SCIENTIFIC REPORTS

Received: 25 August 2016 Accepted: 10 February 2017 Published: 21 March 2017

OPEN Global temperature change potential of nitrogen use in agriculture: A 50-year assessment

R. K. Fagodiya, H. Pathak, A. Kumar, A. Bhatia & N. Jain

Nitrogen (N) use in agriculture substantially alters global N cycle with the short- and long-term effects on global warming and climate change. It increases emission of nitrous oxide, which contributes 6.2%, while carbon dioxide and methane contribute 76% and 16%, respectively of the global warming. However, N causes cooling due to emission of NO_{x1} which alters concentrations of tropospheric ozone and methane. NO, and NH₃ also form aerosols with considerable cooling effects. We studied global temperature change potential (GTP) of N use in agriculture. The GTP due to N₂O was 396.67 and 1168.32 Tg CO₂e on a 20-year (GTP₂₀) and 439.94 and 1295.78 Tg CO₂e on 100-year scale (GTP₁₀₀) during years 1961 and 2010, respectively. Cooling effects due to N use were 92.14 and 271.39 Tg CO₂e (GTP₂₀) and 15.21 and 44.80 Tg CO₂e (GTP₁₀₀) during 1961 and 2010, respectively. Net GTP₂₀ was 369.44 and $1088.15 \text{ Tg} \text{ CO}_2 \text{e}$ and net GTP₁₀₀ was 429.17 and 1264.06 Tg CO₂e during 1961 and 2010, respectively. Thus net GTP_{20} is lower by 6.9% and GTP_{100} by 2.4% compared to the GTP considering N₂O emission alone. The study shows that both warming and cooling effects should be considered to estimate the GTP of N use.

Nitrogen is the most limiting nutrient controlling the primary production of agricultural systems. Intensively cultivated systems require external application of N to increase and sustain global food production. Consumption of fertilizer N has increased globally from ~12 Tg in 1960 to ~113 Tg in 2010¹. If current N consumption trends continues, considerably higher amount of fertilizer N will be used in agriculture to provide food for an additional 2 billion people by 2050². The N cycle involves five steps i.e., N fixation $(N_2 \rightarrow NH_3/NH_4^+)$, nitrification $(NH_3/NH_4^+ \rightarrow NO_3^-)$, assimilation (uptake of NH_4^+ and NO_3^- into plant tissues), ammonification (organic $N \rightarrow NH_3$) and denitrification $(NO_3^- \rightarrow N_2)^3$. During the N cycle several reduced (NH₃) and oxidised N compounds (NO_y, NO, N₂O, NO₃) are emitted to the atmosphere affecting the climate system⁴.

Climate change due to emission of greenhouse gases (GHGs) viz. carbon dioxide (CO₂), methane (CH₄) and nitrous oxide (N2O) contributing 76.0%, 16.0% and 6.2%, respectively is likely to affect agricultural productivity and food security adversely⁵. Addition of N in agricultural soil alters the fluxes of $GHGs^{6-8}$. The reactive N (Nr) has direct as well as indirect effects on N₂O emission from agricultural soil⁹⁻¹². Emission of N₂O is a major concern because of its long atmospheric lifetime (about 116 years), higher global warming potential (GWP) i.e., 310 times that of CO₂⁵ and high global temperature change potential (GTP) of 290 on 100-year basis¹³.

The GWP is the global mean radiative forcing of 1 kg pulse emissions of a greenhouse gas relative to 1 kg of reference gas i.e., CO_2^{14} . The GWP is an index of time-integrated radiative forcing. However, it does not give a quantitative information on effect of GHG emission on global temperature^{13,15,16}. The GTP is the global average temperature change at time t due to emission of a GHG relative to CO₂ emission^{13,17}. The GTP is directly related to surface temperature changes as a result of GHG emission. Thus GTP has an advantage in quantifying temperature change compared to GWP.

