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Tenofovir Inhibits Wound Healing 
of Epithelial Cells and Fibroblasts 
from the Upper and Lower Human 
Female Reproductive Tract
Marta Rodriguez-Garcia, Mickey V. Patel, Zheng Shen, Jack Bodwell, Richard M. Rossoll & 
Charles R. Wira

Disruption of the epithelium in the female reproductive tract (FRT) is hypothesized to increase HIV 
infection risk by interfering with barrier protection and facilitating HIV-target cell recruitment. Here we 
determined whether Tenofovir (TFV), used vaginally in HIV prevention trials, and Tenofovir alafenamide 
(TAF), an improved prodrug of TFV, interfere with wound healing in the human FRT. TFV treatment of 
primary epithelial cells and fibroblasts from the endometrium (EM), endocervix (CX) and ectocervix 
(ECX) significantly delayed wound closure. Reestablishment of tight junctions was compromised in EM 
and CX epithelial cells even after wound closure occurred. In contrast, TAF had no inhibitory effect on 
wound closure or tight junction formation following injury. TAF accumulated inside genital epithelial 
cells as TFV-DP, the active drug form. At elevated levels of TAF treatment to match TFV intracellular 
TFV-DP concentrations, both equally impaired barrier function, while wound closure was more sensitive 
to TFV. Furthermore, TFV but not TAF increased elafin and MIP3a secretion following injury, molecules 
known to be chemotactic for HIV-target cells. Our results highlight the need of evaluating antiretroviral 
effects on genital wound healing in future clinical trials. A possible link between delayed wound healing 
and increased risk of HIV acquisition deserves further investigation.

The global HIV pandemic is now in its third decade with 36.7 million living with HIV in 20151. On a worldwide 
basis, young women aged 15–24 are most vulnerable to HIV infection, with sexual intercourse the predominant 
mechanism for HIV transmission. Young women are particularly vulnerable to HIV infection, with rates 2-fold 
higher than young men on a worldwide basis and 8-fold higher in Sub-Saharan Africa2.

Overlapping the prevalence of HIV infection worldwide is the pandemic of sexual violence against women. In 
the USA and Africa, 23–37% of girls and women experience sexual abuse with 80% of victims younger than 30 
years of age3. Not widely appreciated is the high frequency of genital injury that occurs with sexual intercourse4. 
In a recent study, 55% of women examined following consensual intercourse had at least 1 anal-genital injury5, 
with 50% of women showing internal genital injuries. A recent meta-analysis of 16 countries showed that Intimate 
Partner Violence, frequently associated with genital violence, is significantly associated with HIV infection6. In 
addition to injuries in the lower tract due to sexual intercourse, different causes can induce epithelial disruption 
in the upper tract, including cervical ectopy7, menstruation or ascending infections. While it is generally assumed 
that HIV reaches target cells through breaches in the epithelium, little is known about the factors that influence 
the repair process of the mucosal barrier following disruption.

Topical or oral administration of antiretrovirals (ARVs) is one of the current interventions under investigation 
for preventing HIV infection in women. Oral administration of tenofovir disoproxil fumarate in combination 
with emtricitabine is recommended for use as pre-exposure prophylaxis (PrEP) in people at high risk for HIV 
acquisition8, after efficacy was demonstrated in several trials9–11. However, clinical trials involving only women 
have been ineffective in preventing HIV acquisition, and showed lower concentrations of TFV in plasma12,13. 
Of three trials conducted in Africa to test the efficacy of topical TFV (CAPRISA 004, FACTS and VOICE), only 
CAPRISA 004 showed significant but moderate protection against HIV acquisition12,14. While compliance is 
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a major factor accounting for these mixed results15, the contribution of other biological factors remains to be 
investigated.

Recently, a new pro-drug of TFV, Tenofovir alafenamide (TAF; formerly known as GS-7340), with increased 
efficacy and reduced toxicity was approved for HIV treatment16. In addition, the recognition that TAF preferen-
tially targets lymphoid tissues and HIV susceptible cells when compared to TFV17,18, raises the likelihood that it 
will be part of the next generation of ARVs used in the global prevention of HIV19.

Inside the cells, TFV and TAF are enzymatically converted to TFV diphosphate (TFV-DP), which is the active 
drug form with anti-HIV activity, with TAF reaching higher intracellular levels than TFV16. We have previously 
demonstrated that TFV treatment of FRT cells results in TFV-DP accumulation in epithelial cells and fibroblasts 
throughout the FRT, with concentrations several fold higher than immune cells20. In addition, we demonstrated 
that TFV stimulates the secretion of proinflammatory cytokines by epithelial cells, fibroblasts and immune cells 
from the FRT21. However, effects of TAF on primary genital epithelial cells have not been evaluated.

To date, genital trauma (present after consensual and non-consensual sex) has not been considered as a con-
founding factor in the success or failure of microbicide clinical trials designed to prevent HIV acquisition. Since 
TFV clearly accumulates in and stimulates the secretion of cytokines and chemokines by epithelial cells and 
fibroblasts from the FRT20,21, here we investigate the possible effects of TFV and the new pro-drug TAF on wound 
healing in the human FRT. Using an in vitro scratch wound model, we report that at clinically relevant concen-
trations TFV, but not TAF, suppress wound healing of primary FRT epithelial cells and fibroblasts. This discovery 
suggests that beyond their anti-HIV effects, some ARVs may compromise wound healing, a key determinant in 
immune protection, thereby extending the time of tissue immune cell exposure to HIV. Our findings highlight 
the importance of evaluating ARV interference with wound healing for future clinical trials to identify the right 
ARVs and doses that will not compromise mucosal immune protection or interfere with wound healing while 
maintaining anti-HIV activity.

