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Comparison of multivariate analysis 
methods for extracting the paraffin 
component from the paraffin-
embedded cancer tissue spectra for 
Raman imaging
Phiranuphon Meksiarun1, Mika Ishigaki1, Verena A.C. Huck-Pezzei2, Christian W. Huck2, 
Kanet Wongravee3, Hidetoshi Sato1 & Yukihiro Ozaki1

This study aimed to extract the paraffin component from paraffin-embedded oral cancer tissue spectra 
using three multivariate analysis (MVA) methods; Independent Component Analysis (ICA), Partial 
Least Squares (PLS) and Independent Component - Partial Least Square (IC-PLS). The estimated 
paraffin components were used for removing the contribution of paraffin from the tissue spectra. These 
three methods were compared in terms of the efficiency of paraffin removal and the ability to retain 
the tissue information. It was found that ICA, PLS and IC-PLS could remove the paraffin component 
from the spectra at almost the same level while Principal Component Analysis (PCA) was incapable. 
In terms of retaining cancer tissue spectral integrity, effects of PLS and IC-PLS on the non-paraffin 
region were significantly less than that of ICA where cancer tissue spectral areas were deteriorated. The 
paraffin-removed spectra were used for constructing Raman images of oral cancer tissue and compared 
with Hematoxylin and Eosin (H&E) stained tissues for verification. This study has demonstrated the 
capability of Raman spectroscopy together with multivariate analysis methods as a diagnostic tool for 
the paraffin-embedded tissue section.

Head and neck (HN) cancers are the type of cancerous tissues located around oral cavity, pharynx and larynx1. 
The most significant factors in the development of HN cancers include alcohol consumption, tobacco use and 
viral infection (e.g.; HPV). As of 2012 global survey, total 300,400 of HN cancer cases were estimated and half of 
which resulted in deaths2. The total deaths toll of HN cancers from 1990 to 2013 was increased from 84,000 to 
135,000 cases3. The most prevalence type of cancers found in oral cavity area is the oral squamous cell carcinoma 
(OSCC).

Chemical imaging spectroscopy is a technique where molecular and spatial information of a sample can be 
obtained simultaneously. The information about the tissue complex obtained can provide pathologists with tre-
mendous helps for cancer diagnosis. Raman imaging has been reported for investigations of OSCC several times. 
Chen et al., reported the study of keratin component in OSCC tissue. By using single value decomposition (SVD) 
and multivariate curve resolution (MCR) analysis, it was found that the keratin component of OSCC could be 
used for cancer tissue discrimination4. Oral cancer and healthy tissues were studied by a high frequency region. 
The bands due to OH (3550–3350 cm−1) and CH (2965–2910 cm−1) stretching vibrations were used for tissue 
discrimination as the water content of cancer was found to be higher than that of tissue5. The nucleoli, nuclei and 
cytoplasm of oral cancer, pre-cancer and normal cell lines were studied using Raman spectroscopy. PCA showed 
that these 3 groups can be discriminated by the biochemical variation of nuclei acid, proteins and lipids6.
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Paraffin-embedded tissue section is the standard protocol for OSCC histopathological diagnosis. The tissue 
dissected from a patient is usually fixed with formalin and embedded in paraffin to preserve it from the degrada-
tion. The tissue section requires a staining process for visualizing the morphology of the tissue. However, the 
staining process is time-consuming and the stained tissue can provide only the architecture of the cancer tissue. 
The problems arising from a paraffin component in the cancer tissue section were found in both FTIR and Raman 
study. For FTIR study of paraffin embedded melanoma tissue, paraffin component was found to be easily identi-
fied because its bands were not overlapped with the biological component bands7. FTIR spectral regions without 
paraffin signal (3360–3050, 1810–1500 and 1440–800 cm−1) were selected for the analysis. Rather than removing 
the paraffin-overlapped region, Zelgar et al. reported the tissue deparaffinization prior to the measurement. The 
paraffin removed oral squamous cell carcinoma tissue section were studied using FTIR imaging to visualize the 
different tissue feature. Color images generated from hierarchical cluster analysis (HCA), K-mean clustering and 