In addition to N₂O emission, N use in agriculture results in increased emission of NH₃ and NO_x contributing to climate change indirectly¹⁸. The NO_x impacts global warming by (i) formation of ozone (O_3), which contributes to warming¹⁹ and (ii) removal of CH_4 by hydroxyl radical, thus contributing to cooling²⁰. Moreover, CH_4 enhances ozone formation in the upper atmosphere over longer time-scales. Thus NO_x can also reduce production of O_3 and contribute to cooling²¹. Both NO_x and NH_3 enhance formation of light-scattering sulphate and organic aerosols. NO_x can be oxidised to form nitric acid (HNO₃), which forms aerosols of ammonium nitrate

Centre for Environment Science and Climate Resilient Agriculture, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India. Correspondence and requests for materials should be addressed to H.P. (email: hpathak.iari@ gmail.com)

Gaseous emission process altered by reactive N	Climate forcing element	Process of warming/cooling	Overall impacts
1. N ₂ O	N ₂ O	Emitted from agricultural soils	Warming
2. NOx \rightarrow ozone and CH4	Ozone, CH ₄	NOx perturbs the chemical production and destruction of the greenhouse gases ozone and $\mathrm{CH}_4.$	Cooling
3. NOx \rightarrow aerosol	Nitrate, ammonium aerosol	NOx can enhance the formation of light-scattering aerosols.	Cooling
4. $NH_3 \rightarrow aerosol$	Nitrate, ammonium aerosol	$\rm NH_3$ enhances the formation of light-scattering aerosols.	Cooling
5. N fertilizer \rightarrow CO ₂ flux	CO ₂	On croplands, nitrogen from fertilizer and manure may enhance the storage of ${\rm CO}_2$	Cooling
6. N fertilizer \rightarrow CH ₄ flux	CH_4	On croplands, N from fertilizer and manure may perturb uptake and emission of CH_4 .	Warming

 Table 1. Gaseous emission process altered by reactive nitrogen, climate forcing elements, process of warming/cooling and their overall impacts. Source: Modified from Pinder et al.¹⁸.

Figure 1. Total nitrogen consumption, global temperature change potential (GTP) due to N_2O emission alone and net GTP of N use in global agriculture (A) 20-year and (B) 100-year time-scales.

 (NH_4NO_3) in presence of NH_3^{22} . Moreover, use of N usually increases net primary productivity with more CO_2 fixation in terrestrial systems^{23–26} and enhances carbon sequestration in soil due to more litter production²⁷. The direct and indirect impacts of reactive N (Nr) on global warming and cooling are summarized in Table 1.

The previous reports have evaluated the emission of N_2O only due to N use in agriculture for a short period. However, besides global warming due to N_2O emission, N use in agriculture has other direct and indirect effects causing warming and cooling. To assess the impacts of N use on climate change, therefore, the warming as well as cooling effects should be considered¹⁸. Moreover, such warming and cooling effects need to be assessed for a sufficiently long period as the N use in global agriculture has undergone substantial changes in the last decades. The present study quantified the global warming and cooling potentials of N use in global agriculture during last 50 years (1961–2010).

Results and Discussion

Total N input in global agriculture. Total N input in global agriculture increased by 2.95 times during 1961 to 2010 (Fig. 1 and Table 2). In 1961, total N input from different sources was 74.93 Tg N. Animal manure accounted the highest amount (32.30%), followed by biological N fixation (BNF, 29.33%), crop residues (18.75%), fertilizer N (15.47%) and atmospheric deposition (4.16%) (Table 2). In 2010, total N input was 270.70 Tg N (Fig. 1 and Table 2) and fertilizer N was the largest source (51.38%) followed by animal manure (15.41%), crop residue (14.40%), BNF (12.31%) and atmospheric deposition (6.49%) (Table 2).

	Nitrogen (Tg)	
Sources of N	1961	2010
Fertilizer	11.59 (15.47) ^a	113.40 (51.38)
Animal manure	24.20 (32.30)	34.02 (15.41)
Crop residue	14.05 (18.75)	31.79 (14.40)
Atmospheric deposition	3.12 (4.16)	14.33 (6.49)
Biological N fixation	21.98 (29.33)	27.16 (12.31)
Total	74.93 (100)	220.70 (100)

Table 2. Sources of nitrogen and their contribution in global agriculture. Source: FAOSTAT¹ ^aFigures in the parenthesis are percent of total N.