Methods and Materials
Study Subjects.  Reproductive tract tissues from the endometrium (EM), endocervix (CX) and ectocervix 
(ECX) were obtained from 28 women undergoing hysterectomy surgery at Dartmouth-Hitchcock Medical Center 
(Lebanon, NH). Women were aged between 28 and 58 years old. All tissues used in this study were distal from 
the sites of pathology and were determined to be unaffected with disease upon inspection by a pathologist. All 
investigations were conducted according to the principles expressed in the Declaration of Helsinki and carried 
out with the approval from the Committee for the Protection of Human Subjects (CPHS), Dartmouth Hitchcock 
Medical Center, and with written informed consent obtained from the patients before surgery.

Isolation of Epithelial Cells and Fibroblasts.  Tissues were minced under sterile conditions into 
1 to 2 mm fragments and enzymatically digested using a mixture consisting of 0.05% collagenase type IV 
(Sigma-Aldrich, St Louis, MO) and 0.01% DNAse (Worthington Biochemical, Lakewood, NJ) for 1 hr at 37 °C as 
described before20. After enzymatic digestion, cells were dispersed through a 250 μ​m mesh screen (Small Parts, 
Miami Lakes, FL), washed, and resuspended in Hank’s Balanced Salt Solution (HBSS) (Thermo Fisher, Logan, 
UT).

Epithelial cell sheets (containing glands and luminal cells in variable proportions) were separated from stro-
mal fibroblasts by filtration through a 20 μ​m nylon mesh filter (Small Parts) as previously described20–22. Epithelial 
sheets were retained on the 20 μ​m filter, while the stromal fraction containing the fibroblasts, passed through 
and collected as part of the filtrate. Epithelial sheets were recovered by rinsing and backwashing the filter with 
DMEM/F12 (Thermo Fisher), centrifuged (500 x g, 10 min), and analyzed for cell number and viability.

Epithelial cell culture.  Isolated sheets of EM, CX and ECX epithelial cells were plated in 0.4 μ​m 24-well plate 
transwell inserts (Corning Life Sciences, Tewksbury, MA) and grown in defined media consisting of DMEM/
F12 (Thermo Fisher) supplemented with NuSerum (Corning Life Sciences), Hyclone Defined FBS (GE Life 
Sciences, Logan, UT), Penicillin-Streptomycin (Thermo Fisher), L-Glutamine (Thermo Fisher) and HEPES (GE 
Life Sciences). EM and CX epithelial cells were grown to confluence and allowed to polarize as determined by 
transepithelial resistance (TER) of greater than 1000 ohms/cm2 per insert. TER was measured using an EVOM 
electrode and Voltohmmeter (World Precision Instruments, Sarasota, FL). Only polarized preparations of EM 
and CX epithelial cells were used in our studies. ECX epithelial cells, being squamous in phenotype, do not polar-
ize and were grown to confluence on transwell inserts prior to treatment. 24 h before tenofovir (TFV) or tenofovir 
alafenamide (TAF) treatment, cells were transferred in to stripped media. Stripped media was DMEM/F12 sup-
plemented with stripped FBS (Gemini Bio-Products, West Sacramento, CA), Penicillin-Streptomycin (Thermo 
Fisher), L-Glutamine (Thermo Fisher), and HEPES (GE Life Sciences).

Stromal Fibroblast cell culture.  Stromal cell suspensions from the EM, CX and ECX were cultured in T-75 
flasks (Corning Life Sciences) in stromal defined media consisting of DMEM/F12 (Thermo Fisher) supplemented 
with Hyclone Defined FBS (GE Life Sciences), Penicillin-Streptomycin (Thermo Fisher), L-Glutamine (Thermo 
Fisher) and HEPES (GE Life Sciences). Once cells reached confluence they were passaged using trypsin-EDTA 
and grown to confluence again. After 2–3 passages, a purified population of stromal fibroblasts remained that is 
characterized as vimentin+​, CD90+​, CD45− and EpCam- (not shown).

Tenofovir and Tenofovir Alafenamide treatment.  Tenofovir (TFV) was obtained from the AIDS 
Research and Reference Reagent Program (NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH: 
Tenofovir, catalog number 10199). TAF was kindly supplied by Gilead Sciences Inc. (Foster City, CA). A stock 
concentration of TFV (5 mg/ml) was prepared by adding 1 ml of PBS to 5 mg of TFV powder before being diluted 
in stripped media to the appropriate working concentration20,21. Tenofovir Alafenamide (TAF) was dissolved in 
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PBS at 10 mM, sterilely filtered (0.2 μ​m) and the concentration checked by absorbance using a molar extinction 
coefficient of 11,690 at 260 nm. Subsequent dilutions were made in media to the final concentrations. TFV or TAF 
were added to epithelial cells or fibroblasts for 24 h prior to scratch and maintained in the culture media through-
out each experiment. Untreated control cells were donor-matched to treated cells and scratch and assessment of 
wound healing was done in parallel. Cell viability was tested after treatment using the CellTiter 96 AQueous One 
Solution cell proliferation assay (Promega, Madison, WI, USA) and trypan blue staining (HyClone Laboratories, 
Inc., Logan, UT) as described before21 and no changes in viability were found.

