
1Scientific RepoRts | 7:45256 | DOI: 10.1038/srep45256

www.nature.com/scientificreports

Serine protease SP105 activates 
prophenoloxidase in Asian 
corn borer melanization, and is 
regulated by serpin-3
Yuan Chu, Fang Hong, Qizhi Liu & Chunju An

Melanization reaction, resulting from the activation of prophenoloxidase, is a vital immune response 
in insects for encapsulating and killing the invasive organisms. Prophenoloxidase needs to be 
proteolytically activated by its upstream prophenoloxidase-activating protease (PAP) in melanization. 
Identification and characterization of PAPs facilitates the understanding of the molecular mechanisms 
involved in insect immunity. We here cloned a full-length cDNA for a serine protease, named as 
SP105, from Asian corn borer, Ostrinia furnacalis (Guenée). The open reading frame of SP105 encodes 
424-amino acid residue protein with a 19-residue signal peptide. Sequence comparison indicates 
that SP105 is most similar to Manduca sexta PAP3, a defined prophenoloxidase-activating protease. 
qRT-PCR analysis showed that SP105 mRNA levels increased significantly after a bacterial injection. 
Recombinant SP105 directly cleaved and activated Asian corn borer prophenoloxidase and therefore 
acted as the prophenoloxidase-activating protease. Additionally, SP105 formed SDS-stable complexes 
with a serine protease inhibitor, serpin-3, and its activity in activating prophenoloxidase was efficiently 
inhibited by serpin-3. Our work thus illustrated a prophenoloxidase-activating protease and revealed 
its regulation by serpin-3. The results would allow further advances in the understanding of the 
melanization in Asian corn borer and other insects.

Most insects lack a typical adaptive immune system and mainly rely on the innate immune response for defense 
against the infection of pathogens or parasites1–3. Insect innate immune response has striking similarities to mam-
malian innate immune response, and also consists of humoral and cellular responses4. Melanization reaction is a 
prominent humoral response in insects, and combines with other immune responses such as antimicrobial pep-
tide production, phagocytosis, nodulation and encapsulation to kill and eliminate the invading microorganisms 
or parasites5–7.

Current understanding of the mechanism of melanization is mainly from powerful genetic studies in fruit 
fly, Drosophila melanogaster1,5–9, and biochemical studies in relatively large insects, such as the silkworm, 
Bombyx mori10,11, the tobacco hornworm, Manduca sexta12–14, and the beetle Tenebrio molitor15,16. During 
insect melanization reaction, soluble pattern-recognition proteins initially recognize non-self molecular pat-
terns from the invading microorganisms17,18. This recognition triggers the sequential activation of a series of 
serine proteases, culminating in the activation of prophenoloxidase-activating protease (PAP), also known as 
prophenoloxidase-activating enzyme or factor (PPAE or PPAF)13,16,19. Activated PAP converts inactive prophe-
noloxidase (PPO) to phenoloxidase (PO)12,15,20,21. Ultimately, active phenoloxidase catalyzes the oxidation of 
phenols to quinones, which spontaneously polymerize to form melanin22. Therefore, identification and charac-
terization of PAPs helps to better understand the molecular mechanisms involved in the melaniztaion. Several 
PAPs have been demonstrated in only limited insect species including CLIPB9 in Anopheles gambiae20, PPAE in 
B. mori23, MP2 (CG3066) in D. melanogaster9,24, PPAF-1 in Holotrichia diomphalia25, PAP-1/-2/-3 in M. sexta12,26, 
and SPE in T. molitor16,19. In other insects, knowledge about PAP is still absent.

Serine proteases, especially those with one or two clip domain(s), are actively involved in 
prophenoloxidase-activation cascade3,6. Clip domain serine protease consists of the clip domain at the N-terminus 
terminus and a catalytic domain at the C-terminus27,28. They are secreted into hemolymph as inactive precursors 
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and require the specific proteolytic cleavage at the activation site for conducting functions3,27. This activation is 
often regulated by members of the serine protease inhibitor (serpin) superfamily29–31. Upon binding to the target 
protease, serpin is cleaved at the scissile bond in the reactive center loop by its target protease and subsequently 
undergoes a large conformation change. Ultimately, serpin becomes covalently linked to the target protease, 
which is therefore irreversibly inhibited30,32. Serpin has been reported to participate in the regulation of insect 
melanization, such as Aedes agypti SRPN1 and SRPN221, A. gambiae SRPN2 and SRPN620,33, D. melanogaster 
Spn27A, Spn28D, Spn77Ba, and Spn534–37, M. sexta serpin-1, -3 through -5, and -726,38–40, and T. molitor SPN40, 
SPN55 and SPN4841. However, the cognate protease the serpin inhibits has not been clearly revealed in most 
insects.

