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Weak connections form an infinite 
number of patterns in the brain
Hai-Peng Ren1, Chao Bai1, Murilo S. Baptista2 & Celso Grebogi2

Recently, much attention has been paid to interpreting the mechanisms for memory formation in terms 
of brain connectivity and dynamics. Within the plethora of collective states a complex network can 
exhibit, we show that the phenomenon of Collective Almost Synchronisation (CAS), which describes a 
state with an infinite number of patterns emerging in complex networks for weak coupling strengths, 
deserves special attention. We show that a simulated neuron network with neurons weakly connected 
does produce CAS patterns, and additionally produces an output that optimally model experimental 
electroencephalograph (EEG) signals. This work provides strong evidence that the brain operates locally 
in a CAS regime, allowing it to have an unlimited number of dynamical patterns, a state that could 
explain the enormous memory capacity of the brain, and that would give support to the idea that local 
clusters of neurons are sufficiently decorrelated to independently process information locally.

Much progress has been made in recent decades for the understanding of brain function1,2. Brain function is 
determined by the way in which neurons are connected (both the topology of the neuron network and the syn-
aptic strength among the neurons), and the intrinsic dynamics of the neurons forming the brain. Typically, one 
obtains an approximate course-grained information of the brain by inference from time-series measurements. 
The EEG signal3, used to obtain information about a local state of the brain, has been widely utilized in medi-
cal diagnosis and analysis due to its many advantages: non-invasive, low cost implementation, high-temporal 
analysis, tolerant to subject movements and so on. For that reason, the characterisation of this signal and the 
understanding of which kind of neuron dynamical behaviour produces an EEG signal have become an area of 
intense research4. One of the greatest challenges in brain research, which relies also on EEG measurements, is 
the understanding of memory formation. The binding hypothesis5, referring to a process in which perception 
happens by making different cognitive and memory areas of the brain synchronous (bind), is a representative 
class of work in brain research that also relies on EEG measurements. EEG data, as well as data obtained from 
several other methods, is thus used to shed light into the binding connecting network structures6–10 and the 
strengths of the neuron synapses in the brain. Modelling EEG signals is essential to understand the anatomy and 
histophysiology of the brain, and therefore provide support to medical imaging analysis and to the development 
of neuroscience11. However, consensus about what is the topology of the brain or its synaptic modus operandi is 
still an open problem. On the one hand, the understanding of signals from living brain is limited by non-invasive 
biological techniques. On the other hand, the available methods to infer the brain connectivity structure from 
measurements, such as EEG12, can only provide a rough estimate of the large-scale structure of the brain, little 
being known about the connectivity of the local clusters of neurons generating EEG signal.

To elucidate the fundamental dynamical mechanisms behind observable brain behaviour, there has been a lot 
of research based on simulations of neuron networks and their behaviour as a function of the intensity of the cou-
pling strengths13–20 and the connecting topology21–24. Under strong coupling strengths, neuron networks of equal 
neurons support the appearance of complete synchronisation (CS)17–20, as shown in Fig. 1. In this case, all the neu-
rons in the network tend to have the same oscillatory dynamic behaviour. Thus, these neurons could be equivalent 
to a single neuron, and thus being not amenable to exhibit complex oscillatory brain patterns. With the decrease 
of the coupling strength, neuron networks can exhibit some well known weak forms of synchronisation14, such 
as phase synchronisation (PS)16, partial phase synchronisation (PPS)14, bursting phase synchronisation (BPS)14, 
and collective almost synchronisation (CAS), as shown in the intervals (2) and (1) of the Fig. 1, respectively. The 
CAS, a phenomenon where nodes are weakly connected, is characterised by the existence of local clusters of 
neurons possessing roughly constant local mean fields, consequence of neurons being very weakly connected. It 
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terminates when local mean field starts to oscillate. The conventional wisdom is that the neurons are completely 
disordered when coupling strength is very weak. However, a recent research work25 shows that CAS is present in 
complex networks for very weak coupling strengths. In this situation, the neuron networks can process an infinite 
number of possible oscillatory patterns. CAS phenomenon is thus a plausible explanation for the existence of local 
cluster of neurons that are sufficiently decorrelated to independently process information locally. Those infinitely 
many patterns that can appear in simulated neural networks working under the CAS regime could provide the 
basis and shed light into the process of memory formation in the brain.