Determination of intracellular TFV-DP levels.  After 24 h treatment with TFV or TAF, epithelial cells 
were harvested and lysed in 300 μ​l of 70% methanol, and stored immediately at −​80 °C prior to TFV-DP evalua-
tion as previously described20,23. Intracellular TFV-DP concentrations were measured by liquid chromatography 
with tandem mass spectrometry (LC-MS/MS) and normalized for cell count.

Scratch Assay.  Confluent monolayers of epithelial cells in transwell inserts and stromal fibroblasts in 24-well 
plates were scratched using a 20 μ​l pipette tip attached to a wooden handle. This allows for scratches of consistent 
width and length. Scratch width and TER was measured immediately afterwards and at regular intervals as noted 
in the Results. Plates were marked immediately after scratch to ensure that scratches were measured at the same 
location throughout each experiment. Cell proliferation was determined using the CellTiter Aqueous One cell 
proliferation assay (Promega Corporation, Madison, WI) according to the manufacturer’s instructions.

Wound healing visualization.  To visualize the wound healing process, epithelial cells from the EM and 
the ECX were plated in 96-well plates and scratched as described above. Immediately after scratch, plates were 
inserted in the IncuCyte Zoom system (Essen Bioscience, Ann Arbor, MI) to acquire images. Serial images were 
taken every two hours for EM epithelial cells and every 15 min for ECX epithelial cells, for a 24–48 h period with 
a 10X objective. Images were compiled to generate movies.

Measurement of acute responses.  EM epithelial cells were treated with TFV or TAF for 24 h, washed and 
scratched and cell culture media collected 3 h following scratch. Five different molecules known to have anti-HIV 
activity were evaluated in culture supernatants using a custom microsphere multiplex assay described previ-
ously24,25. Briefly, commercially available antibody pairs were alternatively coupled to fluorescently-coated mag-
netic beads to capture analytes for elafin, HBD2, RANTES (CCL5), and MIP-3α​ (CCL20) and SDF-1 (CXCL12). 
ENA-78 (CXCL5) was measured using an ELISA assay kit (R&D, Minneapolis, MN USA) according to the man-
ufacturer’s instructions.

Statistics.  Data analysis was performed using the GraphPad Prism 5.0 (GraphPad Software, La Jolla, CA). A 
two sided P value <​ 0.05 was considered statistically significant. Comparison of treatment groups vs. control group 
was performed applying Mann-Whitney U test for non-matched samples or Wilcoxon matched-pairs signed rank 
test for matched samples. Comparison of three or more groups was performed applying Kruskal-Wallis test for 
non-matched samples or Friedman test for matched samples, followed by Dunns-post test for multiple com-
parison correction. Dose-response time-course studies were analyzed using two-way ANOVA with Bonferroni 
post-test for multiple comparison correction.

Results
In vitro scratch assay model for wound healing in the FRT.  To examine the mechanisms involved in 
trauma-induced wound repair of the FRT mucosal barrier, which is essential for re-establishing homeostasis and 
suppressing mucosal inflammation, we developed an in vitro system using primary epithelial cells and stromal 
fibroblasts from the upper (endometrium (EM) and endocervix (CX)) and lower FRT (ectocervix (ECX)). As 
seen in Fig. 1a, EM epithelial cells were grown to confluence on transwell inserts until they polarized and formed 
tight junctions, as detailed in Methods (1a, top left). Epithelial cell monolayers were uniformly scratched using 
a pipette tip applicator. The width of the wound was determined by tip size (Top middle panel: wound area is 
between the white lines). This approach was used to culture cells from CX and ECX (not shown). Primary fibro-
blasts were grown to confluence in 24 well plates (1a, bottom left) and scratched as described above (Bottom 
middle panel). Partial healing takes place by 24 h after scratch for epithelial cells and fibroblasts (top and bottom 
right panels respectively). Supplementary movie 1 shows wound closure of EM epithelial cells for 48 h following 
scratch.

