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. We present a facile strategy of general applicability for the assembly of individual nanoscale moieties

. in array configurations with single-molecule control. Combining the programming ability of DNA as
a scaffolding material with a one-step lithographic process, we demonstrate the patterning of single
quantum dots (QDs) at predefined locations on silicon and transparent glass surfaces: as proof of
concept, clusters of either one, two, or three QDs were assembled in highly uniform arrays with a 60 nm
interdot spacing within each cluster. Notably, the platform developed is reusable after a simple cleaning
process and can be designed to exhibit different geometrical arrangements.

. The tunable emission, efficient broadband light harvesting capability, and solution processability of semiconduc-

* tor quantum dots (QDs) make them ideal building blocks for new generation nanoelectronic and nanoplasmonic

. devices"?. QD-based solid-state platforms are indeed of importance in photovoltaics*® and quantum information
technology®~'2, as light emitting diodes and photodetectors'*-16, as well as for quantum optics experiments!’-2%.

A key requirement for all the aforementioned applications, and for the future miniaturization of photonic

. integrated devices, is the controlled organization of QDs from solution to surfaces. In this regard, the precise
. patterning of colloidal semiconductor nanocrystals into hierarchical structures has attracted substantial research
. interest in recent years. Various strategies have been presented for the geometrically controlled assembly of QDs
on different substrates. Lithographic nanopatterning has provided a valuable approach for the formation of
assemblies/clusters down to 15 nm in size??-2%, Additionally, biologically inspired scaffolds have shown promise
for the formation of arrays of QDs; examples include: DNA-mediated self-assembly?’*!, genetically engineered
. bacteriophage viruses®2, host-polymers®***, and the use of solid-binding peptide linkers®>.

Notably, significant effort has been devoted to achieving individual QD control, that in turn is of particular
interest for Quantum Electrodynamics (QED) investigations'’-%, e.g. the coupling of QDs to nanocavities, for the
advance of nanoscale quantum emitters?-*®, and more generally for the development of single-QD based optoelec-
tronic devices. The highest level of control attained to date in the organization of individual solution-processable

 QDs was demonstrated via the formation of predominantly single-QD nanoarrays, but only when the nanocrys-
: tals were coupled to pre-patterned metal nanodots*. Differently, Xie et al. have very recently obtained the posi-
© tioning of QDs directly on silicon, but with a yield of single-dot patterning of only 40%, and without the ability
© to control the assembly of multiple individual QDs per array’s location.

Herein we present a facile strategy to control the number (e.g. one, two, or three) and position of single QDs
at predefined locations in nanoarrays, with nanoscale interdot spacing. The approach presented is of general
applicability for the assembly of nanostructures in highly uniform nanoarrays with single-molecule control. Our

. strategy combines the programming ability of DNA as a scaffolding material®*~*}, with a one-step lithographic
. process. As a proof of concept, we achieved the immobilization of individual nanocrystals in nanoarrays on both
. silicon and transparent glass surfaces, with a 60 nm interdot spacing in clusters of two and three QDs, and with
: up to 82% yield in single-QD patterning. Additionally, the platform developed is reusable after a simple cleaning
. process and can be designed to exhibit different geometrical arrangements.
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Figure 1. AFM images of triangular DNA origami. (a) pristine origami, (b) functionalized with one QD,
(¢) functionalized with two QDs, and (d) functionalized with three QDs.

Results

For our studies we employed triangular DNA origami structures of 120 nm by side** as molecular breadboards for
the assembly of individual CdSe/ZnS core/shell QDs [see the Supplementary Information (SI) and Figure SI1].
Binding sites for (streptavidin-coated) nanocrystals were incorporated along the axis of the DNA nanostructure
using biotin-labelled staple strands (see the SI and Figure S12)?*304245 This allowed us to design individual DNA
origami scaffolds for the tethering of either one, two, or three QDs per DNA nanostructure, with a 60 nm interdot
spacing.