Whereas the small-scale and global connecting topologies are still a major unknown, much is understood 
about the intrinsic dynamical features of neurons, i.e., their equations of motion. The pioneering work on neuron 
models was done by Hodgkin and Huxley26. They proposed a fourth-order model to study dynamical behaviour 
of individual neurons. To simplify the model, second-order models, such as the ones by FitzHugh-Nagumo27 and 
Morris-Lecar28, were proposed. However, the second-order models are not able to reproduce some phenomena, 
such the triggering of a set of stable firings29. Hence, a third-order model, referred to as Hindmarsh-Rose (HR) 
model, was introduced to solve that problem30–34. For our analysis, we consider the HR model.

In this work, we are aimed at explaining the dynamical and structural fundaments of the neuronal networks 
responsible for generating experimental EEG signals. Our goal is to shed light into the characteristics that a simu-
lated neuron network (i.e., coupling strengths and topological structure) needs to have in order to model experi-
mental EEG signals. We show that networks operating in a CAS regime optimally model EEG signals, manifesting 
the activity of a local part of the outer layer of the brain. Our results suggest that locally the brain has neurons 
that are only weakly connected. Moreover, since the CAS regime is weakly dependent on the neuron connectivity, 
our results imply that at smaller scales the synapses strength is the most relevant parameter for brain behaviour. 
Because the CAS regime allows a network to exhibit an infinite number of patters, our work also provides an 
explanation about the brain mechanism for its enormous memory capacity. Finally, our model of the EEG signal 
is based on similar protocol to produce weighted average outputs of complex networks that integrate information 
of various clusters to produce a logical “intelligent” output. Consequently, our work also suggests that information 
in the brain is being locally processed by independent local clusters of neurons.

In the following, we provide the organisational presentation of our main results in this paper:

(1)	 We show in Sec.2 that the CAS phenomenon occurs in neuron networks with both chemical and electrical 
synapses.

(2)	 We show that a mean field from a random cluster of neurons in the simulated networks exhibits CAS, opti-
mally reproducing experimental EEG signals (in Sec.3). This result supports the argument that CAS is pres-
ent in localised regions of the brain, suggesting that local clusters of neurons does not have strong synaptic 
strengths. Knowing that CAS allows for the formation of an infinite number of collective clusters and pat-
terns, the presence of CAS in local regions of the brain could be advantageously used as a memory reservoir.

(3)	 Neuron networks with both linear (electric) and nonlinear (chemical) couplings, as known to exist in our 
brain32–34, reproduce surprisingly well the experimental EEG signals for the coupling strengths in the range 
responsible to produce the CAS regime.

Criteria to exhibit the CAS phenomenon in neuron networks with both electrical and 
chemical synapses
Neuron network.  The Hindmarsh-Rose(HR) neuron model35 is the following:
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where x represents the membrane potential, y is the recovery variable associated with the fast current of Na+ 
or K+ ions, z is the adaptation current associated with the slow current of, for instance, Ca+ ions, Iext is the 
externally applied current that mimics the membrane input current for biological neurons, r is a small parame-
ter that governs the bursting behaviour, and x0 is the resting potential. The following choice of system parame-
ters, a =​ 1, b =​ 3, c =​ 1, d =​ 5, s =​ 4, r =​ 0.005, x0 = 1.618 and Iext = 3.25, yields the HR neuron model to exhibit a 
multi-time-scale chaotic behaviour characterised by spiking bursting36.

The dynamical equations of an HR neuron network with both electrical and chemical synapses is the 
following:

Figure 1.  A pictorial representation of the relationship between the strength of neuron network couplings 
and the behaviour of synchronisation. CAS means Collective Almost Synchronisation; CS means Complete 
Synchronisation.
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where ∈ Rx y z( , , )i i i
3 are state variables of the neuron i with random initial conditions, i =​ 1, 2, …​, N. N is the 

number of neurons in the network. →R RH: 3 3 is the internal coupling function among the neurons in the 
network; we consider H(xj) =​ xj −​ xi. σ and g are electrical (linear coupling strength) and chemical synapses (non-
linear coupling strength), respectively. The matrix Aij represents the Laplacian matrix for the electrical synapses; 
the adjacency matrix Bij describes the topology of the chemical connections, thus ∑ = KBj ij i, where Ki repre-
sents the number of chemical connections that neuron i (the post-synaptic neuron) receives from all the other j 
neurons (pre-synaptic neurons) in the network. The chemical synapse function is modelled by the sigmoidal 
function

