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Mutual information model for 
link prediction in heterogeneous 
complex networks
Hadi Shakibian & Nasrollah Moghadam Charkari

Recently, a number of meta-path based similarity indices like PathSim, HeteSim, and random walk have 
been proposed for link prediction in heterogeneous complex networks. However, these indices suffer 
from two major drawbacks. Firstly, they are primarily dependent on the connectivity degrees of node 
pairs without considering the further information provided by the given meta-path. Secondly, most 
of them are required to use a single and usually symmetric meta-path in advance. Hence, employing 
a set of different meta-paths is not straightforward. To tackle with these problems, we propose a 
mutual information model for link prediction in heterogeneous complex networks. The proposed 
model, called as Meta-path based Mutual Information Index (MMI), introduces meta-path based link 
entropy to estimate the link likelihood and could be carried on a set of available meta-paths. This 
estimation measures the amount of information through the paths instead of measuring the amount of 
connectivity between the node pairs. The experimental results on a Bibliography network show that the 
MMI obtains high prediction accuracy compared with other popular similarity indices.

Link prediction is an interesting research area in complex networks. The aim of link prediction is to exploit 
dependencies between any node pairs1. It has many real-world applications like friend recommendation in social 
networks2, detecting selfish or spurious nodes/edges in social networks3, citation predicting in scientific collabo-
ration networks4, modeling the evolution of complex networks5, etc.

The majority of link prediction approaches have been proposed on homogenous complex networks. They are 
divided into some categories as local/global similarity indices, supervised, and probabilistic methods. In the first 
category, the aim is to extract some local (node-based) or global (path-based) similarity features for vertices or 
links. Common Neighbors (CN), Jaccard (JC), Prefrential Attachment (PA), Adamic Adar (AA), and Resource 
Allocation (RA) are among popular local indices, while Katz, Leicht-Holme-Newman, Average Commute Time, 
Random Walk, and SimRank are known as global indices6. While the local indices are simple in computation, 
the global ones may provide more accurate predictions. Recently, the integration of both node and link based 
topological information has been studied by introducing local community paradigm (LCP)7. Accordingly, two 
nodes are more likely to be connected if they have some common neighbors belonging to a densely formed local 
community. The authors proposed Cannistraci variations of CN, JC, AA, RA, and PA called as CAR, CJC, CAA, 
CRA, and CPA. It has been demonstrated through extensive experimental evaluations that LCP based indices 
could provide better performance predictions compared to other conventional indices. This approach has been 
also successfully extended on the bipartite complex networks8.

In the second category, the link prediction is defined as a two-class classification problem. In this regard, a fea-
ture vector is extracted for each node pair and a 0/1 label would be assigned based on the existence/not-existence 
of that link in the network. Any similarity indices mentioned in the previous category could form the required 
feature vectors. Then, any conventional supervised learning algorithms might be applied to train a supervised 
link predictor9.

The third category is probabilistic based methods. The main idea is to optimize a target function in order to 
establish a parametric model that can best fit the observed data. The posterior probabilities are obtained by defin-
ing a conditional probability model over the learned parameters. An excellent survey on these categories can be 
found in ref. 6.

However, most real networks compose of different types of nodes which opened a new research topic called 
as heterogeneous networks. As a consequence, most of the link predictors proposed in homogeneous complex 
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networks become infeasible in heterogeneous ones. Note that, in a heterogeneous complex network, two objects 
might be connected via different paths while the semantic underneath them are not identical. In this regard, a 
meta-structure known as meta-path has been proposed in order to exploit nodes dependencies in heterogeneous 
complex networks. Meta-path is a sequence of node types that acts as a similarity search pattern between node 
pairs. Without restriction on either the structure or length of the meta-paths, the number of possible meta-paths 
is unbounded. However, generating informative meta-paths and selecting the best set of them are some of inter-
esting issues in meta-path based similarity searches. Accordingly, the studies on meta-paths are roughly divided 
into two classes.

In the first class, the focus is on efficient discovery or selection of meta-paths, especially in large scale net-
works. Automatic discovery of meta-paths in large scale complex networks has been studied in ref. 10. The users 
are asked to provide some examples of node pairs that exhibit high proximity. Then, a greedy algorithm would be 
employed to generate the meta-paths that can appropriately explain the relationship between the example pairs. 
The experiments on real-world heterogeneous information networks, DBLP and Yago, show the effectiveness of 
the method in finding some important meta-paths. The difficulty of discovering reasonable meta-paths by human 
in large scale complex networks has been discussed in ref. 11. Here, the most interesting meta-paths are discov-
ered based on conventional knowledge discovery principles from the hundreds-of-thousands of possible choices.

In the second class, assuming a meta-path is given, the objective is to explore new similarity measures or to 
develop efficient similarity searches. There are a number of meta-path based similarity measures proposed in the 
literature. Two basic measurements, named as Path Count (PC) and Random Walk (RW)12, are based on the num-
ber of path instances between the given node pairs13. The higher the PC and RW in value, the more the similarity 
can be obtained. HeteSim (HS) was proposed in ref. 14 as a new path-based relevance measure. It is a symmetric 
and self-maximum measure which has a much smaller computational complexity than SimRank15. Another sim-
ilarity measure, called as PathSim (PS), is only applicable on symmetric meta-paths16. The basic idea is that two 
similar objects not only be strongly connected, but also share comparable visibility. In comparison with random 
walk based measures, PathSim is able to find more meaningful similarities.