Figure 2. Emissions of total (direct + indirect) $N_2O(A)$, N_2O from nitrate leaching (**B**), $NH_3(C)$, $NO_X(D)$, $CH_4(E)$ and $CO_2(F)$ from global N use in agriculture during 1961–2010.

GTP of N₂O emission. Total N₂O emission from agriculture increased from 1.44 Tg to 4.25 Tg during 1961 to 2010 (Fig. 2A). The GTP of total N₂O emission, thus increased from 396.67 to 1168.32 TgCO₂e in a 20-year time-scale (GTP₂₀) (Fig. 3A) and from 439.94 to 1295.78 Tg CO₂e in 100-year time-scale (GTP₁₀₀) (Fig. 3B) during 1961 to 2010.

GTP of NH₃ and NO_x emissions. Emission of NH₃ from global agriculture was 9.10 and 26.80 Tg during 1961 and 2010, respectively (Fig. 2C). Emission of NO_x was 0.37 and 1.10 Tg during 1961 and 2010, respectively (Fig. 2D). Cooling impacts due to these emissions of NO_x and NH₃ were 77.58 and 228.50 Tg CO₂e in GTP₂₀ and 0.65 and 1.91 Tg CO₂e in GTP₁₀₀ during 1961 and 2010, respectively (Fig. 4). Aerosol formation from NH₃ contributed 69% of the cooling effect, followed by ozone and CH₄ alternation due to NO_x (22%) and aerosol formation from NO_x (9%)

(Fig. 4A,C,E). However, on GTP_{100} (Fig. 4B,D,F) these cooling impacts of NH_3 and NO_x were smaller compared to GTP_{20} indicating that as the time horizon becomes longer, short-lived compounds have less effects on GTP^{18} .

GTP due to altered CH₄ and CO₂ fluxes. The CH₄ is produced in soil during microbial decomposition of organic matter under anaerobic conditions. Soils submerged under water, rice fields for example, are the potential sources of CH₄. Addition of N increases CH₄ emission by inhibiting CH₄ oxidation and reducing CH₄ uptake in aerobic soils due to increased concentration of ammonium $(NH_4^+)^{28}$ and nitrate $(NO_3^-)^{29,30}$ in soil. This increase in CH₄ flux due to N use in agriculture ranged from 1.14 Tg in 1961 to 3.35 Tg in 2010 (Fig. 2E) contributing to 42.14 and 124.12 Tg CO₂e in GTP₂₀ (Fig. 3G) and 4.44 and 13.80 Tg CO₂e in GTP₁₀₀ (Fig. 3H) in 1961 and 2010, respectively. Fluxes of CO₂ decreased by14.56 Tg to 42.89 Tg during the same period (Fig. 2F) due to increased uptake of CO₂ as a result of N application (Fig. 4G,H).

Figure 4. Cooling or Global temperature change potential (GTP) due to NH_3 aerosol (**A**,**B**), NO_x aerosol (**C**,**D**), NO_x - O_3 - CH_4 (**E**,**F**), CO_2 with N fertilizer (**G**,**H**) and total cooling (**I**,**J**) of global N use in agriculture on 20-year (left) and 100-year (right) times-scales.

Net impact of N use in agriculture on GTP. Net GTP of N use in agriculture was 369.44 and 1088.55 Tg CO_{2e} on GTP_{20} (Fig. 1A) and 429.17 and 1264.06 Tg CO_{2e} on GTP_{100} (Fig. 1B) in 1961 and 2010, respectively. The net GTP_{20} was lower by 6.9% and GTP_{100} by 2.4% compared to the respective GTPs when N₂O emission alone was considered.

