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Fast adiabatic quantum state 
transfer and entanglement 
generation between two atoms via 
dressed states
Jin-Lei Wu, Xin Ji & Shou Zhang

We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum 
electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum 
entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state 
scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical 
simulations, we determine the parameters which can guarantee the feasibility and efficiency both in 
theory and experiment. Besides, numerical simulations also show the scheme is robust against the 
variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity.

Quantum state transfer and entanglement generation between different systems with time-dependent interacting 
fields have become more and more important for the further development of quantum information processing1–3. 
In order to achieve the high-fidelity quantum state transfer and entanglement generation, adiabatic evolution 
which corresponds to a state transfer along the adiabatic eigenstates is an excellent candidate method4,5. The most 
widely used approach of adiabatic evolution is stimulated Raman adiabatic passage (STIRAP) because of its great 
robustness against pulse area and timing errors as well as the restraint on lossy intermediate states.

However, STIRAP schemes usually require a relatively long interaction time, and thus the adiabatic evolu-
tion may suffer from dissipation and noise during the process of quantum state transfer. Therefore, it is greatly 
necessary to speed up the process of adiabatic evolution and lots of theoretical schemes have been brought for-
ward6–18. Besides, some experimental realizations have been completed19–23. There are two techniques, transi-
tionless quantum driving and Lewis-Riesenfeld invariants, widely applied to speed up adiabatic quantum state 
transfer and entanglement generation24–30. Although, in theory, the high-fidelity adiabatic quantum state transfer 
and entanglement generation can be achieved by transitionless quantum driving and Lewis-Riesenfeld invariants, 
it is hardly possible in practice due to the major flaws of the two techniques. On one hand, a transitionless-based 
direct coupling between the initial state and the target state is too hard to be obtained experimentally31–33. On the 
other hand, in some schemes34–38, invariants-based driving pulses are not smoothly turned on or off and thus lead 
to severe impediments in experiment.

A short time before, Baksic et al. proposed a new method to speed up adiabatic quantum state transfer by 
using dressed states39. In ref. 39, the dressed states are skillfully defined to incorporate the nonadiabatic processes. 
Kang et al. used the dressed-state method to implement the entanglement generation in a solid quantum system40. 
In this work, we apply the dressed-state method to quantum state transfer and entanglement generation between 
two Λ -type atoms trapped in an optical cavity. With the assist of quantum Zeno dynamics41,42, the original sys-
tem Hamiltonian is simplified and viewed as a three-level system. With the addition of a suitable correction 
Hamiltonian to the original Hamiltonian and the ingenious unitary transformation, we construct a new diagonal 
Hamiltonian in the time-independent dressed-state frame. Then the adiabatic two-atom quantum state transfer 
and entanglement generation are speeded up in a non-adiabatic way.

Adiabatic quantum state transfer and entanglement generation between two atoms
The schematic setup for quantum state transfer and entanglement generation between two atoms is shown in 
Fig. 1. Two Λ -type atoms A and B are trapped in a single-mode optical cavity. Each atom has an excited state |2〉  
and two ground states |0〉  and |1〉 . The atomic transition |2〉 A(B) ↔  |1〉 A(B) is resonantly coupled to the mode of the 
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cavity with corresponding coupling constant gA(B), and the transition |2〉 A(B) ↔  |0〉 A(B) is resonantly driven by a 
classical field with the time-dependent Rabi frequency ΩA(B)(t). Then the atom-cavity system can be dominated 
by the interaction Hamiltonian (setting ħ =  1)
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where Hal(t) (Hac(t)) is the interaction between the atoms and the classical laser fields (the mode of the cavity), 
and a is the annihilation operator of the cavity mode. For simplicity, we assume gA =  gB =  g. Then suppose that the 
total system is initially in the state |φ1〉  =  |0〉 A|1〉 B|0〉 c denoting atom A, atom B and the cavity mode in the state 
|0〉 A, state |1〉 B and vacuum state, respectively. Thus dominated by the Hamiltonian (1), the whole system evolves 
in the Hilbert space spanned by

φ φ φ

φ φ

= = =

= = .
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Obviously, the system is initially in the dark state of Hac(t), i.e., Hac(t)|φ1〉  =  0. Then choosing the quantum 
Zeno limit condition Ω Ω t t g( ), ( )A B , the whole system can approximatively evolve in an invariant Zeno sub-
space consisting of dark states of Hac(t)43,44