In addition to these similarity measures, meta-path based topological features have been conducted in a 
number of works for similarity search. Collective classification in heterogeneous complex networks17, social link 
prediction in multiple partially aligned social networks18, co-author relationship prediction in heterogeneous 
bibliographic networks13, and a meta-path based prediction model based on a topic discriminative search space4 
are some of the interesting applications of similarity searches using meta-path based topological features.

The proposed meta-path based similarity indices suffer from two major drawbacks. Firstly, the similarity 
indices are strongly dependent on the amount of reachability between the nodes while they do not consider the 
information within meta-paths. Therefore, they tend to bias to highly visible or concentrated objects. Secondly, 
most of these indices are originally designed for a single and usually symmetric meta-path. In other words, even 
though a set of useful meta-paths might be available, benefiting all the meta-paths to enhance the quality of pre-
dictions is not straightforward.

Recently, information theory has been employed for link prediction problem in homogeneous complex net-
works19–21. The main contribution of these works is to measure the information provided by common topolog-
ical features, such as common neighbors, instead of using them as simple topological features. In this paper, 
we propose a mutual information model to perform link prediction in heterogeneous complex networks. The 
proposed model, called as Meta-path based Mutual Information Index (MMI), provides an information theoretic 
framework in which multiple meta-paths with different semantics are mutually employed to improve the simi-
larity exploitations. Here, the link likelihood of a node pair is formulated as a conditional self-information of the 
existence of that link when a set of meta-paths are available. We have evaluated the proposed approach using a 
Bibliographic network, DBLP. The results of prediction accuracy under Precision indicate the efficiency and valid-
ity of the proposed MMI method. It will be also shown that the efficiency would be kept even when the network 
sparsity or noisy connections are increased. The main contributions of this paper can be summarized as follows:

•	 A new meta-path based similarity measure is proposed from information theory perspective for predicting 
future links in heterogeneous complex networks.

•	 In the proposed approach, it is shown that how the contribution of meta-paths results in more accurate link 
prediction using their semantic information.

•	 To the best of our knowledge, this is the first study to apply an information-theoretic model to link prediction 
problem in heterogeneous complex networks.

Results
At first, we introduce some basic definitions including heterogeneous complex network, network-schema, 
meta-path, and path-instance. Then, some discussion are given about the generation and selection of meta-paths 
in heterogeneous complex networks. Afterwards, the proposed model would be introduced.

Terminology Definitions. Definition 1. A heterogeneous complex network is defined as a graph 
J R δ ξ= < >G V E, , , , , , where V is the set of nodes (objects), E ⊆  V ×  V is the set of relationships, 

= …T T T{ , , , }t1 2  is the set of t >  1 object types, and  = …R R R{ , , , }r1 2  is the set of r >  1 relation types, 
respectively. Two functions δ →V:  and ξ →E:  are defined for assigning a label (object/relation type) to a 
node or an edge, respectively. Note that, in homogeneous complex networks, t =  r =  1.
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Definition 2. Given a heterogeneous complex network, the network schema is defined as a directed graph 
J R=T ( , )G  with an object type mapping function δ →V:  and a relation type mapping function ξ →E: . 

For instance, a well-accepted network schema of DBLP database22 has been shown in Fig. 1. As it is indicated 
J R= Author Paper Venue Term{ , , , } and  is composed of seven relation types appeared above the edges.

Definition 3. A meta-path   is defined on the network schema TG. More formally,   is a sequence of entity types 
in the form of ′ → ′ → … → ′

′ ′ ′−T T T
R R R

l1 2
l1 2 1  which connects an object type of ′T1 to that of ′Tl  through a composite rela-

tion. The value of l is called the meta-path length.

Definition 4. Let   be a meta-path. We call p =  (a1, … , al) a path instance of   between a1 and al where δ(ai) =  ′Ti , 
∀ i ∈  {1, … , l} and ξ(ai, ai +  1) =  ′Ri , ∀ i ∈  {1, … , l −  1}. In Fig. 2, three meta-path examples on DBLP network 
schema of Fig. 1 are shown. These meta-paths can be employed to exploit similarities between any two authors. In 
other words, each meta-path could act as a similarity search pattern between two authors.

Meta-path generation and selection issues. Referring to the network schema of DBLP, as shown 
in Fig. 1, assume that the aim is to find all possible meta-paths describing co-authorships dependencies. For 
even-length meta-paths, i.e. l =  2k, the possible number of meta-paths would be 4k−1. Similarly, for odd-length 
meta-paths, i.e. l =  2k +  1, an additional P would be added to an even-length meta-path which leads to the total 
number of 4k−1 odd-length meta-paths. Thus, the number of possible meta-paths with maximum length of L is:

∑
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 −
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− −2 4 2
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4 1
k
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In general, for a star network schema with K different object types, the total number of meta-paths is equal to 
θ





K

L
2 . To find the best set of informative meta-paths, an exhaustive search is required in a search space with size 

of θ(KL) which is a NP-Complete problem10,12. Thus, as the network schema grows in size, generating all inform-
ative meta-paths as well as selecting the best set among them become a nontrivial issue. However, all the possible 
meta-paths might not necessarily provide the proper information or meaningful semantics. In addition, it has 
been found that a typical meta-path might lose its importance as its length increases16. Taking these facts into 
account, the negative impact of highly computational time meta-path generation and selection issues could be 
reduced by using a prior knowledge. It is important to mention that, using the most informative meta-path could 
not entirely explore semantic dependencies between node pairs. So, the contribution of selected meta-paths leads 
to more accurate link prediction. We will address the above mentioned issue in experimental results.