Total GTP during 1961–2010. Total warming due to N use in global agriculture during 50 years was 45041.92 Tg CO_2e in GTP_{20} and 43362.98 Tg CO_2e in GTP_{100} (Fig. 5). Emission of N₂O due to N use in agriculture contributed 86% and 99% of this warming in GTP_{20} and GTP_{100} , whereas CH_4 contributed 14% and 1% in GTP_{20} and GTP_{100} , respectively. Total cooling was 8991.28 and 1484.19 Tg CO_2e in GTP_{20} and GTP_{100} , respectively (Fig. 5). The major cooling was due to NH₃ aerosol formation (57.8%) followed by NOx induced O₃ and CH_4 alteration (18.7%), N fertilizer-induced C sequestration (15.8%) and NO_x aerosol (7.7%). However, on GTP_{100} N fertilizer-induced C sequestration contributed the maximum (95.74%) and others were marginal.

The net GTP_{20} was 36050.64 Tg CO₂e i.e., 6.84% lower and GTP_{100} was 41878.79 Tg CO₂e i.e., 2.45% lower compared to the respective GTPs when warming due to N₂O emission alone was considered.

Figure 5. Total Global temperature change potentials of global N use in agriculture in 50 year on 20-year (left) and 100-year (right) times-scales.

Sl. No.	Parameters	Emission/uptake factor	Unit	Source
1	Direct N ₂ O-N	0.01	$\begin{array}{c} \text{kg N}_2\text{O-N} \\ \text{ha}^{-1}\text{yr}^{-1}\text{kg}^{-1}\text{N} \end{array}$	33
2	N ₂ O-N from nitrate leaching	0.0075	$\begin{array}{c} \text{kg N}_2\text{O-N} \\ \text{ha}^{-1}\text{yr}^{-1}\text{kg}^{-1}\text{N} \end{array}$	33
3	Nitrate leaching	0.3	$\begin{array}{c} \text{kg NO}_3^-\text{N} \\ \text{ha}^{-1}\text{yr}^{-1}\text{kg}^{-1}\text{N} \end{array}$	33
4	NH ₃ -N	0.1	kg NH ₃ -N ha ⁻¹ yr ⁻¹ kg ⁻¹ N	33
5	NOx-N	0.005	$\begin{array}{c} \text{kg NOx-N} \\ \text{ha}^{-1} \text{yr}^{-1} \text{kg}^{-1} \text{N} \end{array}$	34
6	CH ₄ -C uptake (Upland soil)	-0.012	$\begin{array}{c} \text{kg CH}_{4}\text{-C} \\ \text{ha}^{-1} \text{yr}^{-1} \text{kg}^{-1} \text{N} \end{array}$	24
7	CH ₄ -C emission (Lowland soil)	0.008	$\begin{array}{c} \text{kg CH}_{4}\text{-C} \\ \text{ha}^{-1}\text{yr}^{-1}\text{kg}^{-1}\text{N} \end{array}$	24
8	CO ₂ -C uptake	-0.053	$\begin{array}{c} kgCO_2\text{-}C\\ ha^{-1}yr^{-1}kg^{-1}N \end{array}$	24

 Table 3. Emission and uptake factors of different parameters used in the present study.

Methods

Total N use in global agriculture. Total N input in global agriculture (N_T) was calculated using the equation (1).

$$N_{T}(Tg) = N_{SN} + N_{AM} + N_{CR} + N_{AD} + N_{BNF}$$
(1)

Where, $N_{SN_{r}} N_{AM}$, $N_{CR_{r}} N_{AD}$ and N_{BNF} are amounts of N added (Tg) to soil annually through fertilizer, animal manure, crop residue, atmospheric deposition, and biological nitrogen fixation (BNF), respectively. Data on $N_{SN_{r}}$, N_{AM} , N_{CR} were obtained from FAOSTAT¹. The N_{AD} and N_{BNF} were calculated as per the equations (2) and (3) respectively.

$$N_{AD}(Tg) = Agricultural area (Mha) \times Deposition factor (kg ha-1)$$
 (2)

$$N_{BNF}(Tg) = Global pulses area (Mha) \times BNF rate (kg ha-1)$$
 (3)

Data on area under global agricultural and pulse crops were obtained from FAOSTAT¹ whereas data on deposition factor were calculated from Liu *et al.*³¹ and Liu *et al.*³² and BNF were calculated from Liu *et al.*³¹.