Figure 1 shows Atomic Force Microscopy (AFM) images of the triangular DNA origami employed, and the
successful organization of individual QDs on the DNA scaffold. The yield of QD attachment on our triangular
DNA origami was found to be of 86% for three QDs, 89% for two QDs, and 91% for one QD per origami (see also
Figure SI3).

In order to generate predefined locations for the immobilization of the aforementioned QD-labelled DNA
nanostructures from solution to surfaces, we patterned nanoaperture arrays on silicon wafers and transparent
insulating glass coverslips. A one-step Focused Ion Beam (FIB) lithography process was employed to selectively
fabricate arrays of nanoapertures on metal coated (1.5nm Cr, 3nm Au) substrates (see Fig. 2a and the SI). The
employed strategy allows for the facile pattering on transparent surfaces and is of general applicability for the
concomitant fabrication of cavities in different materials. Moreover, the fabrication can be easily tailored towards
inter-aperture spacing of a few pm to prevent any crosstalk between optical signals from neighboring QDs once
immobilized on the patterned surface.

The exposed SiO, surface in the fabricated nanoapertures can be chemically modified to covalently tether
amino-functionalized moieties, including DNA origami, as previously shown on silicon substrates patterned
via electron-beam lithography (EBL)*. Briefly, the DNA origami solution was cast on the patterned substrate in
the presence of Mg?* (to induce initial physisorption) and carboxyethylsilane. The latter forms carboxylic termi-
nating monolayers on the SiO, surface exposed in the patterned nanoapertures. Standard amide coupling and
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Figure 2. Schematic and images of the patterning and assembly process. (a) Schematic of the patterning
to fabricate nanoaperture arrays and SEM image of the final substrate; (b) Schematic of the covalent

immobilisation of amino-terminated and QD-labelled triangular DNA origami on patterned surfaces via
amidation reactions.

activating agents (NHS and EDC respectively, see the methods section and the SI for experimental details) were
then used to activate the carboxylic groups.

We designed our triangular DNA nanostructures to exhibit 15 amino-terminated DNA strands protruding out
of plane of the origami, in addition to the QD-anchoring staple strands (see the SI and Fig. SI-2). Therefore, upon
silanisation (with carboxyl groups) of the SiO, surface exposed in the patterned nanoapertures, we covalently
tethered our QD-labelled DNA Origami: see Fig. 2b and the SI.

Figure 3 shows AFM images demonstrating the selective placement of three (Fig. 3a) and two (Fig. 3b) QDs
per nanoaperture, via the covalent immobilisation of arrays of QD-labelled triangular DNA origami nanostruc-
tures on SiO,. We have employed nanoapertures of different sizes (easily tailored via FIB patterning), ranging
from 120 nm (the size of the DNA triangles) to 250 nm. Notably, even in the larger 250 nm cavities we obtained
close to complete immobilisation of a single triangular DNA origami per aperture (90%), rather than multiple
(3%), or none (7%). This high yield of one-to-one immobilisation of DNA origami per nanoaperture is most likely
due to steric hindrance effects and electrostatic repulsion among the DNA triangles upon their physisorption in
the apertures (via a Mg>™ bridge) prior to covalent attachment (see also the Methods section and the SI). As a
proof of principle, we present here the results obtained with the large apertures because of the higher clarity of the
AFM images (see also Figure SI4a and b).

The obtained QD assembly is highly selective as the employed QD-labelled DNA origami do not bind to the
metal surface surrounding the apertures. (Non-specific adsorption can be easily minimized by simply rinsing
the substrates with buffer solution and DI water after the covalent immobilisation: see the SI). Evidence of this is
shown in Fig. 3¢, where individual apertures fabricated to exhibit a 1 um spacing are clearly resolvable via conven-
tional epifluorescence microscopy imaging. This further demonstrates the applicability of the presented strategy

to insulating transparent glass coverslips.

Finally, in order to demonstrate single-QD patterning, we fabricated arrays of triangular DNA origami modified
with only one QD. Figure 4a shows the successful assembly of single QDs in nanoaperture arrays. The overall yield
of single-dot assembly was found to be of 82% over arrays of 64 pum? (four arrays per sample, see also Figure SI4c).