However, employing multiple meta-paths raises another challenging issue that is how they could be contrib-
uted with different semantics. For instance, assume DBLP network schema, as shown in Fig. 1, is given in order to 
investigate co-authorship dependencies between a pair of authors, namely (Ai, Aj). Three different dependencies 
with three various semantics between Ai and Aj are demonstrated in Fig. 3. The first dependency is described by 

Figure 1. A typical DBLP network schema with four entity types and seven relation types. 

Figure 2. Three meta-path examples for co-authorship prediction in DBLP network. The first meta-path 
seeks the similarity of two authors based on the citations between them. While the second and the third meta-
paths consider the published papers between two authors with the same keyword(s) and same publisher as the 
similarity search patterns, respectively. A, P, V, and T stand for Author, Paper, Venue, and Term, respectively.
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the first meta-path, 1 , where two object types, i.e. papers (P) and terms (T), declare the authors dependencies 
based on their publications with similar keywords. Roughly speaking, such dependency states that two authors 
are more likely to have a future collaboration if they publish more papers with similar keywords. Through the 
second meta-path, 2, the authors dependencies are defined by their direct citations. The third dependency is 
defined by the third meta-path, 3 , which is an asymmetric meta-path including three object types. Accordingly, 
the published papers by the same venue and the published papers with the probable similar keywords describe 
another semantic dependency between two authors. Since each meta-path has its own number of object types 
with a specific length, integrating all the semantic information provided by each meta-path is not 
straightforward.

Meta-path based Mutual Information Model for Link Prediction. In the literature of graph the-
ory, many topological graph measures have been proposed to characterize the structural information through 
measuring the graph complexity. Furthermore, it has been well investigated that information-theoretic measures 
based on graph entropies provide positive structural information and meaningful interpretations23. To obtain 
such graph entropy measures, some graph invariants should be considered like the number of vertices, the vertex 
degree sequences, extended degree sequences, eigenvalues, and connectivity information24.

Accordingly, a number of studies has been done to analyze complex networks by introducing some graph 
entropy measures24–26. Moreover, graph entropy has been recently employed in the problem of link prediction in 
complex networks. In ref. 19, a mutual information similarity index was proposed where common neighbors is 
used to provide structural information to estimate the links likelihoods. In ref. 20 structural information, includ-
ing common neighbors, were employed to facilitate the link prediction task. The extension of this work has been 
employed in a weighted complex network21. These entropy-based similarity indices have been evaluated over a 
number of complex networks and compared to common proximity measures. The results show that the proposed 
entropy-based indices improve the prediction accuracy with reasonable lower computational time complexity.

Inspiring from these studies, we have developed a new mutual information model for link prediction in het-
erogeneous complex networks. The proposed model estimates the link likelihoods via introducing the meta-path 
based link entropy following a given meta-path. Furthermore, it provides an information-theoretic framework 
such that multiple meta-paths are employed to facilitate link prediction by providing different semantic infor-
mation about the target node pairs. Before introducing the proposed model, we recall two basic definitions from 
information theory27.

Definition 5. Let X be a random variable and x be an outcome of X with probability p(x). Then, the self-information 
of x quantifies the uncertainty of the outcome x and is defined as follows:

= = −I x
p x

p x( ) log 1
( )

log ( )
(1)

Definition 6. Let X and Y be two random variables and x and y be their outcomes, respectively. The mutual 
information of X and Y measures the amount of reduction in uncertainty of the outcome x when the outcome y is 
known, or vice versa, and is defined as follows:

Figure 3. Three different co-authorship dependencies based on three meta-path over DBLP network 
schema. 
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=

= − − −
= −

I x y
p x y
p x
p x p x y

I x I x y

( ; ) log
( )
( )

log ( ) ( log ( ))
( ) ( ) (2)

where I(x|y) is the conditional self-information of outcome x when outcome y occures.
Now, consider link prediction in a heterogeneous complex network. We start with the case when a single 

meta-path  = …T T Ti k j is given. We define the likelihood score of a node pair (x, y) with δ(x) =  Ti and δ(y) =  Tj 
as:

 = − |S I L( ) (3)xy xy
1

where Lxy
1  denotes the event of (x, y) being connected and |I L( )xy

1  is the conditional self-information of Lxy
1  when 

the meta-path   is given. Eq. (3) indicates the link likelihood of node pair (x, y) as the amount of uncertainty of 
the event Lxy

1  based on the provided information by  . According to Definitions 5 and 6, the smaller the value of 
|I L( )xy

1  , the higher the probability of event Lxy
1 . Recalling Definition 6, the likelihood score can be rewritten as:

= −S I L I L( ; ) ( ) (4)xy xy xy
1 1

where I L( ; )xy
1   is the mutual information of the event Lxy

1  and the given meta-path  . We estimate I L( )xy
1  by a 

prior probability that the node pair (x, y) has a link.