=
+ λ θ− −

x
e

S( ) 1
1 (3)j x( )j syn

with θsyn =​ −​0.25, λ =​ 10, and Vsyn =​ 2.0 for excitatory and Vsyn =​ −​2.0 for inhibitory neurons36. In Fig. 2 we show 
examples of dynamical behaviours of the membrane potentials x (solid line) and ensemble average of the neuron 
network (dashed line) when the CAS phenomenon is present, where Iext =​ 3.25, N =​ 1000, σ =​ 0.001, g =​ 0, and 
other parameters are the same as the ones used to simulate the HR neuron in Eq. (1). Simulations were performed 
using Matlab Simulink.

Revisiting CAS phenomenon in networks whose neurons are coupled with only electrical synapses.  
The CAS phenomenon was first described and analysed in ref. 25. It describes a universal way of how patterns 
could appear in complex networks for weak coupling strengths. The local mean field of node i is defined as:

Figure 2.  Various dynamical behaviours of the HR neuron in the neuron network, when the CAS 
phenomenon is present. Panels (a,b) show the membrane potentials of regular bursting and chaotic bursting, 
respectively. The red dashed lines in panels (a,b) are the ensemble average of the network. Panels (c,d) show the 
phase space plot of regular bursting and chaotic bursting, respectively.
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ki is the electrical coupling degree of node i. The expected value of the local mean field is defined as
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The CAS patterns of node i is described by:
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where Ξ are the three-dimensional CAS patterns, pi =​ σki is the product of the coupling strength σ and the degree 
of node i, i.e., ki, for linear coupling. Equation (6) is derived from a local mean field approximation describing 
approximately the evolution of a cluster of neurons that have all the same connectivity degree.

There are two criteria for the network to present the CAS phenomenon. They are as follows:

•	 Criterion 1: The Central Limit Theorem should be applied, i.e., µ ∝ −ki i
2 1. Therefore, the larger the degree of 

a node, the smaller the variance of the local mean field x t( )i  about its expected value Ci, as shown in Fig. 3(a). 
Here, µi

2 denotes the variance of xi.
•	 Criterion 2: There must be a CAS pattern described by a stable periodic orbit, to which two locked neu-

rons can demonstrate phase or delay synchronisation (or other functional synchronisation25), as shown in 
Fig. 3(b).

The different CAS patterns are obtained by varing pi, which can be analysed by using a bifurcation diagram as 
shown in Fig. 4, where we plot the local maximal points of the CAS patterns. We find that when ≈p 1i , there is 
only one pattern in the neuron network. With the decrease of pi, the patterns have a period-adding transition 
from period one to period two, period three, and so on, followed by an infinite period doubling cascade leading 
to a chaotic state, the latter occurring when pi is close to 0, as shown in the inset plot. Therefore, this is the bifur-
cation scenario toward an infinite number of patterns.

Notice that the existence of the CAS pattern only requires an approximately constant local mean field Ci, and 
it does not depend on the topology of the network. So, our subsequent analysis is reproducible in any arbitrary 
network, as long as there is a sufficient number of well connected nodes. Our numerical results suggest that a 
minimum degree of about 10 is necessary to create a constant Ci. Equation (6) is an approximate equation to 
describe the evolution of nodes of the network with weak coupling. If two nodes in the network would be in the 
CAS regime, they would have their dynamics described approximately by Eq. (6). If this equation would describe 
a stable periodic orbit, as in the requirement for the CAS regime, the real trajectory of these nodes would be a 
perturbation around the same stable periodic orbit. The trajectory would never escape the periodic orbit, which 
would make these nodes to become phase synchronous, after a time-delay would be taken into consideration.