−PO2  bands demonstrated the feasibility of FTIR images for tissue pattern analysis8,9. However, in the case of 
Raman spectra, the paraffin spectral features were found to be totally overlapped with Amide I, III and around the 
low wavenumber region. Mian et al. reported that the paraffin embedded tissues require at least 30 minutes to 
totally remove the paraffin10. However, long-term immersion of xylene could deteriorate the tissue structure. In 
the studies of embryonic chick cornea and prostrate gland using Raman spectroscopy, the paraffin regions were 
removed prior to the multivariate analysis to prevent the results from the contribution of paraffin11,12. Omitting 
these paraffin-overlapped regions could alter the whole result. Moreover, even after deparaffinization, we found 
that the paraffin component in Raman spectra was still present in our study. Hence, we decided to develop the 
method for removing the paraffin component in Raman spectra. To extract the cancer tissue properties, a paraffin 
component must be eliminated. Raman spectra of a paraffin-embedded skin tissue were investigated by Gobinet 
et al. and Vrabie et al.13,14. They reported the possibility of ICA to provide the estimator of the paraffin while PCA 
was unable to do due to the non-Gaussianity of paraffin. The paraffin components were successfully used for 
extracting the skin cancer spectra. The efficiency of paraffin estimation was limited by the fact that ICA is based 
on unsupervised method. We would like to introduce the application of supervised methods for improving the 
paraffin estimation efficiency.

The present study investigates the performance of ICA, PLS and IC-PLS for the paraffin estimation and devel-
ops Raman images of oral cancer tissues. We introduce PLS for extracting the paraffin estimator using its regres-
sion coefficient. IC-PLS is implemented and developed for higher performance for paraffin estimation. These 
methods are compared in terms of the paraffin removal capability and the effect on non-paraffin region for pro-
teins, collagen, keratin. The ability of each method for removing paraffin is determined by observing the variation 
of the data in the paraffin region. In the next part, the effect of each method on the non-paraffin region is reported 
as the residual of sum of squares. The method with the highest paraffin removal efficiency and the lowest effect 
on non-paraffin part is chosen for spectral processing. The paraffin-subtracted spectra are used for constructing 
Raman images of cancer tissues. The Raman images and a H&E stained tissue are compared to verify the correct-
ness of the removal of paraffin component.

Results and Discussion
The cancer tissue sections from oral cancer were scanned to collect the hyperspectral data using an excita-
tion wavelength of 532 nm to avoid the interference of a CaF2 glass slide. However, the fluorescence effect still 
remained and distorted the whole spectral shape. Baseline correction was then used to remove such interference. 
After that, the spectra were normalized to a phenylalanine band at 1003 cm−1 to observe variations in the bands 
due to biological components such as amide I, amide III and collagen. After the normalization, the spectra with 
low signal/noise were removed. The spectra thus obtained were found to have contributions from amide I (1690–
1620 cm−1), amide III (1350–1240), keratin/collagen (960–740) and paraffin (1480–1430, 1300–1290, 1180–1125, 
1069–1051 cm−1). Figure 1A(a) illustrates an averaged spectrum obtained from cancer tissue spectra. The pure 
paraffin spectrum was measured as the reference as shown in Fig. 1A(b). Note that the paraffin bands are strongly 

Figure 1. (A)(a), Averaged cancer tissue spectrum, (b), pure paraffin spectrum. (B), PCA loadings before 
paraffin removal are shown as PC1 (50%) (a), PC2 (9%) (b) and PC3 (5%) (c).
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overlapped with other components throughout the whole spectra. To investigate variations in the biological com-
ponents in the cancer tissue, the paraffin component must be removed.

Paraffin removal process. At first, a pure paraffin spectrum, shown in Fig. 1A(b), was used for removing 
the paraffin contribution from the cancer tissue spectra. The pure paraffin spectrum was applied to least square 
method for removing the paraffin bands. However, the relative intensity of paraffin in the tissue spectra was 
different from that in the pure paraffin spectrum as the former is distorted and unmatched to the latter. We pre-
sumed that the relative intensity of five major paraffin bands might be altered, and hence, the use of pure paraffin 
spectrum was unsuccessful. Then, multivariate analysis methods were employed for the paraffin component esti-
mation as shown in Fig. 2.