Emission/uptake factors. Emission and uptake factors (EF) used in the study are mentioned in Table 3. Factor for direct N_2O emission was taken as 0.01^{33} and N_2O from NO_3^- leaching was 0.0075^{33} . Emission factor for NO_3^- leaching, NH_3 and NOx emissions were 0.3^{33} , 0.10^{33} and 0.005^{34} kg kg⁻¹ N applied, respectively. Emissions

Species	GTP ₂₀	GTP ₁₀₀	Source
N ₂ O	+260 to +290	+290 to +320	13
$\rm NOx{\rightarrow}ozone$ and $\rm CH_4$	-55 to -37	-2.9 to -0.024	35
$NOx \rightarrow aerosol$	−31 to −7	-0.0024 to 0	36
$\rm NH_3 {\rightarrow} aerosol$	-9.5 to -2.2	-0.022 to 0	36
N fertilizer $\!\rightarrow\! \operatorname{CH}_4$ flux	+37 to +77	+2.9 to +4.9	37
N fertilizer \rightarrow CO ₂ flux	+1	+1	38

Table 4. Global temperature change potential (kg CO_2 kg⁻¹N) of different species used in this study.

of CH₄ from an aerobic and aerobic fields were taken as 0.008 and -0.012 kg CH₄-C ha⁻¹ yr⁻¹ kg⁻¹ N aplied²⁴. The factor for C sequestration was 0.053 kg CO₂-C ha⁻¹ yr⁻¹ kg⁻¹ N²⁴.

Emission/uptake fluxes. Total flux (F_T) of N_2O , NO_3^- leaching, NO_X , NH_3 , CH_4 and CO_2 were calculated using the equation (4).

$$F_{\rm T}({\rm Tg}) = N_{\rm T}({\rm Tg}) \times {\rm EFn} \tag{4}$$

Where N_T , is total amount of N (Tg) added to agricultural land and EFn is the respective emission/uptake factor. N_2O flux from NO_3^- leaching was calculated using the equation (5).

 N_2O emission from NO_3^- leaching = NO_3^- leaching flux × EF (5)

GTP of N₂O, NO_x, NH₃, CH₄ and CO₂ fluxes. The GTP of N₂O, NO_x and NH₃ fluxes were calculated using the equation (6).

$$GTP_{Nt}(Tg CO_2 e) = F_T(Tg) \times GTP_{txi}$$
(6)

Where GTP_{Nt} is GTP at 't time-scale i.e., 20 or 100 years; F_T is flux of NO_x, NH₃ and N₂O emission (kg yr⁻¹), GTP_{txi} is GTP for 'i' kg of 'x' compound (N₂O, NOx, NH₃) at time-scale 't. GTP₂₀ and GTP₁₀₀ used in the study are mentioned in Table 4.

The following equation (7) was used to calculate GTP of CH_4 and CO_2 emission/uptake (GTPCt).

$$GTP_{Ct}(Tg CO_2 e) = F_T \times GTP_{txi}$$
(7)

Where GTP_{txi} is GTP for 'i' kg of 'x' compound (CH₄ and CO₂) at time-scale 't'.

Finally, the net GTP (GTP_T) of N addition to global agriculture was calculated using the equation (8).

$$GTP_{T}(Tg CO_{2}e) = GTP_{Nt}(Tg CO_{2}e) + GTP_{Ct}(Tg CO_{2}e)$$
(8)

Summary

Globally, nitrogen is the most widely used nutrient in agriculture. Nitrogen fertilizer acts as a source of global warming as it contributes to N_2O emission. However, it also contributes to global cooling with emissions of NH_3 and NO_x . Therefore, while assessing global temperature change potential (GTP), both the warming and cooling effects of N use in agriculture should be considered. Our estimates showed that net GTP in 20-year time-scale is 6.9% lower and in 100-year time-scale 2.4% lower when warming as well as cooling effects of N use in agriculture were considered to considering warming due to N_2O emission alone.

