°. Similarly, Fig. 10e indicates that the MCSPSOSPEA optimizer also 
had the remarkable predefined null mitigation of −​102.6074 dB around at DoA of 124.3318°. Overall, the pro-
posed MCSPSOSPEA algorithm surpassed the MCSPSO counterpart applied in the weighted-sum MO opti-
mization approach26 for 2 N =​ 20 linear antenna array, which had the average SLL between 0.047 and 3.826 dB 
lower than the conventional array, HPBW of 92°−​88° =​ 4°, and maximum null mitigation of −​70.661 dB, 

Figure 9.  Strength Pareto Evolutionary Algorithm Front Approximations 2(M × N) = 20 × 20, Uniform, 
Null = [55°, 60°, 120°, 125°], maxIter = 1000). (a) The three objective functions trade-off simulation for the 
proposed MCSPSOSPEA optimizer. (b) The three objective functions trade-off simulation for the proposed 
MCSHCSPEA optimizer.



www.nature.com/scientificreports/

1 4SCIENTIFIC RePOrtS | 7:46521 | DOI: 10.1038/srep46521

respectively. Consequently, this shows that Pareto MO optimization yielded better performance indicator than 
the weighted-sum approach using the same objective functions.

Figure 11a to d show the 3D normalized radiation plot for all the tested standard and enhanced SPEA-based 
rectangular array optimizers. All the optimizers generated their respective normalized radiation patterns sym-
metrical on the xy-plane. Once again, the MCSPSOSPEA optimizer emitted relatively the narrowest main 
beam with the smallest HPBW and highest directivity, simultaneously. Moreover, both the MCSPSOSPEA and 
MCSHCSPEA had the main and side lobes slightly slimmer than the standard SPEA and MCSSPEA counterparts, 
respectively.

Based on Fig. 12a and b, the proposed MCSPSOSPEA optimizer yielded the biggest relative optimal excitation 
amplitude deviations with respect to the conventional array for all 2(M ×​ N) =​ 20 ×​ 20 rectangular antenna array 
elements. This was followed by the MCSHCSPEA, MCSSPEA, and original SPEA counterparts, correspondingly. 
Moreover, the MCSPSOSPEA optimizer also produced slightly the biggest optimal excitation phase variations 
compared to the conventional array as shown in Fig. 13a and b. These significant variations were the key factors 

Figure 10.  Normalized Pattern for SPEA-based Rectangular Arrays 2(M × N) = 20 × 20, Uniform, 
Predefined Null = [55°, 60°, 120°, 125°], maxIter = 1000). (a) Overall normalized radiation pattern. (b) Half-
power beamwidth pattern. (c) Average side lobe level pattern. (d) Null mitigation between 55° and 60°. (e) Null 
mitigation between 120° and 125°.
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for the MCSPSOSPEA algorithm using the selected non-dominated solutions to suppress the lowest average SLL 
while preserving the main lobe and mitigating significantly prescribed nulls. Using the selected non-dominated 
solutions, the MCSPSOSPEA algorithm had a better strength Pareto trade-off with the smallest f1 and f3 values 
despite having a slightly bigger hypervolume of Pareto front 3D plot than the standard SPEA rival. Thus, the 

Figure 11.  3D Normalized Antenna Pattern for SPEA-based Rectangular Arrays 2(M × N) = 20 × 20, 
Uniform, Null = [55°, 60°, 120°, 125°], maxIter = 1000). We simulate 4 SPEA-based rectangular arrays, which 
are (a) Original SPEA. (b) Hybrid MCSSPEA. (c) Hybrid MCSHCSPEA. (d) Hybrid MCSPSOSPEA.

Figure 12.  Optimal Excitation Amplitude for SPEA-based Rectangular Arrays 2(M × N) = 20 × 20, 
Uniform, Null = [55°, 60°, 120°, 125°], maxIter = 1000). (a) We compare four SPEA-based and conventional 
rectangular antenna arrays excitation amplitude in 2D plot. (b) The proposed MCSPSOSPEA rectangular array 
excitation amplitude in 3D plot.
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MCSPSOSPEA optimizer generated the highest rectangular antenna directivity, smallest HPBW, lowest average 
SLL, and best predefined nulls mitigation, simultaneously.