Definition 7. Let (x, y) be a node pair such that δ(x) =  Ti and δ(y) =  Tj. kx
j denotes the j-typed neighbor size of x, 

i.e. the number of adjacent nodes with type Tj to x. Similarly, Mij denotes the number of possible links between the 
object of type Ti and that of type Tj. According to the above definition, when δ(x) =  Ti and δ(y) =  Tj, then the prior 
probability of Lxy

1  is calculated as:

= −

= −

=

−

p L p L

C

C

p L

( ) 1 ( )

1

( ) (5)

xy xy

M k
k

M
k

yx

1 0

1

ij x
j

y
i

ij
y
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Hence, it leads to I L( )xy
1 . In order to calculate I L( ; )xy

1  , let = ...p a a a( )z z
i

z
k

z
j  and J P be a path instance and the set 

of all path instances of  , respectively, where δ =a T( )z
u

u. Since all the path instances of   are independent of 
each other, the likelihood score would be rewritten by:

PP

J P

∑
= −

= −
∈

S I L I L

I L p I L

( ; ) ( )

( ; ) ( )
(6)

xy xy xy

p
xy z xy

1 1

1 1

z

It is worthy to mention that =a xz
i  and =a yz

j  for all J P∈pz . In order to calculate the mutual information 
I L p( ; )xy z

1 , one may use Eq. (2) and get = − |I L p I L I L p( ; ) ( ) ( )xy z xy xy z
1 1 1 . Alternately, we estimate the above mutual 

information by calculating the occurence probability of pz. Without loss of generality, let = …p a a az z z z
l1 2 . Then, 

assuming that there is not any correlation between the path links, p(pz) can be estimated by:

∏≈
=

−

+( )p p p L( )
(7)z

i

l

a a
1

1
1

z
i

z
i 1

where +p L( )
a a
1

z
i

z
i 1  is calculated using Eq. (5). Therefore, the mutual information I L p( ; )xy z

1  is estimated as:

∑=
=

−

+( )I L p I L( ; )
(8)xy z

i

l

a a
1

1

1
1

z
i

z
i 1

In Eq. (6), we have considered the case that only a single meta-path is given. As discussed in the second section of 
the Results, in real world heterogeneous complex networks, it is a difficult task to obtain a proper meta-path that 
could explain all the nodes dependencies. Now, we extend Eq. (6) to the case of multiple meta-paths. Let  be the 
set of selected meta-paths. Then, the likelihood score of the node pair (x, y) is calculated by:

M

P M
P

P∑ ω=
∈

S S
(9)

xy xy

where ω  is the contribution weight of each meta-path such that ω∑ = 1, and Sxy
 is calculated using Eq. (6). The 

following example facilitates the understanding of the MMI.
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Example 1. Consider the network as shown in Fig. 4. Let us calculate the likelihood score of (A2, A6) based on the 
meta-path = APVPA  for co-authorship prediction. The two path instances of   are p1 =  (A2P1V2P5A6) and 
p2 =  (A2P3V1P4A6). Using Eq.  (5), we get = − = .I L( ) log(2/21) 1 02A A

1
2 6

. Similarly, we haveI L( )A P
1

2 1
 

= = .log(35/2) 1 24, = = .I L( ) log(10/3) 0 52P V
1

1 2
, = = .I L( ) log(10/3) 0 52V P

1
2 5

, = =I L( ) log(1190/134)P A
1

5 6
 

.0 94,  = = .I L( ) log(1190/198) 0 77A P
1

2 3
,  = = .I L( ) log(10/2) 0 69P V

1
3 1

,  = = .I L( ) log(10/2) 0 69V P
1

1 4
,  and 

= = .I L( ) log(39270/9510) 0 61P A
1

4 6
. Now, using Eqs (6) and (8), the final link likelihood score is obtained as 

 = .S 4 96A A2 6
. This indicates that the link likelihood existence of (A2, A6) is about twice of (A3, A5) which has a 

likelihood score of 2.61. The above calculations are summarized in Table 1.

Experimental Results. In order to evaluate the proposed approach, DBLP network data28 has been used for 
two different experiments. Firstly, link prediction between similar object types is considered based on two link 
prediction tasks as co-authorship and citation prediction problems. In the first problem, the objective is to predict 
future scientific collaborations between the authors. While the second problem copes with measuring the docu-
ments similarity. For each of the mentioned problem, two meta-paths have been selected. Accordingly, { , }1 2   
for the first and { , }3 4   for the second problem have been used in the experiments. They have high significance 
levels for predicting future co-authorships13 and citations4 relations, respectively, as shown in Table 2. ⊕1 2   
and  ⊕3 4 indicate the combination of two meta-paths. The prediction accuracy of the MMI based on the first 
experiment has been compared with other popular meta-path based proximity measures.

In the second experiment, we consider recommending publishers to the authors as a link prediction task 
between two classes of objects. For this purpose, we have extracted a bipartite network between the authors and 
venues from the original DBLP network. Accordingly, we have selected the meta-path = AVAV5  to define the 
dependencies for each author-venue pair. The performance of the MMI method has been compared with five 
LCP-based similarity indices8 which have been found efficient in bi-partite networks.

For both experiments, four samples of DBLP network, namely S3, S5, S7, and S9, have been selected each 
of which contains the authors with 3, 5, 7, and 9 published papers, respectively. In the section of Methods, 

Figure 4. An illustration example of calculating the MMI based on the meta-path  = APVPA for co-
authorship prediction. Two path-instances of   have been shown in filled colored nodes and edges.