φ φ φ=H { , , }, (3)P d1 5

corresponding to the projections
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Therefore, the system Hamiltonian can be rewritten as the following form45
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in which Ω = −Ωt t( ) ( )/ 21 A  and Ω = Ωt t( ) ( )/ 22 B . Then the pulses are parameterized by the frequency Ω(t) 
and the angle θ(t)
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with the eigenvalues Ed =  0 and E±  =  ± Ω(t), respectively.
Next we move the Hamiltonian (6) to the time-independent adiabatic frame defined by the unitary operator 

U(t) =  ∑ j=d,±|ϕj〉 〈 ϕj(t)|, and the Hamiltonian (6) becomes

Figure 1. (a) The diagrammatic sketch of cavity-atom combined system. (b) Atomic level configuration.
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θ= Ω + H t t M t M( ) ( ) ( ) , (9)z yad

with Mz =  |ϕ+〉 〈 ϕ+| −  |ϕ−〉 〈 ϕ−| and ϕ ϕ ϕ= + ++ −M i ( ) / 2y d  H.c. The second term of the Hamiltonian 
(9) corresponds to the nonadiabatic couplings which may lead to an imperfect state transfer. In order to correct 
the nonadiabatic errors, we look for a correction Hamiltonian Hc(t) such that the modified Hamiltonian 
Hmod(t) =  H(t) +  Hc(t) governs a perfect state transfer. Here we choose the general form of Hc(t)

= +†H t U t g t M g t M U t( ) ( )( ( ) ( ) ) ( ), (10)c x x z z

where we introduce ϕ ϕ ϕ= − +− +M ( ) / 2x d H.c., and gx(t) and gz(t) are two parameters determined later. 
Then the Hamiltonian (6) becomes
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with the modified pulses
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We define a new basis of dressed states ϕ ϕ=± ±

†t V t( ) ( )d d, , . In this scheme, we choose

µ=V t i t M( ) exp[ ( ) ], (13)x

with an Euler angle μ(t). By moving the modified Hamiltonian (11) to the dressed-state frame defined by V(t), 
we obtain a new Hamiltonian
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the second term of the Hamiltonian (14) is removed. There will be no transition between ϕ+ , ϕ−  and ϕ
d . 

Furthermore, in the original frame, the transitions between ϕ+
† †U t V t( ) ( ) , ϕ−

† †U t V t( ) ( )  and ϕ


† †U t V t( ) ( ) d  
are canceled.

Next, in the original frame, we define

ϕ ϕ µ θ φ θ φ µ φ= = + − .
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Obviously, |ϕD(t)〉  can serve as a medium state which operates a two-atom quantum state transfer |φ1〉  →  |φ5〉  
by setting θ(ti) =  0, θ(tf) =  π/2 and μ(ti) =  μ(tf) =  0, where ti(f ) is the initial (final) time. Analogously, a maximum 
two-atom entangled state φ φΨ = + = +( ) ( 0 1 1 0 )1

2 1 5
1
2 A B A B

 can be generated by setting 
θ(ti) =  0, θ(tf) =  π/4 and μ(ti) =  μ(tf) =  0.

Based on the process above, we have used the dressed-state method to achieve shortcuts to adiabaticity in a 
non-adiabatic way and implement the fast two-atom quantum state transfer and maximum entanglement gen-
eration. The evolution process is not necessarily slow and there is no direct coupling between the initial state and 
the target state, as long as a set of suitable dressed states is chosen.

Numerical simulations
Selections of parameters. First of all, we give numerical simulations to select appropriate parameters for 
insuring the experimental and theoretical feasibility. The original pulses Ω1(t) and Ω2(t) can be chosen as the 
Gaussian pulses1,4
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and the corresponding Ω = − Ωt t( ) 2 ( )A 1  and Ω = Ωt t( ) 2 ( )B 2 , the original driving pulses of the total system, 
can be obtained. In the scheme, we choose t0 =  3tf/40 and τ =  0.1tf. Besides, θ(tf) =  π/2 and θ(tf) =  π/4 are for the 
quantum state transfer and the entanglement generation, respectively. The Euler angle μ(t) is defined by
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Figure 2. The shapes of the modified pulses Ω′ t( )1  and Ω′ t( )2  with several different values of the operation time 
tf. The parameters used here are t0 =  3tf/40, τ =  0.1tf, θ(tf) =  π/2 for the quantum state transfer or θ(tf) =  π/4 for 
the entanglement generation.
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where G(t) =  sech(t/τ) is chosen to regularize μ(t) such that it can meet the condition μ(ti) =  μ(tf) =  0 and make 
µ tsin ( )2 , the population of |φd〉  (see Equation (16)), as small as possible. Then based on the relevant parameters 