The Asian corn borer, Ostrinia furnacalis (Guenée), is an important insect pest in Asia, causing serious dam-
age on corn, sorghum, millet and other crops42. The molecular and biochemical mechanisms involved in Asian 
corn borer against pathogen infection are largely unknown, possibly due to the unavailability of genomic infor-
mation. In our previous work, we have characterized the transcriptome of Asian corn borer larvae43, and indi-
cated that two serine proteases, SP1 and SP13 mediated the melanization response44. In this study, we cloned a 
full-length cDNA for a serine protease, named as SP105 (GenBank: KT751521) from Asian corn borer. SP105 
transcript was elevated dramatically upon bacterial challenge. Recombinant SP105 directly cleaved and activated 
Asian corn borer prophenoloxidase. And the activity of SP105 in cleaving prophenoloxidase was regulated by a 
defined serine protease inhibitor, serpin-3.

Results
Molecular cloning and sequence analysis of Asian corn borer SP8 and SP105. We have identi-
fied 13 potential clip domain serine proteases from Asian corn borer larvae43. Among them, serine protease 8 
(SP8) was predicted to mediate the menalization response in Asian corn borer44. As a first step to characterize 
SP8’s function, we designed primers on the basis of the known transcriptome43 and tried to clone SP8 in full 
length nucleotide sequence. Interestingly, we also identified another serine protease gene, nominated as SP105, 
in addition to the expected SP8. The cDNA sequences of SP8 and SP105 were successfully submitted to NCBI, 
with GenBank accession number as KT751522 and KT751521, respectively. They shared 82.4% identity in nucle-
otide acid sequences. The conceptual protein deduced from nucleotide sequence of SP8 and SP105 consists of 
424 amino acid residues, including a predicted 19-residue secretion signal peptide. There are one and two puta-
tive N-linked glycosylation sites, and eleven and eight potentially O-linked glycosylation sites in deduced SP8 
and SP105, respectively (Fig. 1A). The calculated molecular mass and isoelectric point of the mature protein are 
43.1 kDa and 6.38 for SP8, 43.6 kDa and 6.35 for SP105, respectively.

Asian corn borer SP8 and SP105 are each composed of two amino-terminal clip domains connected by a 
linker region to a carboxyl-terminal S1 family serine protease domain containing a catalytic triad consisting of 
His, Asp, and Ser residues (Fig. 1). They are most similar in amino acid sequence to M. sexta PAP3, a clip domain 
serine protease directly activating prophenoloxidase in melanization process13 (Fig. S1). The predicted proteolytic 
activation sites (↓ ) are located at ADNK163↓ ITGG167 in both SP8 and SP105 (Fig. 1B). The important determinants 
of the enzyme specificity are predicted to be Asp368, Gly395, and Gly406 in SP8 and SP105 (Fig. 1A), suggesting they 
are trypsin-like protease cleaving its substrate after arginine or lysine residue45.

As mentioned above, we successfully obtained two full-length cDNA sequences during amplifying Asian corn 
borer SP8. However, three clones in nine sequenced SP8 samples had a mutant residue from Cys38 to Arg38, which 
is absolutely conserved in all defined clip domains. Additionally, recombinant SP8 with Arg38 failed to be acti-
vated with unknown reasons (Fig. S2). Therefore, we only focused on SP105 in the studies that followed.

Gene expression profiles of Asian corn borer SP105. We analyzed the mRNA levels of Asian corn 
borer SP105 in the various development stages, different tissues, or different pathogen inducements using 
qRT-PCR methods. SP105 transcripts in fifth instar larvae were significantly more than that in other develop-
mental stages. Although SP105 expression level remained consistent in three, fourth instar larvae and pupae, 
it was still significantly higher than in the egg, first and second instar larval stage (Fig. 2A). In different tissues, 
SP105 was expressed at significantly higher levels in hemocytes than in head, gut, and fat bodies. SP105 tran-
scripts increased up to 14 folds in hemocytes (Fig. 2B). Moreover, qRT-PCR assay showed that SP105 mRNA 
levels increased significantly in the larva challenged by Escherichia coli, Micrococcus luteus or Beauveria bassiana 
conidia (Fig. 2C).

Purification and activation of recombinant proSP105Xa. In order to investigate the potential func-
tion of SP105 in Asian corn borer, we produced active SP105 in vitro. Considering SP105 is expressed as a 
zymogen (proSP105) and its endogenous activating enzyme is currently unknown, we produced a recombinant 
form of proSP105 (proSP105Xa) in Sf9 cells. In proSP105Xa, the predicted activation site was manually mutated 
from ADNK163 to IEGR163 to permit its activation by commercially available bovine Factor Xa. Recombinant 
proSP105Xa was secreted into medium using its own secretion signal peptide. SDS-PAGE analysis indicated that 
purified proSP105Xa had an apparent mass of ~50 kDa, approximately 7 kDa larger than that predicated based on 
its cDNA sequence (Fig. 3A). The increased mass is likely due to glycosylation, as the protein sequence contain 
ten putative glycosylation sites (Fig. 1A).