High doses of TFV inhibit wound healing by epithelial cells in the FRT.  Recognizing that high 
doses of TFV are applied topically into the vagina in clinical trials to prevent HIV infection14, we asked whether 
TFV might influence barrier function and wound healing in the FRT. Using TFV at a concentration comparable 
to vaginal concentrations used in topical microbicide trials14, we incubated polarized EM epithelial cells with 
TFV (1 mg/ml; 3277 μ​M) for 24 h prior to injury. As seen in Fig. 1b, pretreatment with TFV had no effect on 
epithelial integrity measured as TER in the 24 h prior to scratch. However, following mechanical injury, TFV 
treatment blocked the re-establishment of tight junctions at 24 and 48 h, while traumatized-untreated control 
cells returned to pre-scratch TER levels by 48 h. Analysis of epithelial cells from different women (N =​ 6) demon-
strated that TER recovery after scratch of TFV-treated cells was significantly decreased compared to untreated 
controls both at 24 and 48 h (Fig. 1c). TFV treatment also delayed wound closure, measured as the width of each 
scratch after 24 h (Supplementary movies 2 and 3). In all cases (Fig. 1d), closure was incomplete at 24 h (N =​ 5) 
but most often complete by 48 h (not shown). These findings indicate that TFV delays both wound closure and the 
re-establishment of barrier function measured as TER.
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Figure 1.  The effect of TFV on wound healing of uterine epithelial cells and fibroblasts in culture. (a) 
Sample images of in vitro wound healing model. Epithelial cells (top left panel) or fibroblasts (bottom left) 
were grown to confluence on inserts or 24 well plates respectively, as detailed in Methods. Cells were scratched 
(middle top and bottom panels, white lines indicate the margin of the wound) and wound closure measured. 
Right top and bottom panels show partial healing that takes place after 24 h. (b) Time course of the effect of 
TFV inhibition of uterine epithelial cells TER and wound closure following scratch. TER and scratch width 
measurements of polarized cultures of EM epithelial cells incubated with TFV (1 mg/ml; 3277 μ​M) 24 h before 
scratch and 2 h, 24 h and 48 h after scratch. Representative example of TER values (b) and normalized data to % 
of Pre-scratch TER values (c) in experiments using epithelial cells from 6 patients at 24 h and 48 h after scratch. 
(d) % of wound closure for epithelial cells from 5 patients at 24 h post scratch. Each circle represents a different 
patient. The mean and SEM are shown. *p <​ 0.05. (e) Dose response of the effect of TFV on inhibition of uterine 
epithelial cell TER. TER was measured for polarized EM epithelial cells incubated with increasing doses of TFV 
(1 μ​g/ml up to 1 mg/ml) for 24 h before scratch and 2 h, 24 h and 48 h following scratch. One representative 
example of three independent experiments with 3 different donors. The mean and SEM are shown from 
triplicate cultures of cells from a representative patient. ***p <​ 0.001.
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Recognizing that the concentrations of TFV that reach the upper tract may be lower than those found in the 
lower tract, and also that TFV makes contact with the genital mucosa and is diluted when it mixes with secretions, 
we performed dose response experiments to examine the impact of lower concentrations on EM epithelial cells 
wound closure. As seen in Fig. 1e, incubation of EM epithelial cells with TFV at concentrations ranging from 1 
to 100 μ​g/ml had no effect on TER (1e) or wound closure (not shown) at 24 and 48 h post scratch. Of those con-
centrations tested, only TFV at 1 mg/ml (3277 μ​M) interfered with TER recovery and wound closure relative to 
controls. Based on the findings of others that topical microbicide trials with TFV result in vaginal concentrations 
close to 1 mg/ml14, our findings suggest that wound healing at lower concentrations, assuming these doses are 
effective in preventing HIV acquisition, would not interfere with trauma-related wound healing. Of note, 1 μ​g/ml 
was the threshold for HIV protection in CAPRISA 00426.

Tenofovir Alafenamide (TAF) at clinical oral doses does not affect wound healing by epithelial 
cells from the FRT.  Using the same protocols described above for TFV, epithelial cells from the EM were 
pretreated (24 h) with a clinically relevant concentration of TAF (1 μ​g/ml, 2 μ​M), as determined in plasma after 
oral administration27, prior to scratch trauma and then monitored for wound healing. Plasma concentrations 
were chosen because TAF has only been tested orally and mucosal concentrations of TAF in the FRT are under 
investigation. As seen in Fig. 2, side by side comparison of TFV (1 mg/ml, 3277 μ​M) and TAF (1 μ​g/ml, 2 μ​M) 
showed no effect of TAF on TER (2a and 2b) and wound closure at 24 h (2 c), in contrast to TFV inhibition of 
epithelial cell recovery.

Recognizing that TAF may be used topically in future trials, we examined the effect of increasing concentra-
tions of TAF on wound healing. As shown in Fig. 2d and e, when polarized EM epithelial cells were treated with 
TAF concentrations ranging from 2 to 8 μ​M, only the highest concentration (4 μ​g/ml, 8 μ​M; 4-fold higher than 
the plasma levels reached after oral administration) significantly interfered with wound closure and recovery of 
TER. These findings suggest that concentrations greater than those used orally might compromise wound healing 
in the FRT.

TFV, but not TAF, impacts wound healing of epithelial cells from the endocervix and ectocervix.  
Recognizing that genital injury due to sexual intercourse would mainly affect the lower FRT rather than the 
endometrium, and that topical TFV administration would reach maximal concentrations in the lower tract, we 
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Figure 2.  Influence of TFV and TAF on wound healing and recovery of barrier protection by epithelial 
cells from the uterus. (a) TER measurements from polarized uterine epithelial cells incubated with TFV (1 mg/
ml; 3277 μ​M; black circles) or TAF (1 μ​g/ml; 2 μ​M; white circles) for 24 h prior to scratch and at 2 h, 24 h and 
48 h after scratch. (b) Data normalized to % of Pre-scratch TER values from 3 patients at 24 h and 48 h after 
scratch. (c) % of wound closure (Scratch width measurements) from 3 patients at 24 h after scratch. Each circle 
represents a different patient. The mean and SEM were shown. *p <​ 0.05. **p <​ 0.01. ***p <​ 0.001. (d) Effect 
of increasing concentrations of TAF (1 μ​M up to 8 μ​M) on uterine epithelial cell TER. Representative of three 
independent experiments with 3 different donors. The mean and SEM are shown from triplicate cultures. 
***p <​ 0.001. (e) % of wound closure at 24 h after scratch of epithelial cells treated with TAF (2 μ​M or 8 μ​M). 
Each dot represents a different patient (N =​ 5). *p <​ 0.05.
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next determined whether TFV has a similar effect on epithelial cells from the endometrium (EM), endocervix 
(CX) and ectocervix (ECX). Endocervix was also included in this analysis to model cervical ectopy, a common 
condition in women during adolescence, pregnancy and contraceptive use that is prone to injury and bleeding7.