Notably, the platform presented here is reusable by simple Ultraviolet/Ozone treatment of the substrate, fol-
lowed by a mild ultrasonic cleaning in water, and final rinsing (see the SI). This facile cleaning procedure, allows
for the complete removal of DNA nanostructures in the nanoapertures, without damaging the surrounding metal
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Figure 3. Images of the assembly of QDs in nanoarrays via the covalent immobilisation of QD-labelled
triangular DNA origami in pre-patterned nanoapertures. (a) AFM image for the case of 3 QDs per origami,
and hence per aperture; (b) AFM image for the case of 2 QDs; (c) Epifluorescence microscopy image of a glass
substrate patterned with 3 QDs per 1 um spaced nanoaperture: each nanoaperture is optically resolvable.

Figure 4. AFM images of single-QD patterning (a) single-QD patterning via the covalent immobilisation of
triangular DNA origami labelled with one QD: 82% yield; (b) AFM image of the same sample after UV/Ozone
treatment showing the successful removal of the DNA origami.

nor the underlying SiO, surface. The yield of subsequent QD-labelled DNA origami immobilisation on recycled
substrates is not meaningfully affected by this cleaning process, remaining of ca 80% in single-dot patterning.
Furthermore, if needed, only the DNA in the nanoapertures can be removed, leaving the QDs in the array. This
can be achieved by exposing the substrate only to Ultraviolet/Ozone treatment without any subsequent sonica-
tion and/or rinsing step. Figure 4b shows that after such treatment most of the QDs remain in the nanoapertures,
while the DNA nanostructures are successfully removed. In this case the overall final yield of single-QD pattern-
ing is slightly reduced to ~65%.

In summary, we have developed a reusable platform of general applicability for the assembly of individual
nanoscale moieties with single-molecule control, in array configurations. As a proof of concept, we presented the
patterning of individual CdSe/ZnS colloidal QDs on silicon and transparent insulating glass coverslips. Single-dot
patterning was achieved via the use of DNA nanostructures as a scaffolding material, and their immobilisation in
fabricated metal-based nanoaperture arrays. We demonstrated high level of control in the assembly of individual
QDs (either one, two, or three) in nanoarray configurations, with a 60 nm interdot spacing within each cluster,
and with a yield of up to 82% in single-dot patterning. The results presented here are specifically of interest for the
development of single-QD based optoelectronic devices with applications in light harvesting, quantum informa-
tion technology, data storage, and nanoscale optical circuitry. Additionally, this highly stable and reusable plat-
form can be designed to exhibit different geometrical arrangements, and be employed for parallel single-molecule
investigations of various nature, depending on the nanostructures employed.

Methods
DNA origami synthesis and modification. The triangular DNA origami is a single-layer trigonal DNA
sheet with 120 nm side length. It is synthesized from 220 staples ssDNA strands (containing modified strands)
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and a 7249 bases ssDNA scaffold strand (M13mp18). Staple stands (Integrated DNA Technologies, 100 .M each
in 1 x TAE buffer) and scaffold stand (single-stranded M13mp18, 1 ug/pL in Tris-HCL, Affymetrix) were mixed
with a ratio of 5:1 with final concentration of 1 x TAE buffer, 12.5 mM Mg“. The mixture was heated to 90 °C for
5min and annealed from 90 °C to room temperature at the rate of 0.2 °C per min, which were completed by tem-
perature controlled PCR machine (Hybaid Sprint PCR Thermal Cycler, Thermo Scientific). DNA origami then
were purified and concentrated by using 100 kDa MWCO spin filters (Amicon® Ultra, Ultracel-100 K, Millipore).
The concentration was adjusted to 20 nM using a molecular weight of 330 g/mol per base and an extinction
coefficient =33 mg/ml for A260=1 in a NanoDrop Spectrophotometer (NanoVue™ Plus, GE Healthcare, UK).
Different numbers of Quantum Dots were assembled on triangular DNA origami in order to reveal the pluri-
potent of this platform. The modification of different numbers of QDs were prepared by replacing normal sta-
ples strands on the outer edges of the DNA origami with biotinylated ssDNA staple strands which are called
sticky ends. The staple strands on the inner edges of the triangular DNA origami were also replaced by amino
modified ssDNA. After the assembly and purification procedure, QDs (Qdot® 655 Streptavidin Conjugate, Life
Technologies™) were assembled onto the DNA origami by biotin-streptavidin linkage by cooling down from
47°C to room temperature in a PCR machine. We designed three different modified DNA origami: triangular
DNA origami with one, two and three QDs (Figure SI2, Tables SI1&SI2).