Incubation of purified proSP105Xa with Factor Xa resulted in decreased intensity of the 50-kDa zymogen 
band and the appearance of a 38-kDa band corresponding to the catalytic domain of proSP105Xa (Fig. 3B), as 
expected for activation cleavage. After conditioned medium containing recombinant wild type proSP105 with 
6× His tag was incubated with Asian corn borer plasma, the new band representing the catalytic domain of 
proSP105 appeared at the same position (38 kDa) (Fig. S3). It suggests that the cleavage of proSP105Xa by Factor 
Xa could simulate the activation of proSP105 in vivo. Additionally, the activation of proSP105Xa by Factor Xa was 
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confirmed by testing whether activated SP105Xa could hydrolyze the colorimetric substrate IEARpNA. As shown 
in Fig. 3C, proSP105Xa lacked IEARase activity, but after the zymogen was activated by Factor Xa, IEARase activ-
ity increased significantly above that of Factor Xa alone, which could also hydrolyze the substrate. These results 
indicated that Factor Xa cleaved and activated proSP105Xa.

SP105Xa activated native and recombinant Asian corn borer PPO. When purified proSP105Xa 
zymogen was added into Asian corn borer plasma, the 38-kDa band corresponding to the catalytic domain 
was detected (Fig. S4A), although the putative activation sites in proSP105Xa had been mutated from original 
ADNK163 to IEGR163. The addition of recombinant proSP1Xa, another Asian corn borer serine protease with 
IEGR114 as activation sites44, also led to the appearance of 33-kDa product corresponding to the catalytic domain 
of proSP1Xa (Fig. S4B). It seems that unknown protease in Asian corn borer plasma possessed partial activity of 
Factor Xa to cleave its downstream protease after IEGR residues, and therefore could weakly activate proSP105Xa.

After Asian corn borer plasma was incubated with Factor Xa alone, the antibodies against Asian corn borer 
PPO2 identified an 80-kDa band corresponding to PPO2 zymogen. The incubation of Asian corn borer plasma 
with proSP105Xa zymogen resulted in the appearance of a new band with low intensity at 72-kDa corresponding 
to Asian corn borer PO2, and a slight increase in PO activity (Fig. 4A,B). After plasma was incubated with Factor 
Xa-activated proSP105Xa, the 72-kDa band corresponding to Asian corn borer PO2 was observed at higher inten-
sity, the reaction mixture turned black, and PO activity increased significantly (Fig. 4A,B). It indicates that active 
SP105Xa causes cleavage and activation of Asian corn borer PPO2.

Figure 1. Sequence analysis of Asian corn borer SP8 and SP105. (A) Sequence comparison between SP8 
and SP105. The different amino acids in two deduced protein sequences are boxed. The predicted secretion 
signal peptide is underlined. Putative N-linker and O-linked glycosylation sites are heavily and lightly shaded, 
respectively. The overall domain division (two clip domains and one catalytic domain) are indicated above the 
sequences. The absolutely conserved Cys residues in clip domain serine proteases are numbered and shown 
in red. They are predicted to form ten disulfide bonds (1–5, 2–4, 3–6; 7–11, 8–10, 9–12; 13–16, 14–15, 17–18, 
19–20) based on the determined structure in M. sexta PAP257 and H. diomphalia PPAF-I58. The residues of the 
catalytic triad (His, Asp, Ser) are shown in purple and indicated by asterisks. The important determinants of 
the specificity pocket in the catalytic domain are shown in blue and maked by circles. The potential cleavage 
activation sites are shown in green and labeled by red arrow. (B) Schematic representation of recombinant 
SP105. The disulfide linkage in (A) are shown in lines with a symbol (s-s). The position of the peptide bond 
cleaved during activation is indicated by red arrow. In proSP105Xa, the putative activation site was changed from 
ADNK to IEGR. Three glycine and six histidine residues were added to the carboxyl terminus of SP105 and 
shown in bold.
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To explore whether PPO is a substrate of SP105, we incubated SP105Xa and recombinant Asian corn borer 
PPO2. As in Asian corn borer plasma, western blot analysis of purified PPO2 detected a band with apparent 
molecular weight of 80 kDa. No change was observed after incubation with proSP105Xa zymogen. The addition 
of Factor Xa alone into plasma led to the weak appearance of 72-kDa band corresponding to Asian corn borer 
PO2, but no significant change in PO activity, suggesting the weak cleavage of recombinant PPO2 by Factor Xa. 
However, when active SP105Xa was incubated with purified PPO2, the band of 72 kDa was observed with strong 
intensity and PO activity of the mixture increased significantly (Fig. 4C,D).