We employed PCA to investigate the distribution of paraffin component in the cancer tissue. Fig. 1B depicts 
the PCA loading of PC 1, PC 2 and PC 3 with explained variance of 50%, 9% and 5% respectively. The par-
affin bands in the region of 1480–1430, 1300–1290, 1180–1125, 1069–1051 cm−1 are heavily overlapped with 
bonds arising from other components including; Amide I (1690–1620 cm−1), CH2 bending (1480–1430 cm−1) 
and Amide III (1350–1240 cm−1). From Fig. 1Ba–c, paraffin bands appear in all the PCA loadings which is pos-
sibly due to the non-Gaussianity of paraffin component. The measurement of biology variable is deemed to be 
normally distributed. However, as the tissues used in this study were treated with several solvents and especially 
paraffin wax, these components were not normally deviated. Therefore, the paraffin bands could not be separated 
because PCA relies heavily on the Gaussian distribution of the whole data set.

The implementation of ICA for extracting the paraffin component from paraffin-embedded cancer tissue 
section was reported by Vrabie et al.13. In this study, FastICA algorithm was employed to estimate the paraffin 

Figure 2. Scheme for Raman spectra analysis. 
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component in the cancer tissue spectra. Before applying ICA, the whole data set was analyzed using PCA to 
obtain the orthogonal components. PCA loadings obtained were then used for extracting the independent com-
ponents. In the first step, only one component extracted from the data was selected and used for removing the 
paraffin contribution from tissue spectra. The paraffin components separated by ICA shown in Fig. 3A(c) resem-
bles that of pure paraffin. The estimated paraffin component was then used for subtraction by NNLS. After the 
first component was removed from the spectra, the data was again applied to ICA and NNLS for extracting and 
removing paraffin peaks until the paraffin peaks were disappear from any of ICA component. In this study, we 
found that two components were able to remove the paraffin bands. It should be noted that as the paraffin com-
ponents obtained from ICA were not found in other components unlike the PCA loading where paraffin bands 
were found all over the loading (PC 1–3) as shown in Fig. 1B. It can be implied that the paraffin distribution in the 
samples is non-Gaussian. The residual from before/after paraffin removal process is shown in Fig. 3A(b).

To compare supervised/unsupervised methods, PLSR was employed for paraffin removal process following 
these steps. At first, the peak areas of five paraffin corresponding bands (1069–1054, 1140–1125, 1178–1162, 
1298–1291 and 1470–1420 cm−1) were used as the dependent values. At first, the peak area of the first band 
(1069–1054 cm−1) was used for constructing the PLS model. The regression coefficient obtained was used as a 
paraffin component to remove the paraffin peaks from the spectra using NNLS. Paraffin-removed spectra were 
again used for constructing the PLS model; this process was repeated until all 5 bands were removed. We found 
that each regression coefficients from five paraffin peaks (R2 >  0.9) obtained are mostly unrelated as depicted in 
Fig. 3B(c). The regression coefficients shown were scaled with their concentration calculated from NNLS to show 
their actual intensity used for the subtraction. This result shows the interesting point that even though these five 
components come from the same paraffin, these peaks are relatively independent since the bands observed from 
each component can barely be found in other components. This result agrees with our assumption as the relative 
intensity of five paraffin peaks were altered.

The implementation of ICA to Non-Linear Iterative Partial Least Squares (NIPALS) algorithm so called 
IC-PLS was originally developed for extracting information from sensory attributes of cheese and tomato15. The 
combination of ICA and PLS model could yield a higher explained variance for non-Gaussian responses than PLS 
alone. By applying the ICA to loading weight of PLS, the first component of IC-PLS model was able to explain Y 
variance (90%) more than PLS (77%). The method was determined to build the model which yielded the highest 
relevance to non-Gaussian distribution of Y variable. IC-PLS algorithm starts with the calculation of NIPALS to 
determine the optimal rank, ith. The loading weights, −w1 ith, were applied to ICA to be rotated in the non-Gaussian 
subspace. ICA loading weights, wICA, were then used for further calculation following Equations (5–8). The over-
all calculation was conducted in the similar manner to PLS where five regression coefficients were obtained.