References

- FAOSTAT. Food and Agriculture Organization of the United Nations, Rome, Italy Available at http://faostat.fao.org/ (Accessed: 10th May 2016) (2016)..
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospectus: The 2015 Revision, Key Findings and Advance Tables. Working paper No. ESA/P/WP. 241 (2015).
- Pathak, H., Jain, N., Bhatia, A., Kumar, A. & Chatterjee, D. Improved Nitrogen Management: A Key to Climate Change Adaptation and Mitigation. *Indian J Fertilisers* 12(11), 151–162 (2016).
- 4. Galloway, J. N. et al. The nitrogen cascade. Bioscience 53, 341-356 (2003).
- IPCC. Climate Change 2014 Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Field, C. B. et al. (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, (2014).
- Butterbach-Bahl, K., Gasche, R., Huber, C. H., Kreutzer, K. & Papen, H. Impact of N-input by wet deposition on N trace gas fluxes and CH₄-oxidation in spruce forest ecosystems of the temperate zone in Europe. *Atmos. Environ.* 32, 559–564 (1998).
- Bodelier, P. L. E. & Laanbroek, H. J. Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol. Ecol. 47, 265–277 (2004).
- Mosier, A. R., Halvorson, A. D., Reule, C. A. & Liu, X. J. J. Net global warming potential and greenhouse gas intensity in irrigated cropping systems in north eastern Colorado. *J Environ. Qual.* 35, 1584–1598 (2006).
- Vethof, G. L. et al. Integrated assessment of nitrogen emission losses from agriculture in EU- using MITERRA-EUROPE. J Environ. Qual. 38, 1–16 (2009).
- 10. De Vries, W. et al. Impacts of model structure and data aggregation on European wide predictions of nitrogen and greenhouse gas fluxes in response to changes in livestock, land cover, and land management. J Integr. Environ. Sci. 7, 145–157 (2010).