SP105Xa was directly inhibited by Asian corn borer serpin-3. In a previous study, we identified a 
serine protease inhibitor, serpin-3, which regulates melanization cascade in Asian corn borer46. To investigate 
whether serpin-3 functioned via inhibiting SP105, we firstly checked whether serpin-3 could form an SDS-stable 
complex with SP105Xa because the formation of such complex is a characteristic feature of serpin-target protease 
reaction30. We mixed SP105Xa with recombinant serpin-3, and detected the appearance of a high molecular weight 
complex by western blot, using antibodies against His or serpin-3. Anti-His serum recognized both proSP105Xa 
zymogen and serpin-3 as ~53-kDa band, which migrated to the same apparent position in SDS-PAGE (Fig. 5A, 
left panel). The incubation of recombinant serpin-3 with Factor Xa alone resulted in the appearance of two bands 
at ~48 and 45 kDa, possibly due to the nonspecific degradation of serpin-3 by Factor Xa. However, when serpin-3 
was mixed with Factor Xa-activated SP105Xa, the intensity of the 38-kDa band corresponding to the catalytic 
domain of proSP105Xa decreased, and a new immunoreactive band at ~92-kDa position (the expected size of a 
serpin-3/SP105 complex) was observed, which was also recognized by antibody against serpin-3 (Fig. 5A, right 
panel).

To confirm that this complex formation indeed leads to the inhibition of SP105, we tested the IEARase activity 
of SP105Xa in the presence of serpin-3. SP105Xa’s activity decreased linearly as serpin-3 concentration increased 
(Fig. 5B). The stoichiometry of inhibition was 2.4, indicating that under the experimental conditions serpin-3 
almost exclusively acted as an inhibitor rather than a substrate of SP105.

Since SP105 could cleave Asian corn borer PPO2, inhibition of SP105 by serpin-3 theoretically would sup-
press its cleavage of the substrate PPO2. To test this hypothesis, we incubated Asian corn borer PPO2 with Factor 

Figure 2. qRT-PCR analysis of SP105 expression in Asian corn borer. (A) Expression profiles of SP105 in 
Asian corn borer at different stages of development. RNA was extracted from the whole bodies collected from 
eggs, first-instar (L1), second-instar (L2), third-instar (L3), fourth-instar (L4), fifth-instar (L5) larvae, and 
pupae. The rpL8 was used as an internal control. (B) Expression patterns of SP105 in different tissues of Asian 
corn borer larvae. Tissues including head, gut, hemocytes (HC), and fat bodies (FB) were collected from day 
0, fifith instar larvae for RNA extraction. qRT-PCR was performed to assess the transcript level of SP105. The 
rpL8 was used to normalize the templates. (C) Expression profiles of SP105 in Asian corn borer larvae upon 
microbial challenge. Day 1, fifth instar larvae were infected with water, E. coli (Ec), M. luteus (Ml), or B. bassiana 
(Bb). RNA was prepared from the whole bodies 20 h after injection. qRT-PCR was used to analyze the transcript 
change of SP105 with rpL8 as an internal standard to indicate a consistent total mRNA amount. The bars 
represent mean ±  S.D. (n =  3). Bars labeled with different letters are significantly different (one-way ANOVA 
followed by Newman-Keuls test, P <  0.05).
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Xa-activated SP105Xa in the absence or presence of serpin-3. When SP105 was pre-treated with serpin-3, more 
PPO2 was detected as 80-kDa band corresponding to PPO2 zymogen, and the 72-kDa band representing active 
PO2 decreased in intensity (Fig. 5C). The PO activity of the reaction mixture containing serpin-3 decreased sig-
nificantly (Fig. 5C, right panel). Taken together, SP105 was inhibited by serpin-3.

Discussion
Melanization of invading microbes is one important strategy that protects insects against infection1–3. In melani-
zation cascade, prophenoloxidase (PPO)-activating protease (PAP) functions as the terminal protease to convert 
PPO into active phenoloxidase (PO)12,13,15,20,21. Although PAPs have been investigated for many years, under-
standing of PAPs in most insects is still incomplete. Here, we identified a serine protease gene, SP105, from Asian 
corn borer during amplifying expected SP8. Recombinant SP105 protein directly cleaved and activated Asian 
corn borer PPO2 in vivo and in vitro, which suggests that SP105 acts as a PAP in Asian corn borer melanization. 
In addition, we clarified that SP105’s activity was regulated by a serine protease inhibitor, serpin-3.

So far, veritable PAPs have only been determined in some model insects such as A. gambiae20, B. mori23, D. 
melanogaster9,24, H. diomphalia25, M. sexta12,26, and T. molitor16,19 (Fig. S1). In our previous work, we revealed that 
Asian corn borer SP13 directly cleaved D. melanogaster PPO1, and therefore potentially functioned as a PAP in 
Asian corn borer44. In this study, we resolved the previous problem and successfully obtained soluble Asian corn 
borer endogenous PPO, which meant we could perform experiments to check whether SP105 enable to cleave and 
activate its conspecific PPO. The results indicated that SP105 indeed activated native and recombinant Asian corn 
borer PPO2 (Fig. 4), and works as a PAP in PPO activation pathway. Therefore, we have identified two PAPs in 
Asian corn borer larvae so far. Similar situation also existed in M. sexta, in which three PAPs (PAP-1/-2/-3) have 
been characterized12,26. However, only one PAP was reported in other insects except for these two insect species. 
Based on the findings from Asian corn borer and M. sexta, we postulate that there should be more PAPs to be 
identified than currently illustrated in most insects. It ought to be common that multiple PAPs cooperatively acti-
vate PPOs in the melanization reactions, considering the key roles of PO in the melanization and the importance 
of the melanization against the microbial infection in insects.

