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Visual crowding is a combination 
of an increase of positional 
uncertainty, source confusion, and 
featural averaging
William J. Harrison1,2 & Peter J. Bex3

Although we perceive a richly detailed visual world, our ability to identify individual objects is severely 
limited in clutter, particularly in peripheral vision. Models of such “crowding” have generally been 
driven by the phenomenological misidentifications of crowded targets: using stimuli that do not 
easily combine to form a unique symbol (e.g. letters or objects), observers typically confuse the source 
of objects and report either the target or a distractor, but when continuous features are used (e.g. 
orientated gratings or line positions) observers report a feature somewhere between the target and 
distractor. To reconcile these accounts, we develop a hybrid method of adjustment that allows detailed 
analysis of these multiple error categories. Observers reported the orientation of a target, under several 
distractor conditions, by adjusting an identical foveal target. We apply new modelling to quantify 
whether perceptual reports show evidence of positional uncertainty, source confusion, and featural 
averaging on a trial-by-trial basis. Our results show that observers make a large proportion of source-
confusion errors. However, our study also reveals the distribution of perceptual reports that underlie 
performance in this crowding task more generally: aggregate errors cannot be neatly labelled because 
they are heterogeneous and their structure depends on target-distractor distance.

Throughout the entire visual field, vision is constrained by multiple bottlenecks in visual processing that limit the 
information reaching our awareness. Initially, information is lost to physiological factors such as the eyes’ optics 
and retinal nerve fiber density, and neural selective sensitivity to spatio-temporal patterns1,2. However, our ability 
to identify even a simple object, such as a letter or an oriented grating, is far worse than predicted from these fac-
tors when the object is surrounded by clutter3,4. These identification failures, referred to as “crowding”, occur even 
though adaptation after-effects demonstrate that the object’s features have been encoded, at least in primary visual 
cortex5–7. Thus, our ability to consciously access the identity of an object is constrained by information processing 
capacity, not simply by retinal physiology or sensitivity limitations of the visual system.

Crowding, the inability to recognise an object in visual clutter, influences many aspects of vision. It is generally 
agreed to occur across the entire visual field8, although it is markedly more difficult to measure at the fovea9. As 
discussed in a review by Pelli and Tillman4, crowding affects all basic object recognition tasks, predicts reading 
speed and dyslexia, and is diagnostic of foveal deficits present in amblyopia10. Furthermore, it limits visibility of 
naturalistic images11–13, and interacts with saccadic and smooth pursuit eye movements in non-trivial ways14–19 
(but see ref. 20). There have been several recent reviews of crowding that summarize very well its ubiquity4,21–23, as 
well as examples in which object recognition is seemingly unaffected by parameters that cause crowding in other 
instances e.g. ref. 24.

The spatial extent of crowding is quite similar across paradigms. Perceptual errors increase with eccentricity 
and decrease as the distance between target and distractor increases. The precise target-flanker distance at which 
crowding is alleviated at a given eccentricity, often referred to as Bouma’s constant, is somewhat variable across 
studies8, and changes dynamically according to the duration and relative timing of target and distractors19,25–29. 
Despite this variability, the term “crowding” is typically taken to refer to any target identification interference that 
depends on target-distractor proximity30. However, there are also several studies demonstrating that a metric of 
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target-distractor distance alone fails to predict target visibility. For example, the extent of crowding varies accord-
ing to: colour, shape, or polarity differences between target and flankers31; the duration of the crowded display28; 
and perceptual grouping of the flankers32,33. To the best of our knowledge, no model has been advanced to attempt 
to account for all of these effects.

Although there are many fascinating aspects of crowding, we focus on fundamental findings. By viewing 
Fig. 1, the reader can experience firsthand three phenomenal aspects of crowding that arise with stimuli similar to 
those used in our experiments. Following standard convention, we term these phenomena: 1) positional uncer-
tainty34,35, 2) feature averaging36, and 3) source confusion37,38. In this figure we present the same target stimulus, 
a modified Landolt C, in a series of distractor conditions. An observer’s goal is to locate the orientation of the gap 
section as accurately as possible. If the reader fixates the spots in succession from top to bottom, they may note 
that the apparent clarity of the correspondingly-coloured target orientation is affected differently in each condi-
tion. The target gap is clearest in the top row, but its position is less clear when fixating the yellow spot below, per-
haps because the solid ring distractor adds noise to the positional mechanisms encoding the target orientation39. 
When fixating the pink spot, the target and distractor gaps may perceptually blend together, shifting the perceived 
target orientation toward the distractor orientation e.g. ref. 40. When fixating the green spot, it is not immediately 
clear which of the multiple gaps is the target, and it may be easy to confuse a distractor gap for a target gap41. The 
changes in target visibility while viewing the yellow, pink, and green stimuli demonstrate, in order, positional 
uncertainty, feature averaging, and source confusion.