Figure 3.  The two criteria for the existence of the CAS phenomenon; we choose a scale-free network  
(a network whose degree distribution follows a power law) with N = 1000, σ = 0.001, g = 0, Iext = 3.25 and 
r = 0.005. (a) Expected value of the local mean field of node i against its degree ki. (b) The CAS patterns for the 
neuron i and another neuron j with degree ki =​ kj =​ 25. The inset is a blow up.
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The CAS phenomenon in networks whose neurons are coupled with both electrical and chemical  
synapses.  Due to H(xj) =​ xj −​ xi, the electrical coupling term of the first state variable can be rewritten as
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where pi =​ σki, ≈ = ∑ =x k xAC (1/ )i i i j
N
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where = ∑ =K xBW (1/ ) S( )i i j
N

ij j1 , =p g Ki i, Ki is the chemical coupling degree of node i. Hence, the CAS patterns 
with both coupling are given by
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where = + R p p( W )i i i i , = + +Q p p V IC Wi i i i syn i i. To illustrate the presence of the CAS phenomenon, we con-
sider a scale-free network, formed by N =​ 1000 neurons, with both electrical and chemical couplings. The simu-
lations show that the two criteria for the CAS phenomenon are also satisfied in this neuron network with both 
electrical and chemical synapses.

•	 Figure 5(a,b) show that the Central Limit Theorem can be applied, which happens when the variables are 
weakly correlated. The error bars indicate the variance of Ci and Wi, behaving as ∝​ − .ki

1 6250 and ∝​ − .Ki
1 7087, 

respectively.
•	 In Fig. 5(c), the CAS pattern describes a stable periodic orbit. The node trajectory can be considered a per-

turbed version of its CAS pattern.

A bifurcation diagram is shown in Fig. 6, where we set Aij =​ kiI −​ Bij for simplicity, where I is the diagonal 
identify matrix. For the case where ≠ −k IA Bij i ij, separate bifurcation diagrams for electrical and chemical 

Figure 4.  A bifurcation diagram of CAS patterns with the variation of pi in the neuron network by only 
considering electric synapses. 
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couplings can be obtained. From Figs 5 and 6, a conclusion is drawn that the CAS phenomenon is typical in neu-
ron networks with both weak electrical and chemical couplings.

Methods
Modelling the EEG signal by simulated neural networks.  According to ref. 25, if we wish the CAS 
phenomenon to be seen in a physiology experiment37, we need to set up the experiment to probe the firing behav-
iour of pairwise neurons with the same degree, or equal weighted degree if neurons are connected with non-uni-
form coupling strengths. As a signature of CAS, these neurons exhibit phase or delay synchronous behaviour. It is 

Figure 5.  Results validating the two criteria for the neurons to exhibit the CAS phenomenon; we choose a 
scale-free network with N = 1000, σ = 0.001, and g = 0.001. (a) Expected value of the local mean field of node 
i with respect to its electric coupling degree ki. (b) Expected value of the local mean field of node i with respect 
to its chemical coupling degree Ki. (c) The CAS pattern for neurons i and j, both with electrical coupling degree 
ki =​ 20 and chemical coupling degree Kj =​ 22.

Figure 6.  The maximal values of the periodic orbits of Eq. (2) are shown in the bifurcation diagram with both 
chemical and electrical couplings, where Aij =​ kiI −​ Bij, σ =​ g =​ 0.001.
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difficult to measure individual neurons in living tissue, not to mention searching for neurons with equal degree, 
or with similar weighted degree connections. Therefore, in this work, we propose to study another signature of 
CAS, an output function defined by weighted mean field measurements of a cluster of randomly chosen neurons 
in the network. Our goal is to show that this output function does share remarkable similarities with typical out-
put local mean field measurements of the brain, i.e., the EEG.

EEG is a graphical record of electrical activity of a localised region of the brain, obtained by placing an elec-
trode in a specified location of the head, such as the scalp and subdural placements. The electrode collects a signal 
that is a function of a weighted sum of postsynaptic potential of nearby neurons in a localised region in the outer 
layer of the brain. This signal is then compared to a reference electric potential in another region of the brain, and 
the potential difference is a bipolar signal called EEG. Therefore, EEG is a bipolar electric signal related to a meas-
ure of the potential of a local cluster of neurons as compared to the potential generated by another region. 
Suppose that there are n neurons, one fraction influencing the measurement at an electrode and the other fraction 
influencing the potential produced at the probe measuring the reference signal. Each of these neurons produce a 
potential …x x x, , , n1 2 . We then model the EEG experimental signal, represented by ẽ t( ), by the following linear 
sum,