In addition, it is notable that Asian corn borer SP105 also cleaved D. melanogaster PPO (Fig. S5). Consistently, 
Asian corn borer SP13 activated native and recombinant D. melanogaster PPO44, and A. gambiae CLIBP9 acti-
vated M. sexta PPO20. It suggests that the cleavage of PPO by PAP is not completely restricted in the conspecific 
insects. The possible reason is that PPOs from heterogeneous insects have the identical or highly conserved puta-
tive activation cleavage sites33,46, and its upstream activating protease recognizes and cleaves the same cleavage 
site without regard for the resource of PPO substrate. Therefore, in some small-size insects with limited amount 
of hemolymph for PPO purification or in the insects lacking sequence information for recombinant PPO produc-
tion, it might be a reasonable strategy to make use of available heterologous PPO to clarify the putative function 
of a serine protease in PPO activation. Furthermore, some reports indicated that the proteases secreted from the 
invading microorganisms, such as fungal virulence factor Pr1, could proteolytically activate Persephone (Psh) 

Figure 3. Purification and activation assay of recombinant proSP105Xa. (A) SDS-PAGE and immunoblot 
analysis of purified proSP105Xa. The purified proSP105Xa (0.25 μ g) was treated with SDS sample buffer 
containing DTT and separated by 10% SDS-PAGE followed by coomassie brilliant blue staining (left panel) or 
immunoblotting with anti-His as primary antibodies (right panel). The sizes and positions of the molecular 
weight standards are indicated on the right. (B) Detection of the activation of purified proSP105Xa by Factor Xa 
by Western blot. After incubation of the purified recombinant proSP105Xa (0.25 μ g) with Factor Xa (0.2 μ g),  
the mixtures were subjected to 10% SDS-PAGE for immunoblot analysis using Anti-His antiserum. Circle, 
proSP105Xa; asterisk, catalytic domain of proSP105Xa. (C) Detection of the activation of purified proSP105Xa by 
Factor Xa by spectrophotometric assay using IEARpNA as a substrate. The bars represent mean ±  S.D. (n =  3). 
Bars labeled with different letters are significantly different (one-way ANOVA followed by Newman-Keuls test, 
P <  0.05).
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protease in D. melanogaster Toll pathway47,48. It will be interesting to explore whether the secreted protease(s) 
from invading microbes also could directly activate host PPO since PAP cleaving PPO is not necessarily specific.

Although SP13 and SP105 redundantly function as PAP in Asian corn borer melanization response, there 
is still some remarkable differences between them. Firstly, SP13 and SP105 are typical clip-domain serine pro-
teases containing type-2 clip domain with two helices between Cys-3 and Cys-427,28,43 (Fig. 1). Clip domains are 
proposed to be sites for interactions of proteases with their activators, cofactors, and substrates3,27. SP13, most 
similar in amino acid sequences to M. sexta PAP1, contains a single type-2 clip domain, whereas SP105 which has 
the highest similarity to M. sexta PAP3 contains two type-2 clip domains (Fig. S1). Secondly, SP13 zymogen was 
activated by SP1 in PPO activation cascade in Asian corn borer44. However, SP1 failed to cleave proSP105 in our 
reduplicative experiments (Fig. S6), suggesting that SP1 acts upstream of proSP13, but not of proSP105, in Asian 
corn borer melanization. Similar results have been also reported in M. sexta PPO activation response, in which 
proPAP1 and proPAP3 are involved in two branched pathways and is activated by two separate serine protease, 
HP6 and HP21, respectively13,14. Therefore, we conclude that SP105 and SP13 belong to different type of PAPs and 
propose a hypothesis for the PPO activation in Asian corn borer. More than one cascade contributes to the PPO 
activation in Asian corn borer upon the challenge of foreign microbes. In one branch, the microbial infection 
leads to the activation of unknown serine protease(s) which then activates proSP1. Active SP1 then processes 
proSP13, and active SP13 in turn activates PPO. In another branch, the invading of pathogens or parasites results 
in the sequential activation of a serine protease other than SP1, then proSP105 is proteolytically activated. Active 
SP105 further converts PPO to PO. Other cofactors such as serine protease homologs (SPHs) also participate in 
this process. SPHs are similar in amino acid sequence to S1 family serine proteases but lack proteolytic activity 

Figure 4. Proteolytic activation of Asian corn borer PPO2 by Factor Xa-activated SP105. Factor Xa-
activated SP105Xa cleaved Asian corn borer PPO2 in plasma (A) and as purified protein (C), causing a 
significant increase in PO activity (B,D). In (A,C), the sizes and positions of the molecular weight markers are 
indicated on the right. His or Asian corn borer PPO2 antiserum was used as primary antibodies in immunoblot 
analysis. Circles, proSP105Xa; asterisks, catalytic domain of proSP105Xa; hollow diamonds, PPO2 zymogen; solid 
diamonds, cleaved and activated PO2. In (B,D), the bars represent mean ±  S.D. (n =  6). Statistically significant 
differences are represented by different letters (one-way ANOVA followed by Newman-Keuls test, P <  0.05).
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due to the mutation of the catalytic residues49. SPHs have been reported to be essential for the prophenoloxidase 
activation in M. sexta50 and H. diomphalia51. We infer that there also exist similar SPH(s) in Asian corn borer to 
facilitate SP105 in activating PPO.