above, the modified pulses Ω′ t( )1  and Ω′ t( )2  can be determined by Eq. (12). Also, the corresponding modified 
driving pulses of the total system Ω′ = − Ω′t t( ) 2 ( )A 1  and Ω′ = Ω′t t( ) 2 ( )B 2  are obtained.

In order to choose a small and feasible value of the operation time tf, in Fig. 2, we plot the shapes of the modi-
fied pulses Ω′ t( )1  and Ω′ t( )2  with different values of tf. From Fig. 2, we can clearly find that, both for the quantum 
state transfer and the entanglement generation, the longer the operation time tf is, the more similar the shapes of 
the modified pulses are to those of the original pulses. In other words, the modified pulses’ experimental feasibil-
ity increases as the operation time tf increases, which implies the operation time we choose can not be too short. 
Then, taking the boundary conditions about θ(t) into account, we plot the time dependence of θ(t) in Fig. 3(a,b) 
for the quantum state transfer and the entanglement generation, respectively, with an arbitrary tf. Without a 
doubt, Fig. 3(a,b) show that the boundary conditions with respect to θ(t) can be satisfied perfectly, and the time 
dependence of θ(t) is independent of tf. For the boundary condition μ(ti) =  μ(tf) =  0, we show it in Fig. 3(c,d) by 
plotting the time dependence of μ(t) with several different values of tf. Apparently, μ(ti) =  μ(tf) =  0 is always satis-
fied well with an arbitrary tf. The maximum values of |μ(t)|, however, always decrease with the increase of tf. 
Therefore, for |φd〉  population sin2μ(t) being small enough, the operation time we choose can not be too short.

For the high experimental feasibility of the scheme and a relatively small occupancy of |φd〉 , we preselect 
tf =  40/Ω0. Then with tf =  40/Ω0, in Fig. 4(a), we plot the fidelities of the dressed-state scheme as functions of the 
atom-cavity coupling strength g, where the fidelities are defined by F =  |〈 φideal|φ(t)〉 |2 with |φideal〉  =  |φ5〉  for the 
state transfer or φ φ φ= +( )ideal

1
2 1 5  for the entanglement generation. |φ(t)〉  is the state of the whole sys-
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tem. Because of the Zeno limit condition Ω′ Ω′ t t g( ), ( )A B , the fidelities increase with the increase of g/Ω0. 
However, as shown in Fig. 4(a), even when g =  4 Ω0 which does not strictly meet the Zeno limit condition, the 
fidelities are almost unit both for the quantum state transfer and the entanglement generation. Here we preselect 
g =  10 Ω0 to guarantee the scheme’s robustness. For checking the feasibility of the preselection tf =  40/Ω0, we plot 
the fidelities as functions with respect to tf in Fig. 4(b) with g =  10 Ω0, and Fig. 4(b) indicates that the preselection 
tf =  40/Ω0 is feasible and robust both for the quantum state transfer and the entanglement generation. Next, in 
Fig. 4(c), we plot the fidelities versus tf in the STIRAP scheme. Through the comparison between Fig. 4(b,c), we 
know that the operation time in the dressed-state scheme is just around 1/10 of that in the STIRAP scheme when 
the fidelities reach near 1, which indicates that the dressed-state scheme can greatly speed up the adiabatic 
two-atom quantum state transfer and entanglement generation.