In this simulation, the postulated MCSPSOSPEA generated 10 non-dominated solutions whereas the 
MCSHCSPEA counterpart produced 13 non-dominated solutions, respectively. Table 5 enlists the fitness of each 
objective function according to the selected non-dominated solutions for the comparison of all the tested Pareto 
algorithms as shown in Figs 8 to 11, respectively. Precisely, the MCSPSOSPEA had the smallest relative global 
Pareto front values with respect to f1 and f3. Moreover, Table 6 shows that the MCSPSOSPEA hybrid optimizer 
ensured the biggest relative optimal location variations between |±​0.1578| and |±​2.9991| in regard to the conven-
tional array for all 2(M ×​ N) =​ 20 ×​ 20 rectangular antenna array isotropic radiators. Similarly, the MCSPSOSPEA 
optimizer also warranted the biggest relative optimal amplitude variations between 0.1162 and 0.3200 in regard 
to the conventional array for all 2(M ×​ N) =​ 20 ×​ 20 rectangular antenna array elements as presented in Table 7. 
Based on Tables 6 and 7, the MCSPSOSPEA planar antenna was optimally designed and implemented with the 
relatively biggest aperture size and highest feed current amplitude applied for all array elements. Moreover, the 
MCSPSOSPEA hybrid optimizer also produced the biggest relative optimal phase variations between 0° and 
42.8517° with respect to the conventional array as clearly shown in Table 8. There was an element with the 

Figure 13.  Optimal Excitation Phase for SPEA-based Rectangular Arrays 2(M × N) = 20 × 20, Uniform, 
Null = [55°, 60°, 120°, 125°], maxIter = 1000). (a) We compare four SPEA-based and conventional rectangular 
antenna arrays excitation phase in 2D plot. (b) The proposed MCSPSOSPEA rectangular array excitation phase 
in 3D plot.

Fitness f1 f2 f3

SPEA 0.1454 0.0258 0.1277

MCSSPEA 0.1381 0.0222 0.1825

MCSHCSPEA 0.1379 0.0273 0.1825

MCSPSOSPEA 0.1292 0.0257 0.1280

Table 5.   Selected Optimal Pareto Fitness for SPEA-based Rectangular Arrays 2(M × N) = 20 × 20, 
Uniform, Null = [55°, 60°, 120°, 125°], maxIter = 1000).

Element 1 2 3 4 5

xm or xn [λ/2] ±​0.5000 ±​1.5000 ±​2.5000 ±​3.5000 ±​4.5000

SPEA ±​0.5422 ±​1.6265 ±​2.7109 ±​3.7953 ±​4.8796

MCSSPEA ±​0.5664 ±​1.6992 ±​2.8321 ±​3.9649 ±​5.0977

MCSHCSPEA ±​0.6063 ±​1.8188 ±​3.0313 ±​4.2438 ±​5.4564

MCSPSOSPEA ±​0.6578 ±​1.9735 ±​3.2892 ±​4.6049 ±​5.9206

Element 6 7 8 9 10

xm or xn [λ/2] ±​5.5000 ±​6.5000 ±​7.5000 ±​8.5000 ±​9.5000

SPEA ±​5.9640 ±​7.0484 ±​8.1327 ±​9.2171 ±​10.3014

MCSSPEA ±​6.2305 ±​7.3633 ±​8.4962 ±​9.6290 ±​±​10.7618

MCSHCSPEA ±​6.6689 ±​7.8814 ±​9.0939 ±​10.3065 ±​11.5190

MCSPSOSPEA ±​7.2363 ±​8.5520 ±​9.8677 ±​11.1834 ±​12.4991

Table 6.   Optimal Symmetric Location for SPEA-based Rectangular Arrays 2(M × N) = 20 × 20, Uniform, 
Null = [55°, 60°, 120°, 125°], maxIter = 1000).
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excitation phase of 0° and three elements with the excitation phase of 180°, respectively. In brief, the hypothesized 
MCSPSOSPEA could search further (at the maximum or minimum extent) the optimal locations, current ampli-
tudes and current phases hence, improved the rectangular antenna array main beam scanning and predefined 
nulls mitigation.