On the other hand, the activity of SP105 in cleaving PPO was blocked by serpin-3 (Fig. 5). In our previous 
report, serpin-3 also prevented SP13 from cleaving PPO46. It is not surprising that a single serpin regulates multi-
ple target proteases. Actually, M. sexta serpin-3 inhibits all three PAPs in PPO activation cascade38,40. Serpin-1J in 
M. sexta not only regulates PAP-1 to -3 in melanization, but also restricts HP8 in Toll pathway26,40,52. Target speci-
ficity of inhibitory serpins is controlled by the sequence and tertiary structure of their reactive center loop, which 
allows the binding and cleavage by target proteases32,33. Serpin is thus kind of substrate of its target protease to 
some extent. We inferred that the serine proteases with the common downstream substrate would be potentially 
inhibited by the same serpin in insect immune response. More evidence will be presented to support this hypoth-
esis as more serpin - target protease regulatory units are characterized in other insects. It also provides a useful 

Figure 5. Inhibition assay of SP105 by Asian corn borer serpin-3. (A) SDS-stable complex formation 
between SP105 and serpin-3. ProSP105Xa (0.2 μ g) was activated by 0.2 μ g of Factor Xa, and then incubated with 
0.17 μ g of purified serpin-3 at room temperature. After 30 min, the reaction mixtures were subjected to 10% 
SDS-PAGE and immunoblot analysis using antiserum against His (left panel) or Asian corn borer serpin-3 
(right panel). Size and positions of molecular mass standards are indicated to the left of each blot. Circles, 
proSP105Xa; asterisks, catalytic domain of proSP105Xa; triangles, serpin-3; arrows, serpin-3/SP105Xa complex. 
(B) Stoichiometry for inhibition of SP105 by serpin-3. Purified recombinant serpin-3 was incubated with Factor 
Xa-activated SP105Xa at various molar ratios for 30 min at room temperature. The residual IEARase activities 
of SP105Xa was plotted as mean ±  S.D. (n =  3) against the corresponding molar ratios of serpin-3 and SP105Xa. 
(C) Serpin-3 inhibited the cleavage of recombinant PPO2 by SP105. Factor Xa-activated SP105Xa (0.2 μ g) was 
incubated with a 1-fold molar excess of serpin-3, then incubated with recombinant Asian corn borer PPO2 
(0.3 μ g). The mixtures were subjected to 7.5% SDS-PAGE and immunoblotting using His (left panel) or PPO2 
(middle panel) antiserum. Circle, proSP105Xa; asterisk, catalytic domain of proSP105Xa; triangle, serpin-3; 
hollow diamond, PPO2 zymogen; solid diamond, activated PO2. PO activity of the mixtures (mean ±  S.D., 
n =  4) was monitored using dopamine as substrate (right panel). Asterisk means that is significantly different 
from the control (unpaired t test, two-tailed p <  0.05).
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clue to seek more cognate proteases for a specific serpin, or to identify the putative serpin for a serine protease 
which has identical substrate preference to the known protease in a defined serpin-protease unit.

Methods
Molecular cloning and sequence analysis of Asian corn borer SP8 and SP105. In our previous 
study, a clip domain serine protease gene, SP8, was predicted to mediate the melanization response in Asian corn 
borer44. Based on its cDNA sequence from assembled Asian corn borer transcriptome43, primers (Table S1) were 
designed to amplify the full-length cDNA encompassing the entire reading frame using cDNA from the whole 
body of fifth instar larvae collected 20 h after injection with 3 μ l of M. luteus (3 μ g/μ l). The products were cloned 
into pMD19-T vector, and the nucleotide sequences were confirmed by DNA sequencing. In addition to expected 
SP8, another clip domain serine protease gene with 82.4% identity to SP8 in nucleotide sequences was obtained 
during this process. It was designated as SP105.

We carried out a series of sequence analysis for identified SP8 and SP105. The deduced amino acid sequences 
were obtained by using the Translate tool provided by the Swiss Institute Bioinformatics. Analysis of deduced 
amino acid sequences, including prediction of signal peptide, molecular weight, isoelectric point, and glyco-
sylation sites, was executed in the EXPASY (Expert Protein Analysis System) proteomics server (http://www.
expasy.org). Multiple sequence alignment was performed by using the CLUSTALW program, along with the same 
region in other invertebrate serine proteases with defined functions. The information about the sequences (with 
GenBank accession number) used for the alignment were found in the figure legend for Fig. S1. Phylogenetic 
trees were constructed by the neighbor-joining method using MEGA Version 5 software53. For neighbor-joining 
method, gaps were treated as characters, and statistical analysis was performed using the bootstrap method with 
1000 replicates.