The perceptual phenomena experienced in cluttered displays are typically revealed across studies employing 
different methodologies. Changes in positional uncertainty and feature averaging are found in experiments in 
which an observer is required to make a spatial judgment about a continuous property of the target, such as its 
orientation or relative position, for examples, see refs 40 and 42. Feature substitutions – mistaking a distractor 
element for a target – are mostly found in paradigms in which the observer is required to report the categorical 
identity of target such as a letter; trials in which the observer reports a distractor identity instead of the target 
reveal source confusions37,38,43, which may be independent of an increase in positional uncertainty44–46.

It is important to note that distinct categories of errors, such as averaging and substitution errors, are descrip-
tors of results, not descriptors of a mechanism per se. Indeed, even the term crowding refers to the result of some 
visual process and not a mechanism. The underlying cause of crowding has previously been explained by vari-
ous computational models11,23,40–42,47–49 and higher-level mechanistic hypotheses24,50. Population code models, in 
which all visual features probabilistically contribute to perceptual reports, can produce a wide variety of data51, 
including so-called averaging and substitution errors41. We have thus argued that the different classes of errors 
reported across the crowding literature are actually arbitrary categories of the output of a single mechanism. In 
the present report, therefore, we use the terms “substitution” and “averaging” as a convenient way to describe 
patterns in our data, but not to indicate hypothesised mechanisms. Our aim in the present study is to shed further 
light on the causes of crowding using a single paradigm that produces multiple perceptual phenomena. Here we 

Figure 1. Examples of stimuli in our experiments that produce qualitatively different perceptual outcomes. 
From top to bottom, rows represent the unflanked, no-gap flanker, one-gap flanker, and two-gap flanker 
conditions. Stimuli are drawn to scale, but were white on a grey background in the experiment. Data in later 
figures follow the colour conventions shown here.
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use experiment and modelling to quantify changes in positional uncertainty, averaging, and source confusions 
in visual clutter.

Methods
This experiment accorded with the protocols reviewed and approved by the Northeastern University Institutional 
Review Board. We tested three highly experienced psychophysical observers, including the two authors, all of 
whom gave informed consent. In figures, we refer to the participant naïve to the specific purposes of this exper-
iment as N1, and to the authors as A1 (PJB) and A2 (WJH). All observers previously participated in two similar 
crowding experiments41.

An observer sat 57 cm from the display with their head stabilised by a chin and headrest. The display was a 
CRT monitor (1280 ×  1024 resolution, 85 Hz). We programmed the experiment with the Psychophysics Toolbox 
Version 352,53 in MATLAB (MathWorks). Stimuli were white (100 cd/m2) on a gray (50 cd/m2) background. The 
target was centered 10° to the right of the fixation spot, had a 2° diameter, and a line width of 0.4°. The gap width, 
measured at the midpoint of the line width, was 0.4°. In the one-gap and two-gap flanking conditions, the size 
of the gaps remained constant across flanker diameters. For all flanking conditions, the line width remained 
constant (0.4°). A flankers’ outer edge was separated from the target’s outer edge by 0.4°, 0.92°, 1.62°, 2.58°, 3.9°, 
or infinity (ie. no flanker). We express each target-flanker condition as the flanker radius as a proportion of the 
eccentricity of its centre, giving 0.14 φ , 0.19 φ , 0.26 φ , 0.36 φ  and 0.49 φ , where φ  is the flanker eccentricity (10°). 
The flanker condition was selected randomly from trial-to-trial.