Conclusion
Overall, the proposed MCSPSOSPEA, MCSHCSPEA, and MCSSPEA are proven to produce better global Pareto 
fronts than the standard SPEA in ZDT1 and ZDT3 test functions as well as in rectangular antenna array syn-
thesis. In this study, the proposed MCSPSOSPEA is clearly the best Pareto MO metaheuristic optimizer. The 
hybrid MCSPSOSPEA is capable to enhance the exploration of potential best host nests or Pareto optimal solu-
tions within 3-dimensional search space to produce a better diversity of non-dominated solutions signifying 
optimal element locations, excitation amplitudes, and excitation phases, respectively. The introduction of some 
value-added optimizer attributes, e.g. Roulette wheel selection operator to choose the initial host nests that give 
better results, adaptive weight, w to control the positions exploration of the potential best host nests, dynamic dis-
covery rate, Pa to manage the fraction probability of finding the best host nests within search space, and particle 
velocity and position iterative updating procedures in the PSO optimizer have become primarily the key factors. 
These valued-added attributes support the proposed MCSPSOSPEA to perform the Lévy flight searching motion 
effectively in locating the potential best host nests, which then become as the best Pareto non-dominated solu-
tions. Precisely, the proposed MCSPSOSPEA outperforms other compatible rivals including conventional arrays 
by detecting radiated pattern with the highest directivity, lowest average SLL suppression, narrowest HPBW, and 
best predefined nulls mitigation, respectively.

In this research, the SPEA is the chosen Pareto optimum standard mechanism, which provides the hybrid 
MCSPSO algorithm to search further non-dominated solutions, and importantly without getting bias to any of 
the three objective functions involved. The research basically focuses on the preliminary analysis of MO optimiza-
tion using various proposed MCS hybrid algorithms via global Pareto front for rectangular antenna array synthe-
sis. Practically, despite generating the best performance results, the MCSPSOSPEA rectangular array design have 
two main drawbacks, which are the largest aperture size (inter-element distance), and highest power consump-
tion (current feed amplitude). In the future, there will be objective functions included, which will offset/reduce 
these drawbacks while performing the Pareto MO optimization approach. Besides, this is a preliminary research, 
which executes the optimal results with a one run using 1000 iterations to ensure enough convergence for all the 

Element 1 2 3 4 5

Im or In 1.0000 1.0000 1.0000 1.0000 1.0000

SPEA 0.9524 1.0012 1.0740 0.9658 0.9869

MCSSPEA 0.9611 0.9952 1.1365 1.0450 1.1028

MCSHCSPEA 1.0287 1.0652 1.2165 1.1186 1.1804

MCSPSOSPEA 1.1162 1.1559 1.3200 1.2137 1.2808

Element 6 7 8 9 10

Im or In 1.0000 1.0000 1.0000 1.0000 1.0000

SPEA 1.0606 0.9731 0.9794 0.9840 0.9980

MCSSPEA 1.1177 1.1077 1.0975 1.0911 0.9911

MCSHCSPEA 1.1964 1.1857 1.1747 1.1678 1.0608

MCSPSOSPEA 1.2982 1.2866 1.2747 1.2672 1.1511

Table 7.   Optimal Excitation Amplitude for SPEA-based Rectangular Arrays 2(M × N) = 20 × 20, Uniform, 
Null = [55°, 60°, 120°, 125°], maxIter = 1000).

Element 1 2 3 4 5

ϕm or ϕn 0° 33.8087° 44.3390° 19.4383° 35.3010°

SPEA 0° 36.6609° 48.0796° 21.0782° 38.2791°

MCSSPEA 0° 38.2992° 50.2282° 22.0202° 39.9897°

MCSHCSPEA 0° 40.9939° 53.7622° 23.5695° 42.8034°

MCSPSOSPEA 0° 44.4820° 58.3368° 25.5750° 46.4454°

Element 6 7 8 9 10

ϕm or ϕn 75.5787° 162.1825° 114.5353° 159.5137° 137.1483°

SPEA 81.9547° 175.8646° 124.1978° 172.9707° 148.7185°

MCSSPEA 85.6171° 180° 129.7480° 180° 155.3645°

MCSHCSPEA 91.6411° 180° 138.8770° 180° 166.2959°

MCSPSOSPEA 99.4387° 180° 150.6938° 180° 180°

Table 8.   Optimal Excitation Phase for SPEA-based Rectangular Arrays 2(M × N) = 20 × 20, Uniform, 
Null = [55°, 60°, 120°, 125°], maxIter = 1000).
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proposed MCS hybrid algorithms. Again, in the future, these proposed algorithms could be run many times and 
the average of the best results could be taken. Finally, there are several possibilities to verify the proposed MCS 
hybrid algorithms with other Pareto optimum methods, e.g. non-dominated sorting genetic algorithm (NSGA), 
vector evaluated genetic algorithm (VEGA), and niched Pareto genetic algorithm (NPGA) in a more complex 
antenna array geometry such as, concentric circular, cylindrical, spherical antenna with large number of asym-
metric/non-uniform array elements under different signal processing windows, such as Tukey, Kaiser, Blackman, 
Lanczos, Hamming, and Poisson.
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