Discussion of effectiveness. In this subsection, in order to show the effectiveness of the dressed-state 
scheme, in Fig. 5, we show the time dependence of the populations of the states |φ1〉  and |φ5〉  and the residual 
errors ε(t) =  1 −  |〈 φideal|φ(t)〉 |2 of the quantum state transfer and the entanglement generation, respectively. As 
shown in Fig. 5(a,c), the dressed-state scheme achieves the perfect desired population transfer both for the quan-
tum state transfer and the entanglement generation, but the STIRAP scheme can not perfectly achieve the quan-
tum state transfer or the entanglement generation. Correspondingly, in Fig. 5(b,d), the dressed-state scheme leads 
to a reduction of the residual errors by over four orders of magnitude at the final time both for the state transfer 
and the entanglement generation. Therefore, there is no doubt that the dressed-state scheme is highly feasible and 
effective even within a very short operation time.
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Discussion of robustness. In the above discussion, we think the operations and the whole system perfect 
and absolutely isolated from the environment. Therefore, it is necessary to give the discussions about the robust-
ness of the scheme against the variations in the parameters and decoherence induced by the atomic spontaneous 
emissions and photon leakages from the cavity.

We first consider the robustness of the scheme against variations in the parameters of the pulse sequences by 
plotting the fidelity versus the variations in the pulses time tf and amplitude Ω0 in Fig. 6(a) for the two-atom state 
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transfer based the dressed-state scheme. Here we define δx =  x′  −  x as the deviation of x, in which x denotes the 
ideal value and x′  denotes the actual value. From Fig. 6(a), we learn that the fidelity slightly decreases with the 
increasing amplitude Ω0. It is clear that the increase of Ω0 causes the increase of the modified pulses’ amplitudes, 
and thus, to a certain extent, the Zeno limit condition will be spoiled. While simultaneously we can also see that, 
the longer tf is, the higher the fidelity is. The reason can be deduced from Fig. 2 that when the operation time 
increases, the amplitudes of the modified pulses will decrease, and thus the Zeno limit condition will be met 
more strictly. Taking one with another, however, the fidelity always keeps near F =  1, and hence the dressed-state 
scheme have the extremely high robustness against the variations in tf and Ω0. Analogously, the entanglement 
generation has a similar situation. Dissimilarly, however, the condition sin θ(tf) =  cos θ(tf) (i.e., θ(tf) =  π/4) in 
Eq. (11) is very critical for the maximum entanglement generation. Therefore, we are supposed to consider the 
effect of the variations in θ(tf) on the fidelity. We plot the fidelity versus the variations in tf and θ(tf) in Fig. 6(b) 
for the entanglement generation based on the dressed-state scheme. To all appearances, in Fig. 6(b), the effect of 
the variations in θ(tf) on the fidelity is far greater than that of the variations in tf. But even so, the fidelity can keep 
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Figure 8. (a,c): The fidelities as functions of g/Ω0 and κ/Ω0 with tf =  40/Ω0 and γ =  0; (b,d): the fidelities as 
functions of Ω−t /f 0

1 and γ/Ω0 with g =  10 Ω0 and κ =  0. Other parameters used here are the same as in Fig. 2.
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quite high even when |δθ(tf)/θ(tf)| =  0.1. To sum up, the dressed-state scheme are robust against variations in the 
parameters of the pulse sequences.

Next, we take the decoherence induced by the atomic spontaneous emissions and the photon leakage from the 
cavity into account. Then the whole system is dominated by the master equation

∑ ∑
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κ ρ ρ ρ

= −

− − +

− − +
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where = ∑ Ω′ + + . .=H t t g a( ) ( ( ) 2 0 2 1 ) H cj j j j jtotal
mod

A,B ; γi
j is the spontaneous emission rate of jth atom 

from the excited state |2〉 j to the ground state |i〉 j; κ denotes the photon leakage rate from the cavity; σ = m nmn
j

j
. 

For simplicity, we assume γ γ=i
j . By means of the master equation, we plot the fidelities for the state transfer and 

the entanglement generation versus κ/Ω0 and γ/Ω0 in Fig. 7. Firstly, in Fig. 7, we can see that the fidelities for the 
state transfer and the entanglement generation are over 0.95 and 0.985, respectively, even when κ =  γ =  0.1 Ω0. 
Without a doubt, the dressed-state scheme for the state transfer or the entanglement generation is robust against 
the decoherence induced by the atomic spontaneous emissions and the photon leakage from the cavity. In addi-
tion, as seen from the decrease of the fidelities with the increases of κ and γ in Fig. 7, we learn that the influence 
of the atomic spontaneous emissions on the fidelity is obviously greater than that of the photon leakages from the 
cavity. Even in Fig. 7(a), for the state transfer, the influence of the atomic spontaneous emissions on the fidelity 
almost plays a full role, but that of the photon leakages from the cavity is little. It follows that the dressed-state 
scheme we propose has the robustness against the photon leakages from the cavity more than the atomic sponta-
neous emissions.