+ + + =a x t a x t a x t S( ) ( ) ( ) , (8)n n N1 1 2 2

where …a a a, , n1 2  are the linear weights that allow a mapping between the sum of the neuron potential and the 
EEG signal. We want to find the set of linear weights that minimises the difference −ẽ t S t( ) ( )N . Linear models 
based on a weighted sum of membrane potentials from simulated neuron network have been previously proposed 
to model EEG signals4. Our novel contribution is to first determine under which network conditions the models 
optimally fits the EEG signal, and to withdraw general conclusions about the characteristics of neuron network, 
capable of reproducing these signals, i.e., the parameter conditions of the neurons and their connectivity. 
Assuming that the mapping of Eq. (8) describes well the link between electric potential and EEG signals, our goal 
is to show that an experimental EEG signal can be well reproduced by a weighted sum, i.e., SN, but where xi in Eq. 
(8) is the membrane potential generated by the simulated neuron network in Eq. (2). In this interpretation, the 
simulated neural network is actually representing two local areas of the brain, one close to where the EEG main 
probe is placed and another where the reference probe is placed.

Equation (8) can be written in a matrix form for all t ≥​ 0, as
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sampled EEG signal, and m is the EEG signal data length. By using pseudo-inverse method38, we can derive Ã and 
define the fit deviation as
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The solution of Eq. (9) provides us with the constant parameters of our EEG model in Eq. (8). We choose ran-
domly a group of nodes (n neurons) in the HR network in order to model the EEG data, and calculate the devia-
tion D. Observability theory39 shows that in nonlinear networks a produced sample of nodes in a network carries 
information about the whole network. Notice that the approach proposed, which searches for a solution of Eq. (9) 
by the pseudo-inverse method, is a typical method used to compute a ‘best fit’ (least squares) solution and can be 
seen as a practical use of the so called computing reservoir paradigm40. This paradigm is an approach to calculat-
ing the weights of an output weighted average in order to reproduce EEG. The calculation of the weights employs 
other techniques besides the pseudo-inverse, which minimises the best mean square fitting between the target 
signal (in this case, the EEG signal, ẽ t( )), and the weighted average (represented by SN(t)). The success of our 
model to reproduce the EEG signal thus suggests that the brain processes information locally by a small-scale 
cluster of neurons.

Notice that our model in Eq. (8) is a bottom-up model. We depart from microscopic dynamical properties 
that lead a network to have CAS regime in its microscopic components to model the EEG experimental signal, a 
higher level signal, generated by a complicated composition of signals coming from several places in the subject 
head. As such, our modelling comparison must be done at the level of the signal. In other words, validation of the 
accuracy of our modelling Eq. (8) by Eq. (10) is at the core of the analysis to be presented in the following.

The EEG signal approximation using the network with only linear coupling.  We consider an HR 
network to model the actual EEG data at four brain locations. The four experimental EEG data from clinical tri-
als were measured continuously in 64 channels at a sampling rate of 100 Hz and lasting 10 s, i.e., the EEG signal 
includes 1000 sampling points with the sampling interval equal to 10 ms. The electrode locations are C4, F1, Fpz 
and Pz, corresponding to the EEG data sets defined as E1, E2, E3, and E4, respectively, as shown in Fig. 7. E1 
and E2 were measured in epilepticus state, and E3 and E4 were measured in sleep state. The neuron signals are 
obtained by using Eq. (2) with a scale-free network; it consists of N =​ 1000 Hidmarsh-Rose neurons with uniform 
linear (electrical) coupling σ =​ 0.001 and g =​ 0. The time sequences of the selected neurons are sampled using 
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the interval equal to 10 ms, as well. The parameters of the neuron model are the same as in Eqs (1) and (2). Then 
Eq. (9) is used to fit by Pseudo-Inverse method. Repeated tests are performed, the goodness of fitting results are 
shown in Fig. 8, where n represents the number of neurons randomly selected for data modelling in Eq. (9), D is 
the smallest deviation in 200 tests, σ is the linear coupling strength in Eq. (2).