Meta-Path () Path Instance (p) (x, y) I L( )x y,
1 SA A2, 6

APVPA

A2P1V2P5A6

(A1, P1) log(35/2) =  1.24

∑ − = . − . = .( )L I L 5 98 1 02 4 96x y A A,
1

2, 6
1

(P1, V2) log(10/3) =  0.52

(V2, P5) log(10/3) =  0.52

(P5, A6) log(1190/134) =  0.94

A2P3V1P4A6

(A2, P3) log(1190/198) =  0.77

(P3, V1) log(10/2) =  0.69

(V1, P4) log(10/2) =  0.69

(P4, A6) log(39270/9510) =  0.61

Table 1.  Summarizing the calculation steps for Example 1 to calculate the likelihood score of (A2, A6).
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some detailed information of the network as well as the network samples are provided. For all the experiments, 
Precision has been used to evaluate the prediction accuracy.

Prediction between similar object types. The prediction accuracy under Precision has been reported for 
co-authorship and citation prediction problems in Tables 3 and 4, respectively. In both problems, the MMI over-
comes all other indices by employing either the first or the second meta-paths in most cases with higher Precision 
rate. These results are clearly indicated for S3 and S5. When the network gets enriched by considering more 
publications for each author, i.e. using S7 and S9, the Precision rate of all indices becomes more competitive. The 
reason is that the MMI relies on the information of meta-path and its relevant path-instances through measur-
ing the link entropy. Meanwhile, other indices do not consider the information provided by the available paths, 
rather they are dependent on the amount of reachability between two nodes. Therefore, it can be inferred that 
the MMI could better capture the similarities between the nodes with lack of efficient structural and reachability 
information.

Meta-path Description

 = APPA1 The source author cites the target one.

= APVPA2 The source and target authors have published papers in the same venue.

= PAP3 Two papers have the same author.

= PAPAP4 The authors of the source and target papers have also similar publications.

Table 2.  Four selected meta-paths for co-authorships and citations prediction tasks over DBLP network.

Network Sample SimRank Meta-path PathSim RandomWalk HeteSim MMI

S3 0.5106
1 0.5018 0.5691 0.0325 0.5600

2 0.5209 0.5813 0.4872 0.6304

⊕ — — — 0.8228

S5 0.5322
1 0.2214 0.5712 0.0830 0.5888

2 0.6580 0.6099 0.6176 0.7795

⊕ — — — 0.8730

S7 0.2997

1 0.3693 0.3230 0.0512 0.3779

2 0.6477 0.5510 0.3823 0.7330

⊕ — — — 0.8437

S9 0.2098
1 0.4512 0.4502 0.1125 0.4532

2 0.7488 0.5382 0.6731 0.8625

⊕ — — — 0.8919

Table 3.  The comparison of prediction accuracy for co-authorships prediction measured by Precision 
(Top-100) based on four network samples and two selected meta-paths. The results are the average of 100 
independent runs and the best results are in bold. = APPA1 , = APVPA2 , and ⊕  denotes  ⊕1 2.

Network Sample SimRank Meta-path PathSim RandomWalk HeteSim MMI

S3 0.2915

3 0.2778 0.2132 0.1924 0.3609

4 0.3462 0.3186 0.2460 0.3942

⊕ — — — 0.4392

S5 0.3049
3 0.3901 0.2411 0.3200 0.4495

4 0.4181 0.3349 0.3719 0.4321

⊕ — — — 0.4987

S7 0.1893

3 0.1588 0.1558 0.2459 0.2730

4 0.2404 0.2836 0.3543 0.2824

⊕ — — — 0.3896

S9 0.2538

3 0.2573 0.2546 0.2048 0.3268

4 0.2374 0.2310 0.2514 0.2672

⊕ — — — 0.4004

Table 4.  The comparison of prediction accuracy for citation prediction measured by Precision (Top-100) 
based on four network samples and two selected meta-paths. The results are the average of 100 independent 
runs and the best results are in bold.  = PAP3 ,  = PAPAP4 , and ⊕  denotes ⊕3 4  .
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Another interesting observation is that although the Precision rates of all meta-path based measures are close 
to that of SimRank in many cases through employing each of meta-paths, the MMI benefits both of them, i.e. 1  
and 2 , by integrating their information. As a consequence, the MMI overcomes the other indices in term of the 
Precision when both meta-paths are employed. Accordingly, by integrating both meta-paths, the Precision rate of 
the MMI is increased about 20%, 9%, 11%, and 3% in S3, S5, S7, and S9, respectively, for co-authorship prediction 
problem. For the citation prediction problem, such improvements are about 4%, 6%, 10%, and 7%, respectively. 
The results indicate that, the Precision rates of the citation predictions are lower than those of co-authorships for 
all indices. However, the citation prediction problem has been known to be more challenging than the 
co-authorship predcition problem as the former one is a directed link prediction task with more noisy connec-
tions. Moreover, it is not cleared where the links between the papers could be determined in the network, in 
advance. This is in contrast with a co-authorship network where authors are more likely to form scientific com-
munities with each other that would result in more accurate predictions. It should be noticed that SimRank has 
been considered as a homogeneous proximity measure since its accuracy does not depend on the employed 
meta-path.

The performance of the MMI, when multiple meta-paths are given, depends on the contribution weight of 
each meta-path, as represented in Eq. (9). Since we have selected two meta-paths for each problem in the first 
experiment, the above equation for co-authorship prediction problem can be rewritten as:

   α α= + −S S S(1 ) (10)xy xy xy
{ , }1 2 1 2

To study the impact of α on the Precision of the MMI, it has been changed from 0 to 1. The the results are 
depicted in Fig. 5 for both problems. Referring to Table 3, the meta-path 2  is more informative than 1. It can 
also be drawn from the Fig. 5 that the Precision rate is decreased when we simply give high contribution weight 
to the second meta-path, 2 . That is, the higher the Precision rate, the more the proper selection of α. In practice, 
the best value of α is obtained in α ≈  0.3. The observation for citation prediction problem is similar except that the 
best value of α is found in α ≈  0.4. That is the effectiveness of 3 and  4 in expressing citation relations are more 
close to each other compared to 1 and 2  in predicting co-authorship relations.