Quantitative reverse transcriptase (qRT)-PCR analysis of the expression profiles of SP105. To 
investigate the transcriptional changes of SP105 during the various stages of Asian corn borer, total RNA samples 
were individually prepared (n =  5) from three different stages including egg, larvae, and pupa using TRNzol 
Reagent (TIANGEN). One μ g of RNA equally from 5 individual RNA samples in each stage was treated with 
DNase I and converted into first-strand cDNA using FastQuant RT Kit (TIANGEN). The cDNA products inde-
pendently from 3 biological replicates were diluted 10-fold for use as template in qRT-PCR experiments. Specific 
primers were designed and listed in Table S1. Asian corn borer ribosomal protein L8 (rpL8) was used as an 
internal standard to mormalize the expression levels. The qRT-PCR was performed on a Applied Biosystems 
7500 Real-Time PCR System (Life Technologies) using the SYBR Premix EX TaqTM Kit (TAKARA), according to 
the manufacturer’s instructions. The thermal cycling conditions for qRT-PCR were 95 °C for 30 s followed by 40 
cycles of 95 °C for 30 s and 60 °C for 34 s, then 95 °C for 15 s, 60 °C for 1 min, 95 °C for 30 s, and 60 °C for 15 s. The 
relative expression of genes was calculated using 2−ΔΔCt method54.

To determine the expression patterns of SP105 in different tissues of Asian corn borer, total RNA samples were 
isolated separately from combined heads, midguts, fat bodies, and hemocytes from 20 day 0 fifth instar larvae. The 
synthesis of first-strand cDNA and qRT-PCR analysis was performed as described above.

To check the expression profiles of SP105 under different inducement conditions, day 1 fifth instar larvae 
from the same batch were injected into the hemocoel with 3 μ l of sterile water containing formaline-killed E. coli 
DH5α  (2 ×  105 cells/μ l), dried M. luteus (3 μ g/μ l), B. bassiana suspension (2 ×  105 conidia/μ l, B. bassiana conidia 
suspension was prepared as described previously55), or sterile water as a control. After 20 h (10 h for B. bassiana 
treatment), each five larvae from challenged and control group were collected, and total RNA samples were indi-
vidually prepared. The following qRT-PCR analysis was conducted as described above.

Preparation of recombinant Asian corn borer proSP105 and prophenoloxidase-2 (PPO2). To 
produce recombinant proSP105, a cDNA fragment encoding the entire proSP105 coding region including the sig-
nal peptide was amplified by PCR using primers listed in Table S1 and cDNA from M. luteus-injected larvae. The 
forward primer included a BamH I site, and the reverse primer contained three codons for glycine and six codons 
for histidine residues followed by a stop codon and a NotI site. The PCR product was cloned into pMD19-T 
vector and then digested with BamH I and NotI (TaKaRa). The digested product was recovered by agarose gel 
electrophoresis, and then inserted into the corresponding restriction sites in pFastBac1 vector (Invitrogen). The 
resulting proSP105 plasmid, after sequence confirmation, was used as template to produce mutant proSP105 
(proSP105Xa) plasmid according to Chiu’s method56. In proSP105Xa, the predicted activation site ADNK163 was 
replaced with IEGR163 to allow the cleavage and activation by commercially available bovine Factor Xa14. After 
sequence verification, the resulting plasmids were used to generate a recombinant baculovirus using Cellfectin®II 
Reagent (Invitrogen). For the production of proSP105Xa, Sf9 cells (2 ×  106 cells/ml) in 500 ml of Insect-Xpress 
protein-free medium (Lonza) were infected with the recombinant baculovirus at multiplicity of infection (MOI) 
of 3, then incubated at 28 °C with shaking at 150 rpm. The culture was harvested at 48 h post infection, and cells 
were removed by centrifugation at 5000 ×  g for 15 min at 4 °C. The cell-free medium was used to further purify 
recombinant proteins following the method described previously44.

For expressing recombinant Asian corn borer prophenoloxidase-2 (OfPPO2), the coding region of mature 
OfPPO2 was amplified by PCR using specific primers listed in Table S1, in which NcoI and XhoI sites were added 
into the 5′ -end of forward and reverse primers, respectively. The PCR products were digested and subcloned into 
the same restriction sites in the expression vector pET28a (Novagen). After sequence verification, the plasmids 
were used to transform E. coli strain BL21 (DE3). The OfPPO2 was then expressed and purified following the 
methods described previously46. Five milligram of purified OfPPO2 was used as antigen for the production of a 
rabbit polyclonal antiserum (Beijing CoWin Bioscience Co. Ltd.).