The orientations of flankers were constrained in the following way to produce maximal crowding effects41. 
In the one-gap and dual-gap flanker conditions, the flanker orientation was drawn from a normal distribution, 
centred on the target orientation and with a standard deviation of 22.5°. Within this range, we expect maximum 
levels of crowding. For the dual-gap flanker condition, a second flanker gap was drawn from a normal distribu-
tion centred 180° from the first flanker gap, with a standard deviation of 22.5°.

Each trial began when an observer pressed the space bar, which triggered the display of a small spot in the cen-
tre of the screen and the target (with or without flanks) for 500 ms. Immediately following the offset of the target, 
a Landolt C was presented in the centre of the display, and observers could rotate this clockwise or anti-clockwise 
by pressing the right or left arrow key respectively. To report an orientation, they pressed the space bar, and the 
next trial would begin. Observers were instructed to be as accurate as possible without rushing. They could take 
a break at any time by withholding a report. All observers completed 320 trials per session (20 repetitions of each 
target-flanker combination), for five sessions, giving a total of 1600 trials, or 100 trials per target-flanker condi-
tion. Each session took approximately 15–20 minutes.

Alternative analyses. Prior to performing the main analyses for the one-gap and two-gap flanker con-
ditions described in the Results, we performed three other analyses in order to categorise errors. First, we per-
formed simple linear regression, as described in the Results below. Second, we applied a mixture model used in 
recent visual working memory papers54,55. This model uses maximum likelihood to estimate the proportion of tri-
als in which an observer reported a target versus a distractor, as well as the precision with which reports are made. 
Third, we added two additional parameters to the mixture model in order to estimate reports corresponding to 
a weighted average of target and flanker40, in addition to pure target and substitution reports. Finally, we used a 
Monte Carlo analysis as described in Supplementary Figure A2. Before applying these analyses to our data, we 
tested them on simulated datasets with known distributions. When we simulated data consisting of reports corre-
sponding to the target orientation and substitution errors corresponding to the flanker orientation (plus Gaussian 
noise; 100 trials as per the experiment), both the mixed modelling and Monte Carlo analyses returned approxi-
mately the correct underling proportions of report types. However, the weighted average model was unreliable, 
likely due to the number of free parameters. The standard mixture model and Monte Carlo analyses estimating 
target and substitution reports are further outlined in Supplemental Figure A2.

Results
For all conditions, report error is defined as the difference between the reported orientation and the actual tar-
get orientation, with positive errors indicating a report that was more clockwise than the target. Because in our 
experiments increasing the flanker radius increases target-flanker separation, we use the terms “flanker radius” 
and “target-flanker separation” interchangeably. For consistency with our previous paper, figures show the flanker 
radius as a proportion of the eccentricity of the target center.

No-gap flanker condition. Because the no-gap flanker has no features that could be substituted or aver-
aged with the target, results from this condition allow us to examine clearly changes in positional uncertainty. 
We rule out the contribution of more classic forms of masking in the Discussion. In the no-gap flanker condition, 
observers’ report errors clustered around 0° for all target-flanker separations (Fig. 2A). We used the Circular 
Statistics Toolbox (http://uk.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox–
directional-statistics-) to find the circular standard deviation of observers’ reports. We refer to this measure as 
perceptual error, which is plotted in degrees separately for each observer in Fig. 2B–D as a function of the flanker 
radius. Consistent with the crowding literature, all participants’ perceptual error was higher than the unflanked 
condition (dashed lines) for the two smallest flanker radii. Observers N1 and A2 in particular show the char-
acteristic relationship between performance and increasing flanker radius. Performance in the farthest flanker 
condition was similar to unflanked performance for all observers.

One-gap flanker condition. In the one-gap flanker condition, we have previously shown that observ-
ers’ reports correspond to the distribution of weighted responses to the target and flanker orientations41. Thus, 
reports may include a proportion of responses at the target orientation, the flanker orientation and their mean 

http://uk.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox--directional-statistics
http://uk.mathworks.com/matlabcentral/fileexchange/10676-circular-statistics-toolbox--directional-statistics