In the Fig. 8(a,b), the results of the modelling for E1 and E2 are given, and the results for E3 and E4 are given 
in Fig. 8(c,d), respectively. Notably, we can gather some interesting observations from the results in Fig. 8. Firstly, 
when the coupling strength is equal to zero, the deviation is relatively large. Therefore, if we tried to model the 
EEG data using time-series generated by disconnected (and therefore, decorrelated) neurons, we would not have 
achieved a so good fitting as the one when it is done by considering time-series trajectories obtained from a neu-
ron network of weakly connected nodes, possessing the CAS phenomenon. The interpretation of this result is that 
the EEG signals are not possible to be generated out of a mean field of a set of deterministic variables that are 
decorrelated. Therefore, the variables generating the local weighted mean field producing the EEG signals must 
be weakly correlated. Secondly, for fixed n, when the coupling strength increases to the range corresponding to 
CAS, the deviation is the smallest. These two observations suggest not only that local clusters of the brain could 
be functioning in a CAS state to generate the EEG signals, but also that the computing reservoir paradigm, 
applied to reproduce an EEG signal, reaches its best performance if complex networks operate in a CAS regime. 
Therefore, the level of correlation between the deterministic variables must be weak. Thirdly, when the coupling 
strength increases further to the range leading to the onset of weak and strong forms of synchronisation, the 
deviation increases accordingly. In summary, the EEG cannot be reproduced by local weighted mean field of 
variables strongly correlated. When the CS occurs, the deviation is the largest. Finally, we notice that, with the 
increasing in the number of neurons, the deviation decreases, but it is not as significant as the change for the 
coupling strength. The minimum degree of scale-free networks grows with the square root of the size of the net-
work, and an increase in the coupling σ increases the stability of the CAS pattern (making it more likely to occur). 
This provides another evidence that the reason for the local mean field (SN) to model the EEG signal (ẽ t( )) is the 
presence of the CAS phenomenon in the network, which is strongly dependent on σ and moderately dependent 
on the size of the network. Notice that since the minimum degree grows with the square root of the number of 
nodes, the range of σ values that induces CAS does only moderately change in the interval considered, 
∈n [200, 400]. Notice also that the larger the number of neurons considered in the simulations, the smaller the 

coupling strength needed for CAS to emerge. For the EEG signals from other positions, we obtain similar results.
To show how good SN(t) approaches ẽ t( ), the fitting for the model in Eq. (8), are shown in Fig. 9(a–d), corre-

sponding to the results for E1, E2, E3, and E4, respectively. The actual EEG is shown in red full lines and the 
model signal obtained by the fitting from Eq. (9) by star marked blue lines, and denoted by S1, S2, S3, and S4, 

Figure 7.  The four electrode locations for C4, F1, Fpz and Pz, the reference probe is placed in earlobes. 
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respectively. The number of neurons used in our simulations to produce the results in Fig. 9 is 400, the linear 
coupling strength is 0.001.

In order to investigate the relationship between the number of neurons used for solving Eq. (9), and the suc-
cessful rate of fitting in the sense of the deviation D in Eq. (10), being smaller than a threshold T, we show the 
simulation results for σ =​ 0, σ =​ 0.04, σ =​ 0.001 in Fig. 10, respectively. This figure shows the relationship between 
the number of neurons used for solving Eq. (9) and producing the modelled signal SN(t), and the successful 
rate with respect to the predefined deviation, where the successful rate is obtained from 200 runs using selected 

Figure 8.  The fitting results for our model of the EEG signals at different electrode positions, where σ is 
the linear coupling strength of the neuron network, n is the number of neurons randomly selected for the 
modelling. The local mean field in the SN of Eq. (8) is calculated considering n =​ [200, 400] randomly selected 
neurons in the scale-free network with N =​ 1000 Hidmarsh-Rose neurons; D shows the minimum value 
obtained in 200 tests. Subplots (a–d) are the result for E1, E2, E3, and E4, respectively.