Match comparisons of the 3 sites were performed by isolating epithelial cells from EM, CX and ECX from the 
same patient (Fig. 3a). Epithelial cells from these three anatomical compartments were grown to confluence on 
cell inserts, treated with TFV (1 mg/ml; 3277 μ​M) for 24 h, scratched and measured for wound closure at 24 h as 
described above. As shown in Fig. 3a, incubation with TFV inhibited wound closure of FRT epithelial cells rela-
tive to control cells, irrespective of their site of origin. Wound healing delay was confirmed in endocervical tissues 
from 5 different women and ectocervical tissues from 3 women (Fig. 3b and supplementary movie 4).

We also evaluated the effect of TAF on wound healing by epithelial cells from CX and ECX. As seen in Fig. 3c, 
treatment with TAF (1 μ​g/ml, 2 μ​M) for 24 h prior to scratch had not effect on wound closure of CX (N =​ 2) or 
ECX (N =​ 2) epithelial cells.

As a part of these studies, we found that TER recovery by CX epithelial cells, which are known to form tight 
junctions, failed to return to control values at 48 h in the presence of TFV. Similar to that seen with EM epithelial 
cells (Fig. 2a), TAF treatment had no effect on CX epithelial cell TER recovery (not shown).

Dose dependent inhibition of stromal fibroblast wound closure by TFV and TAF.  Since genital 
trauma often breaches the epithelial lining and extends into the underlying tissue, we explored whether TFV 
might also impact the healing process of stromal fibroblasts. Matched fibroblasts were isolated from different FRT 
sites (EM, CX and ECX) from the same patient, grown to confluence, and treated with TFV (1 mg/ml; 3277 μ​M) 
for 24 h prior to scratch. As shown in Fig. 4a, TFV treatment inhibited wound healing of fibroblasts from the EM, 
CX and ECX relative to untreated control cells at 24 and 48 h.

To more fully define the responsiveness of fibroblasts to TFV, dose response studies were undertaken using 
EM fibroblasts. We found that TFV at 1 mg/ml (3277 μ​M) significantly inhibited wound closure at 24 and 48 h 
post scratch (Fig. 4b). There was also a trend for 100 μ​g/ml (327.7 μ​M) of TFV to inhibit wound healing (p =​ 0.06).

To determine whether TAF interferes with wound healing of stromal fibroblasts, dose response experiments 
were carried out in which cells were incubated with increasing concentrations of TAF (1–8 μ​M; 0.5–4 μ​g/ml) for 
24 h prior to scratch. As seen in Fig. 4c (24 and 48 h), TAF at 1–4 μ​M (0.5–2 μ​g/ml) had no effect on fibroblast 
wound healing. Significant inhibition of closure was observed at 8 μ​M, which is the same concentration at which 
impairment of epithelial cell closure following injury was observed (Fig. 3d).

Comparable intracellular TFV-DP levels result in equal inhibition of barrier function but differ-
ential wound closure by TFV and TAF.  Recognizing that the doses used in our study to compare TFV and 
TAF were very different, we performed additional experiments to compare equal doses of both drugs to accu-
rately assess their safety. Clinically, TAF is administered at lower doses than TFV, because intracellular conversion 
of TAF into TFV-DP is much more efficient than TFV16. Therefore, the same doses of these two drugs cannot 
be directly compared. Thus, to properly compare both drugs, we selected doses that provided equal amounts of 
intracellular TFV-DP.

First, we assessed intracellular concentrations of TFV-DP in genital epithelial cells following TFV and TAF 
treatment. EM epithelial cells were treated with different doses of TFV or TAF for 24 h and intracellular levels 
TFV-DP were determined by liquid chromatography with tandem mass spectrometry (LC-MS/MS) as described 
before20,23. As seen in Fig. 5a, TAF was more efficiently converted into TFV-DP than TFV, with lower drug doses 
resulting in equal levels of intracellular TFV-DP (36-fold difference). Using this data as a standard curve, we 
then calculated TFV and TAF doses that would result in equal amounts of intracellular TFV-DP to compare 
both drugs side by side (Supplementary Table 1). EM epithelial cells were then treated with these selected doses 