To study the impact of choosing the number of top-L candidate links on the Precision rate, L has been changed 
from 10 to 100 and the average results of 100 independent trials have been found, as shown in Figs 6 and 7. The 
results demonstrate that the MMI still keeps its higher ability of retrieving latent links when L changes, spe-
cially using the more informative meta-path. Another interesting achievement is that the stability of the MMI in 
retrieving the latent links when L changes is improved by integrating both meta-paths. As depicted in Fig. 8, the 
MMI overcomes all other indices in term of Precision while it is robust to the changes of L.

Prediction between different object types. The Precision performance of the MMI in recommending relevant 
publishers to the authors is reported in Tables 5 and 6, based on top-100 and top-10% rated links, respectively, and 
compared with LCP-based methods. As the extracted network for the second experiment is a bi-partite network 
between the authors (A) and venues (V), the possible meta-paths are restricted to the form of (AV)l where 2l −  1 
shows the length of the meta-path. Since the increase of l does not bring any additional meaning or more inform-
ative meta-paths, we have selected l =  2 in the experiment. Therefore, the only meta-path employed by the MMI 

Figure 5. The illustrations of the influence of α on the Precision of the MMI for predicting co-authorships 
(left) and citations (right) when both meta-paths are taken into account. The results are the average of 100 
independent trials. Two special cases are α =  0.0 and α =  1.0 where only 1  ( )3  or 2  ( )4  is employed, 
respectively.
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is  = AVAV5 . As shown in Table 5, the MMI obtains considerably better Precision rates compared to LCP-based 
methods when S3 and S5 are used. By considering top-10% rated links, as shown in Table 6, the Precision rate of 
the MMI is still better than the LCP-based methods or strongly competitive, based on S3 and S5, respectively. This 
observation confirms our discussion in the previous experiment on the ability of the MMI to desirably retrieve 

Figure 6. The effect of choosing the number of candidate links, L, on the Precision rate in co-authorship 
prediction problem. The first and the second rows show the results of employing 1  and 2, respectively.

Figure 7. The effect of choosing the number of candidate links, L, on the Precision rate in citation 
prediction problem. The first and the second rows of plots show the results of employing 3  and  4, 
respectively.
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latent links in the presence of sparse or noisy links. On the other hand, while the MMI keeps its high Precision 
rates on S7 and S9, the Precision rates of LCP-based methods are substantially increased. This could be viewed as 
the result of forming strong local communities in S7 and S9 since more relations between the authors and venues 
exist. The impact of choosing the number of top-L candidate links has also been studied and depicted in Figs 9 
and 10. It is obvious that as the value of L changes, the MMI brings higher or competitive Precision rates even by 
employing a restricted and single meta-path. However, as demonstrated in the previous experiment, the Precision 
rate of the MMI would be improved if other informative meta-paths are available to be mutually contributed.

Discussion
There are two sources of structural information for link prediction in complex networks. For a candidate node 
pair, one can explore the neighborhood properties to extract structural data, such as common neighbors, which 
can be used to measure the link likelihood. On the other hand, similarity search could be performed through 
the existing paths. For instance, counting the number of available paths between the candidate pairs. However, 
when the network becomes heterogeneous, considering only the amount of reachability would not be sufficient 
to exploit nodes similarities. In other words, measuring the information provided by the network heterogeneity, 
through exploring different nodes or relation types, might lead to extract more detailed information to enhance 
the similarity search and make the predictions more accurate (Fig. 11).

Figure 8. The effect of choosing the number of candidate links, L, on the Precision rate of the MMI for co-
authorship prediction (left) and citation prediction (right) when both meta-paths are given. 

Network Sample CAR CJC CAA CRA CPA MMI

S3 0.7446 0.7048 0.7320 0.7592 0.7560 0.8276

S5 0.7872 0.8528 0.7812 0.7496 0.8334 0.8625

S7 0.8415 0.7867 0.8505 0.8573 0.8589 0.8433

S9 0.8338 0.8871 0.8726 0.8290 0.8721 0.8395

Table 5.  The comparison of prediction accuracy for publisher recommendation measured by Precision 
(Top-100) based on four network samples. The results are the average of 100 independent runs and the best 
results are in bold. We have selected an asymmetric meta-path  = AVAV5  to be employed by the MMI.

Network 
Sample CAR CJC CAA CRA CPA MMI

S3 0.6071 0.5675 0.5954 0.5983 0.6162 0.6674

S5 0.6928 0.7514 0.6773 0.6497 0.7429 0.7480

S7 0.7701 0.7221 0.7597 0.7316 0.7409 0.7574

S9 0.7913 0.7958 0.7931 0.7623 0.7855 0.7693

Table 6.  The comparison of prediction accuracy for publisher recommendation measured by Precision 
(Top-10%) based on four network samples. The results are the average of 100 independent runs and the best 
results are in bold. We have selected an asymmetric meta-path  = AVAV5  to be employed by the MMI.
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We have proposed a new similarity measure based on mutual information model in heterogeneous complex 
networks. The proposed model introduces an information-theoretic framework in which link entropy is defined 
as a semantic measure for link prediction. This measure is reinforced by the number of path instances of an 
employed informative meta-path. Moreover, to obtain more accurate predictions, the mutual contribution of 
meta-paths are utilized with associating a contribution weight to each of them. To investigate the efficiency of 
the proposed model, different experiments were conducted and compared with three popular meta-path based 
link predictors, an efficient path-based homogeneous link predictor, and five LCP-based link predictors. We have 
selected four samples from DBLP network which are differed in the amount of reachability between the node 
pairs.