AFM imaging of DNA origami. DNA origami were checked under Atomic Force Microscopy (AFM,
Bruker Dimension Icon) to confirm the synthesis and yield. 5pL of triangular DNA origami in 1 X TAE-30 mM
Mg*" buffer was deposited onto freshly cleaved mica and left to adsorb to the surface for 2 min. Distilled water was
used to wash the mica surface and samples were blown dry with compressed air. ScanAsyst™ mode (Dimension
Icon with ScanAsyst, Bruker) in air was used with ScanAsyst-Air tips (silicon tip on Nitride lever, f;: 70kHz, k:
0.4N/m).

FIB surface patterning. Freshly cleaned glass/silicon dioxide substrates (normal cleaning procedures:
samples were soaked in Piranha solution for 5min, then sonicated in ethanol for 10 min, sonicated in water
for another 10 min, and cleaned with UV Ozone) were evaporated with ~1.5nm chromium and ~3 nm gold
layer on top. This is simpler than E-beam sample preparation, since there is no resist layer coating. We fabri-
cated nanoapertures using Focus Ion Beam (FIB) on substrate surfaces. Each aperture of array is designed as
200 x 200 nm? with ~1 pm spacing distance. Nanopatterned arrays were drawn in software and automatically run
in the FEI™ Quanta scanning electron microscope (SEM) and FIB system with a voltage/current of 30kV/50 pA
for the ion beam condition. The patterned surfaces were characterised with AFM and SEM with a voltage/current
0f 5.00kV/107 pA and were cleaned with UV ozone prior to the covalent immobilisation of DNA origami.

Covalent immobilisation. After purification, the DNA origami was diluted 20 times in Tris buffer (5 mM;
pH 8.2) with 30 mM Mg?*. 60 ul of the DNA origami solution was cast on the substrate and placed in a 6-wells
plate with moist Kimwipe. The sample was incubated for 90 minutes on a shaker. The sample was then washed
with Tris buffer (5mM; pH 8.2) with 30 mM Mg?* (60 pl x 8). A 0.6 mM solution of carboxyethylsilane in the
same Tris buffer was washed in with (60 pl x 8), and the sample was incubated for 2 minutes on a shaker. The
buffer was then exchanged for MOPS buffer (10 mM; pH 8.1) with 30 mM Mg>* (60 ul x 8). An equal volume
of EDC (1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide; 50 mM) and NHS (N-hydroxysulfosuccinimide;
100 mM) in the MOPS buffer was added to the sample’s volume and the sample was incubated for 10 minutes on
a shaker. The sample was washed with the MOPS buffer, then rinsed with DPBS with 125 mM NaCl to remove
any uncovalently bound structures, and subsequently rinsed with water. Finally, the sample was dipped in 25%,
50%, 75%, and 100% EtOH for 5 seconds each before being dried with compressed air. The samples were checked
under AFM.

Reuse of the substrate. The substrate can be reused via simple cleaning procedures. The substrates were
treated by UV ozone and sonicated in a 60 °C water bath for 2 minutes. After rinsing with water, the substrates
were ready for the covalent immobilisation. The yield of subsequent DNA immobilisation was found to be unaf-
fected by the aforementioned cleaning procedure.
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