Figure 3.  Effect of TFV on EM, CX and ECX epithelial cell wound healing following scratch. (a) Confluent 
cultures of epithelial cells from EM, CX and ECX from the same patient were incubated with TFV (1 mg/ml; 
3277 μ​M) for 24 h prior to scratch with measurements taken at 24 h after scratch. The bars represent mean and 
SEM from triplicate cultures. *p <​ 0.05. **p <​ 0.01. (b) Decreased wound closure 24 h after scratch of TFV-
treated (1 mg/ml; 3277 μ​M) epithelial cells from CX (n =​ 5; circles) and ECX (n =​ 3; squares). (c) Lack of an 
effect of TAF (1 μ​g/ml; 2 μ​M) on endocervical (n =​ 2; circles) and ectocervical (n =​ 2; squares) epithelial cells. 
Each symbol represents a different patient. Mean is shown. **p <​ 0.01.
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Figure 4.  Effect of TFV and TAF on fibroblast wound healing. (a) Scratch width measurements were taken 
to assess wound closure using fibroblasts from EM, CX and ECX from the same patient. Fibroblasts were 
incubated with TFV (1 mg/ml; 3277 μ​M) for 24 h before scratch and 24 h and 48 h after scratch. % of wound 
closure is shown at 24 h and 48 h. The bars represent mean and SEM from triplicate cultures. *p <​ 0.05. (b) Dose 
response of TFV and TAF (c) inhibition of uterine fibroblasts wound healing following scratch. Scratch width 
measurements were determined for EM fibroblasts incubated with increasing concentrations of TFV (b) or TAF 
(c) for 24 h before scratch and 24 h and 48 h after scratch. Each circle represents a different patient (n =​ 5 for 
TVF and n =​ 4 for TAF). The mean and SEM were shown. *p <​ 0.05. **p <​ 0.01.
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for 24 h after which barrier function and wound closure were evaluated. As seen in Fig. 5b (TFV) and 5 c (TAF), 
regardless of the drug used, equal concentrations of intracellular TFV-DP resulted in equal impairment of TER 
recovery following scratch. For example, as determined in Fig. 5a, TAF =​ 5 μ​M and TFV =​ 1.8 mM would be 
expected to have intracellular concentrations of TFV-DP that for each are approximately 1.8 ×​ 106 fmol/million 
cells. Unexpectedly, as seen in Fig. 5d, wound closure was delayed to a greater extent with TFV than with TAF 
(TAF =​ 5 uM and TFV =​ 1.8 mM). These data suggest that not only intracellular TFV-DP but other additional 
factors may be responsible for the impairment in wound healing.

Overall, these findings reinforce the importance of ARV dosage and provides evidence that when TAF is con-
sidered for topical use, the amount delivered will be important given the possibility of toxic effects on epithelial 
cells at higher doses.

TFV but not TAF modifies the acute response of damaged epithelial cells from the FRT.  
Recognizing that wound healing is a multistep process28, we asked if acute responses to injury would be affected 
by TFV or TAF. Secretions from polarized endometrial epithelial cells were collected 3 h after scratch and analyzed 
for a combination of chemokines and antimicrobials: elafin, HBD2, MIP-3α​ (CCL20) and ENA-78 (CXCL5). 
These molecules were selected due to the roles they play in the acute wound healing and in innate immune protec-
tion28–30. As seen in Fig. 6a, each of the molecules were measurable in the apical compartment, with no detection 
in the basal compartment at 3 h post-scratch. When epithelial cells were incubated with TFV (1 mg/ml; 3277 μ​M) 
prior to scratch (Fig. 6a, black bars), HBD2 was significantly inhibited by TFV relative to controls, whereas there 
was a trend towards increased elafin secretion (P =​ 0.07) with no effect measured for CCL20 and CXCL5. In con-
trast, TAF (1 μ​g/ml; 2 μ​M) had no effect on any of the molecules analyzed. Following injury, HBD2 and CCL20, 
but not elafin or CXCL5, increased in response to epithelial cell scratch (Fig. 6, hatched bars). TFV pretreatment 
followed by scratch increased the secretion of elafin, CCL20 and CXCL5 relative to scratch controls. In contrast, 
TAF treatment only had a significant effect on the secretion of CXCL5, whereas other molecules were unaffected.

Since our data indicates that lower doses of TFV did not delay wound healing, we further investigated whether 
these doses had an effect on the secretion of antimicrobials. To evaluate low dose TFV, we selected 0.22 mg/ml 
(0.73 mM) of TFV, the dose that matches intracellular TFV-DP levels obtained after treatment with TAF (1 μ​g/
ml; 2 μ​M) (Fig. 5). We found that this dose of TFV (0.22 mg/ml; 0.73 mM) increased elafin production before and 
after scratch, but did not significantly modify HBD2, CCL20 (Fig. 6b) or ENA-78 (not shown). Given that TAF 
at this intracellular concentration had no effect on cytokine secretion, these findings indicate that TFV and TAF 
have separate and discrete effects even when intracellular levels of TFV-DP are the same.

Figure 5.  Comparison of intracellular TFV-DP levels in epithelial cells to evaluate TFV and TAF effects 
on barrier function and wound closure. (a) Measurement of intracellular TFV-DP levels in EM epithelial 
cells following incubation with different doses of TFV (black dots, minimum of n =​ 3 for each time point) or 
TAF (grey dots, n =​ 3 for each time point) for 24 h. (b and c) TER measurement of EM epithelial cells treated 
with selected doses of TFV (b) or TAF (c) that match intracellular concentrations of TFV-DP. Representative 
of 3 experiments with different donors. Dots represent the mean from triplicate cultures. ***p <​ 0.001. (d) % 
wound closure after treatment with matched doses of TFV (black bars) and TAF (grey bars). Bars represent 
mean ±​ SEM from 4 independent experiments with different donors. *p <​ 0.05. ***p <​ 0.001.
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Cell proliferation is not responsible for wound closure.  To determine whether epithelial cell and 
stromal fibroblast closure following injury involves cell proliferation, polarized epithelial cells and confluent 
fibroblasts were evaluated for changes in proliferation using the CellTiter Aqueous One cell proliferation assay. 
Relative to matched non-scratch controls, no changes in cell proliferation were detectable in response to trauma 
at 5 min, 6 h and 24 h post scratch (Supplementary Fig.1). Moreover, when proliferation was measured in the pres-
ence of TFV and TAF treated cells, proliferation was not affected (not shown). Visualization of the wound closure 
process with EM and ECX epithelial cells also suggests that closure is due to cell migration (Supplementary mov-
ies 1 and 4). Overall, these findings indicate that closure of epithelial cell wounds from the FRT are most likely due 
to rapid changes in cell migration rather than proliferation.