•	 Comparing with other classical indices, the proposed model can efficiently predict links through measuring 
the information along the paths rather relying on the number of path instances. Even when the number of 
node connectivities in the network become low, the model correctly predicts the links. This is confirmed by 
two network samples S3 or S5 in our studies. In other words, when the network is partially noisy, our model 
keeps robust against noisy connections.

•	 The stability analysis of the proposed model has been addressed through changing the contribution weights 
of the meta-paths as well as choosing the number of top candidate links. The results indicate that integrat-
ing multiple meta-paths considerably improves the stability of the model. Also, the prediction performance 
improves substantially in term of Precision. It is concluded that employing multiple meta-paths with different 
semantic information captures more nodes dependencies.

•	 In case of employing multiple meta-paths, a heuristic parameter tuning is required to be applied on the con-
tribution weights of meta-paths. Grid search, random search, gradient-based search, and Bayesian optimiza-
tion are among the most popular parameter optimization heuristics29,30. However, a naive solution could be 
used to obtain the contribution weights using a prior structural information. For example, one can count the 
total number of path instances of each meta-path, say ci, between all the observed links in the network. Then, 
the contribution weight of each meta-path i could be found as ci/∑ ici. For instance, we obtained ω = .0 12

1
 

and ω = .0 88
2

 when S9 has been utilized, which are not far from the best exploited values of α, in practise.

Figure 9. The effect of choosing the number of candidate links, L, on the Precision rate (Top-100) in 
publisher recommendation problem. The results of the MMI are obtained based on a single meta-path 

= AVAV5 .

Figure 10. The effect of choosing the number of candidate links, L, on the Precision rate (Top-10%) in 
publisher recommendation problem. The results of the MMI are obtained based on a single meta-path 
 = AVAV5 .
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•	 Although, meta-path based link predictors have a moderate performance in some cases using the less inform-
ative meta-path compared to SimRank, the Precision rate considerably improves when more informative 
meta-path is employed. This result indicates that a link predictor undesirably might lose some semantic infor-
mation of links when a heterogeneous network is projected into an equivalent homogenous one. It can be 
concluded that the prediction performance would be improved by considering the heterogeneous informa-
tion if a proper meta-path or a set of informative meta-paths could be found or contributed to enhance the 
similarity search.

•	 We have investigated through experimental results that by reducing the heterogeneous network into a bi-par-
tite one, the proposed model still keeps its efficiency and performability. Such reduction might be continued 
to a completely homogeneous network. More formally, suppose x and y be a node pair in a homogeneous 
complex network. Let P denotes a simple path between x and y with length l, ≤P L be the set of all simple path 
with l ≤  L, and L is the maximum meta-path length. Now, the MMI could be specialized to act as a homoge-
neous link predictor by re-writing the Eq. (9) as follows:

∑ ω=
∈

≤

≤
S S

(11)
xy
P

P P
P xy

PL

L

Therefore, the amount of information through the simple paths can be measured in term of link entropy in homo-
geneous networks as well.

Methods
Problem Definition and Algorithm. Suppose a heterogeneous complex network is given as 

J R δ ξ= < >G V E, , , , , , as stated in Definition 1. Assuming δ(u) =  Ti for all source nodes u and δ(v) =  Tj for all 
target nodes v, Eij and Uij are denoted as the set of observed target links and its universal set, respectively. 
Denoting by Uij\Eij as the set of non-existent links, the aim of link prediction is to find a score function f(x, y) =  s 
that assigns a similarity score s to a non-existing link (x, y).

Data. As mentioned before, DBLP network data has been employed28 in our experiments which is available 
to download in ref. 31. This data set originally contains 2,092,356 papers with 8,024,869 citations, and 1,712,433 
authors with 4,258,615 collaborations31. In Fig. 12, some detailed information of the network has been depicted 
for 15 years of data, from 2000 to 2014. As an example, we have selected four samples from this network as S3, S5, 
S7, and S9 in which there are 3, 5, 7, and 9 publications per author, from 2010 to 2014, respectively. The more the 
number of papers per each author, the better link reliability in the network. Similarly, the lesser the number of 
papers per each author may cause to some noisy information of some observed parts of the network.

In order to evaluate the prediction accuracy of link predictor, Eij is divided into a training set, Eij
T, and a test set, 

Eij
P such that ∪ =E E Eij

T
ij
P

ij and ∩ = ∅E Eij
T

ij
P . In each network sample, Eij

T and Eij
P include the observed links 

from 2010 to 2012 and from 2013 to 2014, respectively. In this regard, three years of data has been used for train-
ing phase and the last two years has been selected for the test. Table 7 shows some statistics of four network 
samples.