http://www.expasy.org
http://www.expasy.org
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SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot analysis. Protein con-
centrations were determined using Bradford Reagent Solution (Sangon) with bovine serum albumin as a stand-
ard. For SDS-PAGE, protein samples were treated with 5×  SDS sample buffer containing Dithiothreitol (DTT) at 
95 °C for 5 min and then separated by 10% SDS-PAGE (7.5% SDS-PAGE for OfPPO). Proteins were detected by 
staining with coomassie brilliant blue. For immunoblot analysis, proteins were transferred onto a nitrocellulose 
membrane and detected with mouse anti-His (1:2,000), or rabbit anti-Asian corn borer PPO2 (1:500) as primary 
antibodies. Antibody binding was visualized using alkaline phosphate-conjugated goat anti-mouse or anti-rabbit 
IgG (diluted 1:2,000) and 5-bromo-4-chloro-3-indolyl phosphate/Nitro blue tetrazolium (BCIP/NBT) staining 
buffer containing 165 μ g/ml BCIP and 330 μ g/ml NBT in 100 mM Tris (pH 9.5), 150 mM NaCl, and 5 mM MgCl2.

Activation of recombinant proSP105Xa by Factor Xa. To test whether proSP105Xa could be activate 
by Factor Xa, 0.25 μ g of purified recombinant proSP105Xa was incubated with 0.2 μ g of bovine Factor Xa (New 
England Biolabs) in the reaction buffer (20 mM Tris-HCl, pH 8.0, 150 mM NaCl, 2 mM CaCl2, pH 8.0) at 37 °C for 
4 h. The mixtures were separated by 10% SDS-PAGE followed by immunoblot analysis with anti-His as primary 
antibodies.

The activation of proSP105Xa was confirmed by measuring the amidase activity of activated SP105Xa with 
200 μ l of 50 μ M acetyl-Ile-Glu-Ala-Arg-p-nitroanilide (IEARpNA) in 0.1 M Tris-HCl (pH 8.0), 0.1 M NaCl and 
5 mM CaCl2 as colorimetric substrate. The amidase activity was measured by monitoring changes in absorbance 
at 405 nm in a microplate reader (Bio-Tek Instrument, Inc.). One unit of amidase activity was defined as Δ A405/
min =  0.001.

Assays of Asian corn borer PPO activation by SP105Xa. To measure the ability of recombinant SP105 
in activating Asian corn borer PPO in vivo and in vitro, 0.2 μ g of proSP105Xa or Factor Xa-activated SP105Xa were 
incubated at 37 °C with 0.2 μ g of purified OfPPO2 or 0.5 μ l of plasma collected from day 1 fifth instar Asian corn 
borer larvae. In control reactions, active SP105Xa was replaced with Factor Xa alone. One hour later, reaction 
mixtures were subjected to 7.5% SDS-PAGE and immunoblot analysis. To determine PO activity, 0.7 μ g of recom-
binant proSP105Xa or SP105Xa were mixed with 0.5 μ l of plasma. Additionally, 1.6 μ g of recombinant proSP105Xa 
or SP105Xa were incubated with 20 μ g of purified OfPPO2. After incubation at either room temperature for 10 min 
(plasma) or 37 °C for 30 min (recombinant OfPPO2), PO activity in the reaction mixtures was measured using 
dopamine as substrate13. One unit of PO activity was defined as the amount of enzyme producing an increase in 
absorbance (Δ A490) of 0.001 per min.

Detection of SDS-stable serpin-3/SP105 complexes by immunoblot analysis. Purified recom-
binant proSP105Xa (0.2 μ g) was activated by Factor Xa as described above, and mixed with purified serpin-346 at 
molar ratio of 1:1 (proSP105:serpin-3). In control samples, proSP105Xa or Factor Xa was omitted from the mix-
ture. After incubation at room temperature for 30 min, the reaction mixtures were subjected to 10% SDS-PAGE 
and immunoblot analysis with mouse anti-His (1:2,000) or rabbit anti-serpin3 (1:500) as primary antibodies.

Analysis of SP105 inhibition by serpin-3 with IEARpNA as substrates. To directly measure the 
inhibitory potential of serpin-3 on SP105 function, we incubated 0.3 μ g of SP105Xa with recombinant serpin-3 
at different molar ratios. In control reactions, the same amount of Factor Xa used to activate proSP105Xa was 
substituted for active SP105Xa. After incubation at room temperature for 30 min, the residual amidase activity 
was measured as described above. Amidase activity of SP105Xa was defined as the activity of SP105Xa minus the 
activity of Factor Xa alone.

Analysis of SP105 inhibition by serpin-3 using OfPPO2 as substrates. Activated SP105 (0.2 μ g) was 
mixed with serpin-3 at a molar ratio of 5:1 (serpin-3:SP105). After incubation at room temperature for 30 min, 
0.3 μ g of OfPPO2 was added to the reaction mixtures, and incubated at 37 °C for 1 h. The cleavage of OfPPO2 in 
the mixtures was visualized by immunoblot analysis using antiserum against OfPPO2 (1:500 diluted) or His tag 
(1:2,000 diluted). The residual PO activity in the mixtures was measured using dopamine as substrate as described 
above.
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