www.nature.com/scientificreports/

4SCIeNTIfIC REPORTs | 7:45551 | DOI: 10.1038/srep45551

orientation. Quantifying reports with a unimodal circular standard deviation measure as used for the no-gap 
flanker condition above, is inappropriate in such a case. We express report errors as a function of target-flanker 
orientation difference (see Fig. 3A and Appendix Figure A1A). Under a first analysis (see Appendix A), we fit 
linear models to the data: reports at the target orientation have a slope of zero, reports at the flanker orientation 
fall on the diagonal with unity slope, and reports at the average orientation fall on the diagonal with a slope of 
0.5. For all observers for the two most crowded conditions, the slopes were close to 0.5 and reduce to 0 at larger 
target-flanker separations. However, if these data were composed of noisy target and noisy flanker reports as 
described above and as has been argued previously45, the slope of a linear fit to crowded data may give a spuri-
ous interpretation favoring the averaging model. We further applied maximum likelihood mixture modelling as 
described by Bays et al.54, as well as Monte Carlo simulations, but these alternative analyses failed to return the 
true proportions of underlying report types of simulated data with known distributions (see Alternative analy-
ses in Methods). We thus used a simplified approach that labels each datum according to its distance from each 
model prediction, as described below.

To quantify report errors in the one-gap flanker condition, we measured the distance of all report errors from 
each of three underlying model predictions that correspond to target reports, averaged reports, or substitution 
reports, and labelled each datum according to the nearest model (see Fig. 3A). We then quantified report types as 
a proportion of all trials from each condition. Note that this analysis assumes that three components are neces-
sary to quantify crowding; in Supplementary Figure A2 we show the results from mixture modelling and Monte 
Carlo analyses assuming reports consist of only target and substitution errors e.g. ref. 45. These proportions 
are shown for all target-flanker separations in Fig. 3B–D with symbols indicating observers as per the legend. 
The ordinate labels on the different panels correspond to different model predictions. Note that this analysis fits 
data simultaneously to all model predictions, and so summing across panels for one flanker radius for a single 
observer gives 1. The pattern is very similar for all observers: with increasing flanker radius, the proportion of 
target reports increases, the proportion of average reports is relatively stable, and the proportion of substitution 
reports decreases. Note that this pattern of results indicates that the response distribution is multi-modal, since 

Figure 2. Results from the no-gap flanker condition. (A) Average frequencies of each report error size (25 
bins; bin width =  15°), fit with circular distributions. To improve visibility, the data have been offset slightly 
along the x-axis, and the x-axis has been truncated to ±90°. Only a total of 4 errors greater than ±90° were 
made by all observers across all no-gap flanker conditions. The inset legend shows the target-flanker separation 
condition. Error bars show one standard error. (B–D) Perceptual error (the circular standard deviation of 
report errors) plotted as a function of flanker radius for each participant. Target-flanker separation is expressed 
as flanker radius divided by the eccentricity of its centre (i.e. in units of Bouma’s constant). The dashed line 
indicates perceptual error for the unflanked condition. Error bars show 95% bootstrapped confidence intervals.

Figure 3. Results from the one-gap flanker condition. (A) Raw report errors from the naïve participant for 
the smallest flanker radius condition. Solid, dashed, and dotted lines show target, averaging, and substitution 
models, respectively. Data are attributed to each model according to proximity. (B–D) Proportion of report type 
as a function of flanker radius for all observers. Report type is shown on the ordinate across panels. Data for 
different observers have been horizontally offset slightly for clarity.
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the proportions of data for each error type changes non-monotonically. Although the proportion of target reports 
saturates around 0.6 (Fig. 3B), this is likely an underestimate due to a limitation of our analysis for distributions 
when the response standard deviation is large and the target-flanker orientation difference is small: our simu-
lations revealed that the modelled proportion of target reports is accurate when the proportion of other model 
components is high (greater than ~0.3), but the proportion of target reports is underestimated when the contri-
bution from other model components is minimal. For small flanker radii, the conditions under which we expect 
relatively poor performance, the proportion of each report type is likely more accurate than for larger flanker 
radii. Based on our previous work and the crowding literature, it is likely that observers’ reports are barely, if at all, 
influenced by the flanker for the largest flanker condition (for example, see Fig. 2). Indeed, our alternative analy-
ses shown in Supplementary Figure A2 show that the proportion of substitution errors is 0 for the largest flanker 
radius for all observers when assuming reports consist of only target and substitution reports. Note that mixture 
modelling54 also estimates the perceptual error, which we show in Figure A3 in comparison with the no-gap 
flanker condition. When modelled in this way, perceptual error is vastly different across flanker conditions for 
observer A2, but fairly consistent for N1 and A1. Finally, mixture modelling provides an estimate of the random 
guess rate, which was most often 0, but never exceeded 7%, in line with standard lapse rates in psychophysical 
testing e.g. ref. 56.