Figure 9.  The goodness results at different electrode positions using coupling strength σ = 0.001 and the 
number of neurons n = 400; randomly selected to calculate the modelled EEG signal SN. S1, S2, S3, and S4 
are the best fitting (minimum D) within 200 tests for E1, E2, E3, and E4, respectively.
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number of neurons. The criterion of successful modelling is the deviation being smaller than T =​ 6.5 (microvolt). 
We also define the quantity P as the percentage of fittings that produce D <​ T from all fittings, considering ran-
domly selected neurons in each run. We conclude from Fig. 10 (lower panel) that the successful fitting rate P is 
100 percent when the number of neurons used is more than 450 and the coupling strength is 0.001, where the 
CAS phenomenon is present. However, for the coupling strength equal to 0 (Fig. 10, upper left panel) and 0.04 
(upper right panel), the fitting fails (P =​ 0, regardless of n and σ). From these observations, we provide further 
evidence that the brain operates on a CAS state. That being true, it would imply that the brain, in spite of using 
very small amounts of energy to maintain the weak connections, is capable of reproducing a remarkable large 
number of patterns.

The EEG signal approximation using the neuron network with both electrical and chemical 
couplings.  Previous works show that both electrical and chemical couplings are present in the brain12,13. The 
EEG signal modelling using the neuron network with both couplings is analysed and compared with the neuron 
network with only electrical coupling. The comparison results are shown in Table 1. The results are the statistical 
value of 30 simulations. The electrical coupling strength σ =​ 0.001, the chemical coupling strength g =​ 0.001, the 
number of neurons used is n =​ 400, the Laplacian matrix representing the network of electrically coupled neurons 

Figure 10.  The fitting results for E2 with coupling strength σ = 0 corresponding to upper left panel, 
σ = 0.04 corresponding to upper right panel, σ = 0.001 corresponding to lower panel, and threshold 
T = 6.5. 

EEG Locations

E1 E2 E3 E4

Coupling Types

Electrical coupling

maximum Deviation 1.0429 1.1708 1.0573 1.9172

mean Deviation 0.9802 1.1315 0.9273 1.5429

minimum Deviation 0.9203 1.0574 0.8729 1.4957

Electrical & chemical couplings

maximum Deviation 0.3902 0.5133 0.3278 0.6276

mean Deviation 0.3848 0.5044 0.2937 0.6133

minimum Deviation 0.3762 0.4912 0.2791 0.5990

Table 1.   The result of deviation for neuron networks with different coupling types.
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(scale-free HR network) A is different from the adjacency matrix representing the network of chemically cou-
pled neurons B; the excitatory chemical synapses are set by making Vsyn =​ 2. From Table 1, we learn that, under 
the same conditions, the neuron network with both couplings can model the EEG signal better than the neuron 
network with only linear coupling. This provides further evidence that CAS is very important to reproduce local 
brain behaviour (e.g., EEG signals), and that neuron networks with neurons coupled by both synapses provide 
better modelling, reinforcing the idea that in the brain one needs to have these two types of connections.

Discussion
In this work, we show that the Hindmarsh-Rose neuron networks, with both chemical and electrical couplings 
and operating25 in a regime that exhibits the so called Collective Almost Synchronisation (CAS), produces an 
output signal that model very well the EEG signal recorded from four randomly selected regions of the brain. The 
model is therefore neither subject dependent nor region dependent. This suggests that local regions of the brain 
could be functioning in a CAS state. This implies that small-scale clusters of neurons in the brain are weakly con-
nected, and that there is a large number of neurons that are almost synchronous. Each local cluster of neurons is 
roughly decoupled from other brain locations. Neuron networks connected with both types of synapses (electrical 
and chemical) reproduce better the EEG signals, reinforcing the idea that both connections are fundamental for 
the working of the brain. This work therefore provides evidence that CAS is present in the brain. Neurons that are 
in the CAS regime in the local clusters have the same capabilities as our simulated neurons, presenting an infinite 
number of patterns that appear for small changes in the synaptic couplings. These patterns, in turn, could explain 
the brain large memory capacity. Our work thus also support the idea that local clusters of neurons are sufficiently 
decorrelated, so they process information independently. Therefore, we can interpret the EEG signal as a manifes-
tation of a local cluster of weakly connected neurons integrating information and capable of emulating an infinite 
number of almost periodic oscillatory patterns. A spectral analysis reveals that the power spectrum curves of 
the EEG signals are reasonably different. However, the same simulated network can model the EEG from every 
region. Moreover, our simulations show that simulated networks with different topologies and different number 
of neurons can fit with similar accuracy the experimental EEG signals. Therefore, the success of the model does 
not rely on any spectral similarities between the simulated network and the EEG signal, but rather on the nodes 
behaving in the CAS regime.
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