- 11. Forster, P. et al. Changes in atmospheric constituents and in radiative forcing in climate change 2007: The physical science basis (Cambridge Univ Press, Cambridge, UK) (2007).
- 12. Davidson, E. A. The contribution of manure and fertilizer nitrogen to atmospheric nitrous oxide since 1860. *Nat. Geosci.* 2, 659–662 (2009).
- Shine, K., Fuglestvedt, J., Hailemariam, K. & Stuber, N. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. *Clim. Change* 68, 281–302 (2005).
- 14. IPCC. Climate Change 1990: The IPCC Scientific Assessment. Houghton, J. T. et al. Ed. Cambridge University Press, 365 pp (1990).
- Manne, A. S. & Richels, R. G. An alternative approach to establishing trade-offs among greenhouse gases. *Nature* 410, 675–677 (2001).
- Fuglestvedt, J. S. *et al.* Metrics of climate change: Assessing radiative forcing and emission indices. *Clim. Change* 58, 267–331 (2003).
 Shine, K. P., Berntsen, T. K., Fuglestvedt, J. S., Skeie, R. B. & Stuber, N. Comparing the climate effect of emissions of short- and long-lived climate agents. *Philos. Transact. A Math. Phys. Eng. Sci.* 365, 1903–1914 (2007).
- 18. Pinder, R. W. et al. Climate change impacts of US reactive nitrogen. P Natl. Acad. Sci. USA 109, 7671-7675 (2012).
- Berntsen, T. K. et al. Response of climate to regional emissions of ozone precursors: Sensitivities and warming potentials. Tellus B. Chem. Phys. Meteorol. 57, 283–304 (2005).
- Derwent, R., Collins, W., Johnson, C. & Stevenson, D. Transient behaviour of tropospheric ozone precursors in a global 3-D CTM and their indirect greenhouse effects. *Clim. Change* 49, 463–487 (2001).
- Wild, O., Prather, M. J. & Akimoto, H. Indirect long-term global radiative cooling from NO_x emissions. *Geophys. Res. Lett.* 28, 1719–1722 (2001).
- 22. Bauer, S. E. *et al.* Nitrate aerosols today and in 2030: A global simulation including aerosols and tropospheric ozone. *Atmos. Chem. Phys.* **7**, 5043–5059 (2007).
- 23. Hungate, B. A. et al. Nitrogen and climate change. Science 302, 1512-1513 (2003).
- 24. Liu, L. & Greaver, T. L. A review of nitrogen enrichment effects on three biogenic GHGs: the CO₂ sink may be largely offset by stimulated N₂O and CH₄ emission. *Ecol. Lett.* **12**, 1103–1117 (2009).
- Zaehle, S. *et al.* Carbon and nitrogen cycle dynamics in the O–CN land surface model: Role of the nitrogen cycle in the historical terrestrial carbon balance. *Glob. Biogeochem. Cycl.* 24(1), 1–14 (2010).
- Kanter, D. R., Zhang, X., Mauzerall, D. L., Malyshev, S. & Shevliakova, E. The importance of climate change and nitrogen use efficiency for future nitrous oxide emissions from agriculture. *Environ. Res. Lett.* 11, 1–9 (2016).
- 27. Janssens, I. A. et al. Reduction of forest soil respiration in response to nitrogen deposition. Nat. Geosci. 3, 315-322 (2010).
- Wang, Z. P. & Ineson, P. Methane oxidation in a temperate coniferous forest soil: effects of inorganic. N. Soil Bio. Biochem. 35, 427–433 (2003).
- 29. Xu, X. & Inubushi, K. Effects of N sources and methane concentrations on methane uptake potential of a typical coniferous forest and its adjacent orchard soil. *Biol. Fertil. Soils* **40**, 215–22 (2004).
- 30. Reay, D. S. & Nedwell, D. B. Methane oxidation in temperate soils: Effects of inorganic N. Soil. Biol. Biochem. 36, 2059–2065 (2004).
- 31. Liu, J. et al. A high-resolution assessment on global nitrogen flows in cropland. PNAS 107(17), 8035-8040 (2010).
- 32. Liu, X. et al. Enhanced nitrogen deposition over China. Nature 494, 459-463 (2013).
- 33. Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T. & Tanabe, K. (eds) IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the National Greenhouse Gas Inventories Programme. IGES, Japan (2006).
- 34. Sharma, C., Tiwari, M. K. & Pathak, H. Estimates of emission and deposition of reactive nitrogenous species for India. *Curr. Sci.* 94, 1439–1446 (2008).
- 35. Fuglestvedt, J. et al. Transport impacts on atmosphere and climate: Metrics. Atmos. Environ. 44, 4648-4677 (2010).
- 36. Shindell, D. T. et al. Improved attribution of climate forcing to emissions. Science 326, 716-718 (2009)
- 37. Boucher, O., Friedlingstein, P., Collins, B. & Shine, K. P. The indirect global warming potential and global temperature change potential due to methane oxidation. *Environ. Res. Lett.* **4**, 044007 (2009).
- 38. IPCC. Summary for Policymakers. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F. et al. (eds)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

Acknowledgements

We are grateful to ICAR-Indian Agricultural Research Institute, New Delhi and National Innovations on Climate Resilient Agriculture (NICRA) project for providing necessary support for the study.

Author Contributions

H. Pathak designed and conceptualized the study. R. K. carried out the data analysis and prepared the first draft. All the authors provided critical inputs and contributed to the writing of the paper.

Additional Information

Competing Interests: The authors declare no competing financial interests.

How to cite this article: Fagodiya, R. K. *et al.* Global temperature change potential of nitrogen use in agriculture: A 50-year assessment. *Sci. Rep.* 7, 44928; doi: 10.1038/srep44928 (2017).

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

© The Author(s) 2017