Two-gap flanker condition. In the two-gap flanker condition, one flanker gap orientation was normally 
distributed around the target orientation (“near gap”; s.d. =  22.5°) and the second flanker gap orientation was dis-
tributed 180° from the first flanker gap (“far gap”; s.d. =  22.5°). Because of the relatively narrow report error dis-
tributions even in the presence of a single flanker gap (e.g. Fig. 3A), we can with some confidence delineate which 
errors are associated with the near gap and which with the far gap. In Fig. 4A, we show the raw report errors for 
the naïve observer. Report errors form two clusters: one cluster centred on the y-axis at approximately 0° and 
another at approximately ±180°. We arbitrarily defined reports with an absolute error greater than 90° as far-gap 
reports. These reports are shown above and below the top and bottom dashed lines, respectively, of Fig. 4A. The 
proportion of far gap reports for each flanker radius and each observer are shown in Fig. 4B–D. For all observers, 
the proportion of far-gap flanker errors is greatest for the smallest flanker radius, and gradually decreases as the 
flanker radius increases.

We next divided the two-gap flanker condition data into two subsets for further analysis. First, we examined 
only those report errors within 90° of the target orientation. We performed the same analysis as we did for the 
one-gap flanker condition. Results are shown in Fig. 5, and are highly similar to the results from the one-gap 

Figure 4. Report errors in the two-gap flanker condition. (A) Raw report errors from the naïve participant. 
Report errors greater than 90° or less than − 90° (dashed lines) were classified as trials in which observers 
misreported the far-flanker gap rather than the target or near-flanker gap. (B–D) The proportion of such far gap 
reports as a function of flanker radius for all observers. Errors bars are 95% confidence intervals.

Figure 5. Results from the two-gap flanker condition. Data are shown as per Fig. 3. (A) Raw report errors 
from the naïve participant, focusing on only those errors within 90° of the target. (B–D) Proportion of report 
type as a function of flanker radius.



www.nature.com/scientificreports/

6SCIeNTIfIC REPORTs | 7:45551 | DOI: 10.1038/srep45551

flanker condition in Fig. 3. We also performed simple linear fits to the raw data, the results of which (mislead-
ingly) favour an averaging model (see Appendix Fig. A4).

Second, we performed the same modelling on report errors that were greater than 90° from the target orienta-
tion. Due to the small number of observations in this analysis (Fig. 4), we pooled observers’ data. We re-centered 
this subset of data by subtracting 180° from the orientation difference between the target gap and far flanker gap, 
as well as from the report error. The pooled errors corresponding to the far flanker gap are shown in Fig. 6A. 
Because we re-centered these data, an error of 0° corresponds to a report of the target’s polar opposite orientation, 
whereas data falling on the line of unity are reports following the far flanker gap orientation. As in the results 
above, with increasing flanker radius, the proportion of target reports increases and the proportion of substitution 
reports decreases. The proportion of average reports is relatively stable for the three smallest flanker radii, but the 
proportions vary greatly for the two largest flanker radii, likely because there were only four trials in total for these 
conditions. In contrast to the results above, the proportion of target reports at the largest flanker radius reached 
1. However, there was only a single trial that had an error greater than 90° for the largest flanker condition, so this 
proportion necessarily had to be one or zero. Similarly, there were only two trials in the condition with the second 
largest flanker radius, greatly restricting the possible proportions of report types.