Figure 11. Two sources of information for similarity search in complex networks. In a heterogeneous 
network, the available information is enriched when multiple nodes/relation types are being to be visited.
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Evaluation Metrics. To measure the prediction accuracy, two evaluation metrics for link prediction, AUC 
and Precision, are commonly used. The AUC (area under the receiver operating characteristic curve) is found by 
the probability that a randomly chosen missing link (i.e. positive pairs in test set) is given a higher score than a ran-
domly chosen non-existent link32. However, this measure has been found as a deceptive evaluation measure32,33,  
epecially in imbalanced data problems. The major drawback of AUC evaluation is that it is required to define a 
negative set, which is composed of all the missing (non-observed) links in the network except for the removed 
links for the test. While it is not known in advance which of the missing links are truly negative, undetected, 
or will appear in future. Therefore, the negative set can not be properly determined in the link prediction task. 
Ignoring the above fact causes that the AUC evaluation gets biased towards a negative set in unbalanced datasets. 
Also, such evaluation gives more importance to the methods that overfit the network structure rather than offer 
a more general prediction ability. In this regard, the prediction performance of all methods in both experiments 
have been measured under the Precision which is a measure of correctness achieved in positive prediction.

To obtain Precision, a similarity score is calculated for each node pair. After sorting the scores, if there are Lr 
links belonging to the test set among top-L candidate links, then Precision is obtained as ref. 32:

=Precision L
L (12)

r

The higher the Precision rate, the more the possibility in retrieving top-ranked latent links.

Benchmarks. For performance comparisons, nine popular link predictors have been selected from three 
classes of methods. PathSim16, HeteSim14, and RandomWalk13 are among meta-path based methods, SimRank15 is 
basically a homogeneous link predictor, and CAR, CJC, CAA, CRA, and CPA are five LCP-based link predictors8 
which are reviewed in the following.

PathSim. Given a symmetric meta-path  , PathSim gives a similarity score to a node pair (x, y) with the same 
type as:

Figure 12. Some detailed information of DBLP network for 15 years, from 2000 to 2014. The published 
papers between 2010 to 2014 have been selected for experimental results.

Network Sample Nodes Papers Venues

S3 89643 244169 43733

S5 35832 170035 35443

S7 18856 127270 30156

S9 12174 106267 27132

Table 7.  Some statistics of the selected network samples.
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P

P P
� �
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=
× | ∈ |

| ∈ | + | ∈ |
PathSim x y

p p

p p p p
( , )

2 { : }

{ : } { : } (13)

x y x y

x x x x y y y y

where pi j  denotes the path instance between i and j. Simply, PathSim makes balance the number of path 
instances between the node pair (x, y) (numerator) by considering the number of path instances between them-
selves (denominator).

HeteSim. Assume   is a meta-path as in Definition 3. Let  i j,  denotes the composite relation form of   as 
 = … R R Ri j i j, 2 . Then, HeteSim score between a node pair (x, y) is calculated as:

δ
| =







|

‑
HeteSim x y

H x y x y
x y x y

( , )
( , ) and have different types

( , ) and are same typed objects (14)
i j

i j
,

,


where the first case is calculated by:

 ∑∑| =
×

|
= =

+ −( )H x y
k k

HeteSim O I( , ) 1 ,
(15)

i j
x
out

y
in

t

k
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k

x t
R

y z
R

i j,
1 1

, , 1, 1

x
out

y
in

i j

and the second one is 1 if x and y are the same, otherwise 0. In the above equations, O(xRi) and I(yRj) denote the 
out- and in-neighbors of x and y with the size of kx

out  and ky
in, and are defined as …O O{ , , }x

R
xk
R

1
i

x
out

i  and 
…I I{ , , }y

R
yk
R

1
j

y
in
j , respectively14.

RandomWalk. Given a meta-path  , random walk measure for a node pair (x, y) is defined as:

=
.

RandomWalk x y
PC x y
PC x

( , )
( , )
( , ) (16)






where PC x y( , )  is the number of path instances of   between x and y and .PC x( , )  is the number of path 
instances of   starting from x.

SimRank. For a given node pair (x, y), the SimRank score is equal to 1 if x =  y. Otherwise, it is calculated by:

∑∑=
× = =

SimRank x y C
k k

SimRank I I( , ) ( , )
(17)x

in
y
in

i

k

j

k

xi yj
1 1

x
in

y
in

where kx
in and ky

in denote the number of in-neighbors of x and y, respectively. Iuz is z-th in-neighbor of u. The value 
of constant C is in the range of [0, 1]. When there are no in-neighbors for either x or y, the score becomes 0. As 
SimRank has been basically proposed in homogeneous complex networks in our experiments, we consider the 
authors as nodes and their co-authorships as edges and omit the other object/relation types.

LCP-based methods. Assuming ∩=CN x y x y( , ) ( ) ( )   and  x( ) denotes the neighborhood set of x, five 
LCP-based methods are defined as follows:

= ×CAR x y CN x y LCL( , ) ( , ) (18)

 ∪
=CJC x y CAR x y

x y
( , ) ( , )

( ) ( ) (19)

∑
∩

γ
=

∈
CAA x y

s
s

( , )
( )

log ( ) (20)s x y( ) ( ) 2  

∑
∩

γ
=

∈
CRA x y

s
s

( , )
( )
( ) (21)s x y( ) ( )  

= + + +CPA x y e x e y e x e y CAR x y CAR x y( , ) ( ) ( ) ( ( ) ( )) ( , ) ( , ) (22)2

where LCL denotes to the number of local community links8 and γ(s) refers to the set of common neighbors of x 
and y adjacent to s. Also, e(x) is the external degree of x respect to the neighbors of x not belonging to the com-
mon neighbors of x and y. e(y) is defined similarly.
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