We have chosen the Zeno limit condition Ω′ Ω′ t t g( ), ( )A B  to restrain the population of the cavity-mode 
excited state |φ3〉 . Besides, we have known that the increase of the operation time tf leads to the decrease of  
|μ(t)|max from Fig. 3(b), and thus leads to the decrease of |φd〉  population sin2μ(t). Therefore, the influence of the 
photon leakages from the cavity and the atomic spontaneous emissions on the fidelity should be restrained by a 
bigger g and a longer tf, respectively. Based on this, we plot the fidelities as the functions with respect to g and κ in 
Fig. 8(a,c) for the state transfer and the entanglement generation, respectively. Clearly, when the photon leakages 
from the cavity exist, a bigger value of g can greatly depress the influence of the photon leakages from the cavity 
on the fidelities. In Fig. 8(b,d), we plot the fidelities as the functions with respect to tf and γ for the state transfer 

Figure 9. (a,c): The fidelities versus κ/Ω0 and the variations in g with γ =  0; (b,d): the fidelities versus γ/Ω0 and 
the variations in tf with κ =  0. The parameters used here are the same as in Fig. 5.
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and the entanglement generation, respectively. Also clearly, when the atomic spontaneous emissions exist, the 
influence of the atomic spontaneous emissions on the fidelities can be restrained by a longer tf. Nevertheless, for 
the experimental feasibility and the efficiency of the scheme, we pick an appropriate pair of values g =  10 Ω0 and 
tf =  40/Ω0.

Experimentally, it is too hard to have the theoretically predicted values of the parameters. Therefore, in Fig. 9, 
we give the numerical simulations to discuss the joint effects of the photon leakages from the cavity and the 
variations in the atom-cavity coupling strength g =  10 Ω0 and those of the atomic spontaneous emissions and 
the variations in the operation time tf =  40/Ω0 on the fidelities. Figure 9(a,c) also indicate that when the photon 
leakages from the cavity exist, a bigger value of g can greatly depress the influence of the photon leakages from the 
cavity on the fidelities. Although either κ or the variations in g can not be controlled in experiment, the fidelities 
are over 0.99 even under the terrible condition {δg/g =  − 0.1, κ =  0.1 Ω0}. Figure 9(b,d) show that the fidelities are 
almost not affected by the variations in tf =  40/Ω0 whenever the atomic spontaneous emissions exist or not. In 
other words, the dressed-state scheme are extremely robust against the variations in the chosen operation time. In 
addition, once the operation time is determined, the effects of the atomic spontaneous emissions on the fidelities 
are independent on the variations in the operation time.

Conclusion
In conclusion, we have developed the dressed-state method to speed up the adiabatic quantum state transfer and 
entanglement generation between two Λ -type atoms trapped in an optical cavity. There is no a direct coupling of 
the target state and the initial state appearing in the Hamiltonian. The pulses are modified with the high experi-
mental feasibility. During the whole evolution, the adiabatic condition is not necessary to be met, and thus even 
within a very short operation time, the state transfer and the entanglement generation can be achieved with quite 
high fidelities. The introductions of the Zeno limit condition and the auxiliary function G(t) restrain the popu-
lations of all of the excited states and hence the scheme is robust against the decoherence induced by the atomic 
spontaneous emissions and the photon leakage from the cavity. Besides, the results of the numerical simulations 
show that the dressed-state scheme is robust against the variations in the chosen parameters.

Based on ref. 46, by using cesium atoms and a set of cavity-QED predicted parameters (g, κ, γ)/2π =  (750, 
3.3, 2.62) MHz, we can achieve the two-atom quantum state transfer and maximum entanglement generation 
with the fidelities F =  0.985 and F =  0.996, respectively. Therefore, it allows us to construct an atomic system for 
the quantum state transfer and the entanglement generation in the presence of decoherence. In a word, by using 
dressed states, we have implemented the fast, feasible and robust two-atom adiabatic quantum state transfer and 
entanglement generation. In the further work, it could be interesting to apply the dressed-state method to more 
complex systems for preparing more complex entanglement and constructing quantum gates.
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