Discussion
We used a method of adjustment to quantify perceptual error in peripheral vision under novel crowded condi-
tions. In all conditions, performance depended on the distance between the target and flanker, in line with the 
vast crowding literature4. Based on the phenomenological responses and appearance of crowded stimuli, three 
general classes of mechanism have been advanced to account for crowding: 1) positional uncertainty34, 2) feature 
averaging36, and 3) source confusion37. These models are not necessarily mutually exclusive and image processing 
based approaches have been advanced that incorporate elements of each of these mechanisms (refs 11 and 13), 
but it has been difficult to reconcile which best accounts for the data because of the use of different methodolo-
gies and stimuli across studies supporting each account. Furthermore, with image processing based models that 
produce foveal performance deficits with synthetic images that simulate peripheral vision, it is not clear which 
combinations of these underlying processes accounts for perceptual performance11,57,58. The experimental design 
and complementary modelling employed here provides a novel way to classify the frequency of each error type 
with the same stimuli and observers. Our results reveal that all error types characterise crowding with Landolt Cs, 
but their proportions vary with the distance between the target and flanking stimuli.

In the no-gap flanker condition, the crowding we observed at relatively small target-flanker separations is 
likely caused exclusively by an increase in orientation uncertainty (for example, ref. 34). In this condition, there 
are no flank features for averaging or substitution to occur, yet, as shown in Fig. 2, we found a reliable increase 
in the circular standard deviation of perceptual errors with decreasing target-flanker separation, see also ref. 41. 
This result is unlikely due to a form of classical masking, such as meta-contrast masking, for two reasons. First, 
the target duration was much greater than required for such masking59. Second, meta-contrast masking increases 
random guessing60, but our observers’ perceptual reports were not randomly distributed in the presence of close 
flankers (e.g. Fig. 2A). It is also difficult to account for these errors with an attentional account of crowding, in 
which observers’ attentional resolution is too coarse to individuate the target gap5: even in the smallest flanker 
condition, observers’ reports cluster around the actual target position, indicating that they could indeed attend 
to the target gap, albeit with greater perceptual error that is directly attributable to an increase in orientation 
variance (Fig. 2). We suggest that this orientation noise can be attributed to the solid flanking ring increasing the 
bandwidth of a population code that encodes the target orientation (see below and ref. 41).

The results of the one-gap and two-gap flanker conditions also support recent proposals that crowding may 
best be accounted for by a population code. Rather than conforming neatly to a single report error type, we found 
errors could be accurate, follow the flanker gap, or some average of the two. These data are thus difficult to recon-
cile with simple averaging or substitution models. Van den Berg et al.51 showed that many hallmarks of crowding 
can be explained by a biologically inspired model that simulates the responses of populations of neurons tuned 
to orientation within a fixed region of space (ie. a receptive field). Crowded stimuli create systematic shifts in the 

Figure 6. Results from the two-gap flanker condition for report errors greater than 90° from the target 
with re-centered data (see text). Data are shown as per Fig. 3. (A) Raw report errors pooled across observers. 
(B–D) Proportion of report type as a function of flanker radius. Error bars show 95% bootstrapped confidence 
intervals. Note that in the condition with the second largest flanker radius, there were only two trials. No error 
bars are shown for the largest flanker condition because there was only a single trial.
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population code, so that when the population code is decoded, the decoded signal is prone to error. We further 
showed that an idealised population code can, for a given crowded stimulus, produce accurate, averaged, or 
substituted report errors in a probabilistic fashion41. We thus argued that there is no averaging or substitution 
mechanism per se, but instead that perceptual reports are drawn from the population response to the stimuli. 
Such a process is distinct from any single phenomenon such as source confusion, averaging or substitution but 
instead results from the broad spatial bandwidth of early stage filters. It is important to note that this model 
does not predict instances in which the magnitude of crowding is greatly modulated by certain configurations of 
flankers33,61. We are not convinced, however, that these limitations argue against a population code; they instead 
require reconsideration of the way in which the features are weighted within the population code. We are opti-
mistic that a texture-processing model front-end may be sufficient to model configurational effects49, but further 
efforts are required.