Discussion
In this study we demonstrate that high doses of TFV, equivalent to those used topically in HIV prevention trials, 
delay wound healing in response to mechanical injury of primary epithelial cells and fibroblasts from the human 
female reproductive tract (endometrium, cervix and ectocervix). In contrast, TAF, the new prodrug form of TFV, 
had no effect on wound healing at clinical relevant doses. To the best of our knowledge, our study is the first to 
report the deleterious impact of TFV on wound healing of human primary epithelial cells and underlying fibro-
blasts from the upper and lower FRT. Potential implications of wound healing delay for HIV acquisition deserve 
further investigation.

In the present study, we developed an in vitro model to replicate the wound healing process in the human FRT 
using primary epithelial cells and fibroblasts from the endometrium, endocervix and ectocervix. Studies with 
human primary cells are important, since cell lines, while informative, do not fully reproduce the characteristics 
of primary cells31,32. To the best of our knowledge, ours is the first study using primary cells from the human 
FRT to demonstrate that TFV interferes with closure of genital wounds. This effect was observed with epithelial 
cells and fibroblasts from both the upper and lower tract. Based on these findings, we speculate that TFV may 
impair the healing of both superficial wounds, in which only the epithelium is compromised, and deeper wounds 
where epithelium and underlying stroma are disrupted. This suggests that in women TFV treatment would delay 
the healing of genital injuries induced during sex, extending the possible interaction time between HIV and 
sub-epithelial target cells.

Our studies indicate that beyond wound closure, TFV interferes with the re-establishment of epithelial cell 
barrier function, measured as TER, both in the EM and CX. Reduced TER is known to correlate with loss of tight 
junction protection33. As demonstrated previously33, reduced TER creates a portal of entry for HIV and bacteria 

Figure 6.  Effect of TFV and TAF on acute secretion of chemokines and antimicrobials by polarized 
epithelial cells. (a) EM epithelial cells were treated with TFV (1 mg/ml; 3277 μ​M) or TAF (1 μ​g/ml; 2 μ​M), 
scratched and supernatants collected 3 h later and analyzed for the presence of elafin, HBD2, CCL20 and 
CXCL5. C: untreated control. Bars represent mean ±​ SEM from 3 independent experiments with 3 different 
donors run in triplicates. *p <​ 0.05. (b) EM epithelial cells treated with low dose of TFV (0.22 mg/ml), scratched 
and supernatants collected after 3 h. Graph shows fold increase in elafin, HBD2 and CCL20 compared to control 
(N =​ 3). *p <​ 0.05.



www.nature.com/scientificreports/

1 0SCIentIfIC REPOrTS | 7:45725 | DOI: 10.1038/srep45725

into the FRT tissues. Initiated by TNFα​ in response to HIV, HIV and bacteria remain infectious as they cross the 
epithelial barrier33. In other studies, we have previously shown that TFV induces TNFα​ secretion by FRT epi-
thelial cells21, which may potentially contribute to the failure in re-establishing tight junction barrier protection 
despite wound closure observed in the present study. Our findings suggest that in the presence of TFV, despite 
the achievement of wound closure, the protection of the epithelium in providing a selective tight barrier remains 
compromised. Thus, without measuring epithelial cell barrier function, closure of genital wounds alone may give 
a false measurement of restored protection.

Given recent evidence that the entire FRT is susceptible to HIV infection, from vagina to ovary34, loss of bar-
rier function by uterine epithelial cells might contribute to the risk of HIV infection in the upper tract. Previous 
data demonstrated that vaginal application of Nonoxynol-9 and universal placebo gel resulted in transcriptional 
up-regulation of inflammatory mediators in the ectocervix, endocervical canal and endometrium35. Taking into 
account the high doses of TFV applied vaginally (40 mg total at a concentration of 10 mg/ml)14 in HIV prevention 
trials, it is possible that TFV reaches the epithelial cells of the uterus in high enough concentrations to interfere 
with wound healing and/or inflammatory responses. In this context, although vaginal sex would not be likely 
to disrupt the endometrial epithelium, epithelial cell barrier protection after disruption due to physiological or 
pathological causes (i.e. menstruation, ulcers due to ascending infections and endometriosis) may be compro-
mised and increase the possibility of interactions between HIV and target cells.

Another finding in our study is that within 3 h of injury, TFV-treated EM epithelial cells increased the produc-
tion of several key chemokines/antimicrobials with cell recruitment properties (CCL20, Elafin and CXCL5). In 
contrast, HBD2, known to have potent anti-HIV activity36, was down-regulated by TFV in EM epithelial cells. In 
previous studies, we have shown induction of CCL20 in TFV-treated ECX epithelial cells21, however, more exten-
sive studies are needed to characterized antimicrobial and chemokine production in the ectocervix in response 
to injury. While some of the molecules increased by TFV in the present study possess anti-HIV activity in vitro 
in the micromolar range (i.e elafin and CCL20)29,30,37, doses in the nanomolar range or lower seem to be prefer-
entially chemotactic38,39. In particular, CCL20 is chemoattractant for Th17 cells, high susceptible targets for HIV 
infection40,41. Our results and those of others42 suggest that TFV creates a proinflammatory environment leading 
to the recruitment of HIV target cells at the wound site. If these findings are confirmed in vivo, then it implies that 
TFV creates an opportunity for HIV to infect at mucosal surfaces by both delaying wound healing and through 
chemotactic attraction of immune cells susceptible to HIV infection. However, since TFV is very efficient at 
preventing HIV-infection, further studies are needed to define the balance that exists between inconsistent adher-
ence to TFV use in clinical trials and delayed wound healing, considering the possibility that delayed wound heal-
ing and proinflammatory effects of immune cell recruitment might take precedence over the protective antiviral 
effects of TFV in some cases.