Critically, the results from the present study show that averaging of features is not compulsory, in contrast to 
previous work36. On a number of trials in which a flanker gap is present, observers can recover the target orienta-
tion with a precision similar to that observed with no flanker gap (Fig. 3). With only a single report, it is impossi-
ble to know if, on a single trial, an observer perceived both the target orientation and the flanker orientation, their 
average, or if the frequencies of these percepts varied across trials. We previously asked participants to report both 
the target and flanker orientations in an experiment similar to the present report, and found that participants 
were generally capable of reporting both elements, though they often reversed feature positions41 (see also ref. 61).  
Taken together, these data reveal that perceptual reports in clutter are probabilistic, but relatively fine detail can 
be recovered. Our results are in line with a conceptually similar earlier study by Põder and Wagemans62, who had 
observers report a target Gabor defined by spatial frequency, colour, and orientation. Flankers were Gabors with 
various combinations of colours, spatial frequencies, and orientations, allowing the authors to quantify the extent 
and category of error types in crowding. In brief, they found observers often mistook an entire flanker for a target, 
or reported some flanker features as belonging to the target, as would be expected from frequent substitution 
errors as per our study.

It is clear from our data that observers often report an orientation closer to the flanker orientation instead of 
the target orientation (Fig. 4). However, our findings suggest the proportion of substitution-type errors is substan-
tially greater than the proportion of substitution errors that occur when whole letter stimuli are used43. It is likely 
that this discrepancy can be explained by the task differences. Letter report paradigms limit the response range 
and so the observer is forced to select the most similar letter, even if the perceived stimulus does not match any of 
the possible responses. Our response method does not suffer from this limitation.

Since submission of this article, Agaoglu and Chung61 published a study using a paradigm motivated by our 
earlier paper that investigates the validity of the present design. They levelled multiple criticisms of the contin-
uous report approach and population response models of crowding. In short, they had two main aims: to test 
predictions made by an assumption of the population code model and to determine whether the relationship 
between the target’s orientation and its eccentricity affected behavioural reports. Like previous crowding models, 
our model assumed that target and flanker orientations were weighted according to their mutual distance. This 
assumption predicts stronger crowding for flankers inside the target than outside. Agaoglu and Chung tested this 
prediction and found the opposite result, and therefore concluded that this choice of weighting field is incorrect. 
This striking observation challenges the many models that predict crowding based on the centre-to-centre spac-
ing of target and flankers4. As discussed above, this finding does not negate the appropriateness of a population 
code model, but it does suggest that interference zones in crowding may be nonlinear. Agaoglu and Chung also 
found that observers’ perceptual errors varied according to the absolute orientation of the target and flankers, 
consistent with eccentricity effects. We reported a similar finding in our original study, and measured these dif-
ferences across a range of target-flanker separations to model the variable interference zone around the target (see 
Supplemental Fig. 1 of ref. 41). How these dependencies affect the present data requires future testing. However, 
they do not undermine the merit of continuous report designs nor do they render the paradigm inappropriate 
for measuring crowding. In fact, their data demonstrate how this paradigm can be used to provide a rich analysis 
of perceptual experiences under crowding. These observations raise many important questions about the data 
obtained in many previous studies that employed similar stimuli but different response methods and analyses.

Our results thus provide new evidence revealing that the component features of visual objects can be individu-
ated even far in the periphery, although their relative positions and orientations may appear noisy and confusable 
across trials. The level of detail made available by the visual system has been heavily debated both within the crowd-
ing literature and more generally. Our data suggest one possible reason for this apparent conflict in the literature. 
Note that our analyses suggest all observers have very high rates of substitution-type reports under crowded condi-
tions: combining the proportion of far-flanker gap substitutions (Fig. 4) and proportion of near-gap errors (Fig. 5), 
observers made approximately 50–70% substitution-type errors in the most crowded conditions. Such performance 
may be misinterpreted in alternative forced choice experiments (AFC), a more common psychophysical paradigm 
in which an observer is forced to categorise a target as being one of usually two to four alternatives. In these experi-
ments, such a high proportion of substitution-type reports could render performance at or close to chance, leaving 
it unclear if a participant was randomly guessing, reporting an average stimulus or reporting what they thought was 
the target on some trials and the flanker on other trials. This is especially true in experiments with simple stimuli 
such as lines or Gabors, though it is less problematic with letter stimuli e.g. ref. 38, 43.

In conclusion, our findings show that relatively fine featural detail is not necessarily lost during early visual 
processing, but the precision of each perceptual report is corrupted. The aggregate of errors made when viewing 
crowded displays cannot be characterised as simply being accurate, averaged or substituted. The variety of report 
error types that occur within the same paradigm, as demonstrated here, provides a continued challenge to models 
of visual crowding.
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