The recognition that TAF is a new TFV pro-drug with higher blood intracellular TFV-DP concentrations, 
lower plasma exposure (1/10th of the dose) and preferential targeting of lymphoid tissues, suggesting the like-
lihood of greater antiviral efficacy17,18,43, prompted us to analyze its possible impact on wound healing and 
chemokine/antimicrobial secretion. In contrast to TFV, TAF had no deleterious effects on wound closure or 
reestablishment of barrier function. This lack of an effect was observed for both epithelial cells and fibroblasts 
from upper and lower tract. Remarkably, TAF had little effect on the secretion of chemokines/antimicrobials, with 
secretion levels indistinguishable from untreated-control cells except for the increase in CXCL5.

Interestingly, the effects or lack thereof of both TFV and TAF were dose-dependent. TFV treatment did not 
interfere with wound healing at doses lower than those currently used in HIV prevention trials. Lower TFV doses 
tested that did not delay wound healing (1–100 μ​g/ml) in the present study, retain their antiretroviral effects  
in vitro18 and in vivo26, and had reduced proinflammatory effects, consistent with previous findings44. Meanwhile, 
TAF delayed wound healing at doses 4-fold higher than those used clinically, providing a wide range for inter-
ventions, but cautioning about epithelial toxicity at high doses. These results further reinforce the need for opti-
mization of dosing and administration patterns of ARVs prior to clinical trials. Our findings that TAF does not 
interfere with wound closure, barrier function or inflammatory responses, adds to the growing body of evidence 
that TAF may be suitable in the future for pre-exposure prophylaxis in women19,45. However, TAF has only been 
used orally for treatment and while oral administration of TAF protected macaques from SHIV acquisition fol-
lowing rectal challenge46, other studies indicate that female genial tissue levels of TAF after oral administration in 
women were low47. Further studies are needed to determine correlations between oral TAF and genital tissue drug 
concentrations and possible topical administration before TAF can be adopted for pre-exposure prophylaxis.

The mechanism by which TFV but not TAF interferes with epithelial and stromal fibroblast wound healing 
remains to be determined. Wound closure may involve migration, proliferation or a combination of both48,49. 
Consistent with previous publications indicating that small wounds close by cell migration and not prolifera-
tion48, our findings suggest that wound closure and TFV inhibition of wound closure occurs without cell prolif-
eration. Of equal importance is the recognition that both TFV and TAF are converted to TFV-DP inside the cells. 
Our results demonstrate that comparable intracellular concentrations of TFV-DP from TFV or TAF have the 
same effects on TER, suggesting that TFV-DP concentrations influence barrier function. However, wound closure 
was more sensitive to the effects of TFV than TAF, suggesting that the mechanism for delayed wound closure is 
related to TFV itself in addition to TFV-DP.

Consistent with our findings of TFV impaired wound healing is a recent paper demonstrating that rectal 
1% TFV gel application results in marked alterations in epidermal cell proteomics50. Proteins affected by TFV 
included those involved in extracellular matrix, tissue remodeling, epidermal growth and differentiation, tight 
junctions and cellular stress pathways50. Since wound healing of anal injuries is beyond the scope of our present 
study, future research is needed to investigate if TFV affects wound healing after anal intercourse. To what extent 
these multiple pathways, all of which are important for wound healing and barrier function, are compromised by 
TFV in the FRT remains to be determined.
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Due to the lack of awareness of the high incidence of genital injuries resulting from consensual and 
non-consensual sex51, HIV prevention trials have not considered the potential impact of genital trauma as 
an independent risk factor for HIV acquisition. Moreover, evaluation of genital trauma in large clinical trials 
designed to prevent HIV acquisition is complicated due to numerous factors52. For example, superficial wounds 
induced with sexual intercourse heal within 24–48 h4,53. Pelvic examinations during CAPRISA 004, were per-
formed quarterly, which would preclude identifying genital injuries related to sexual intercourse and TFV use. 
Superficial injuries can also be inflicted by tampon use or ARV applicators54, adding to the complexity of the eval-
uation. In addition, non-consensual sex or intimate partner violence is frequently under reported and associated 
with lower adherence to ARV and medications in general55. While genital ulcers and lesions have been described 
with TFV gel use54, the majority of adverse events involving the genitourinary tract observed during clinical trials 
were mild and did not result in discontinuation of the product12,14. These would be consistent with our results, and 
those of others, that TFV in the absence of injury does not alter mucosal barrier integrity. What we demonstrate 
in the present study is a delay in the wound healing process and an increase in proinflammatory conditions, both 
of which might result in situ in increased opportunities for HIV and target cell interactions. Our findings support 
the evaluation of genital trauma as a possible risk factor for HIV acquisition in future microbicide trials.

Taken together, the results from this study provide evidence for future clinical studies to investigate the role of 
ARVs as modifiers of the wound healing process in order to meet the challenges that compromise reproductive 
health and threaten the lives of women worldwide.
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