Figure 3. (A–C)(a), Raman spectra after paraffin removal, (A–C)(b), difference of before - after paraffin 
removal process and (A–C)(c), estimated paraffin components from ICA, IC-PLS and PLS.
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The residuals between before/after paraffin removal from ICA, PLS and IC-PLS are shown in Fig. 3A–C(b). 
The residual spectra and pure paraffin appear to be similar with eyes. However, some regions which are not 
related to the paraffin are found to be altered by each method to some extent. In the next section, efficiency for 
removing paraffin by these methods and their effects on non-paraffin region are discussed.

Comparison of paraffin removal methods. The efficiency of paraffin removal methods was compared 
using PCA by comparing the paraffin influence onto the spectral variation. Raman spectra after paraffin removal 
process (ICA, PLS and IC-PLS) were analyzed together with the spectra before paraffin removal using the paraffin 
regions. The average PC1 score of all data sets are shown in Fig. 4A. The average scores of the data sets before 
paraffin removal are much higher than the paraffin removed data sets which are located below 0. As the paraffin 
removed spectra contain relatively smaller contribution from paraffin peaks, the variance due to the paraffin 
peaks is then shown in PC1 of PCA loading plot with explained variance of 65–79%, see Fig. 4B. The average 
scores of PC1 which are all in the negative region suggests the capability of the paraffin-removal methods to 
remove the paraffin component. However, there is no decisive result for indicating the best method for paraffin 
removal since all the scores are almost overlapped. We assume that all the techniques are almost equivalent in 
terms of the estimation of the paraffin components either using ICA, PLS or IC-PLS.

As mentioned above that the paraffin component estimation might include the biological component region, 
and thus, the error in the non-paraffin bands (1670–1570, 1280–1200 and 1000–400 cm−1) were considered. 
Figure 5 illustrates relative residual sum of squares of non-paraffin region between before/after paraffin removal 
process. The errors of PLS and IC-PLS were normalized to that of ICA for comparison. It shows that RSS of ICA 
are much higher than PLS and IC-PLS. By using ICA, we found that components contain not only paraffin infor-
mation but also include the other regions; Amide I, Amide III and collagen/keratin bands (Fig. 3A(c)). This is 
possibly due to the fact that ICA is an unsupervised method which relies heavily on the distribution of the data 
sets. In this study, the paraffin-embedded tissues were treated with formalin, ethanol, xylene, embedded in the 
paraffin block and finally washed up with octane. The spectral distribution could be altered by the sample pro-
cessing which is possibly the cause of sample impurity that deteriorates the efficiency of ICA. The paraffin com-
ponents from PLS and IC-PLS model shown in Fig. 3B,C(c) are bound mostly only to the paraffin peak locations 
and left the other regions untouched. This gives PLS based model advantages over ICA. The RSS of IC-PLS are 
lower than PLS in four of seven cases while the other three are almost the same level. Hence, we decided to use 
IC-PLS method for further analysis.

Raman imaging. Raman images were constructed using the Raman spectra treated with IC-PLS. Paraffin 
removed spectra were analyzed using PCA. The scores of PC1–3 were used to build the pseudo color images as 
shown in Fig. 6B–D. The HE stained tissue image shown in Fig. 6A is used for comparison. Raman images from 
PC1 to 3 seem to be able to separate the cancer from the benign part where blue/pink color indicate low/high 

Figure 4. (A) PCA score of paraffin region from 9 data sets. Averaged and standard deviation of PC1 score of 
Raman spectra before paraffin removal (○), PLS ( ), ICA ( ) and IC-PLS ( ) indicate the paraffin 
contribution. (B) PC1 loading shows the paraffin contribution of each data set, B.
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score value. It can be seen from PCA loading shown in Fig. 7 that the paraffin bands are totally removed in com-
parison to Fig. 1B. The band which results from the subtraction is shown around 1440 cm−1. This band could not 
affect the result much as it is prone to 0 which indicates that the low variation of this band in the spectra would 
not disturb the result. The explained variance of PC1 to 4 are 38%, 12% and 4% which totally explains around 54% 
of all the data set. The paraffin corresponding peaks did not appear in PC loading suggesting that our developed 
method was successfully able to remove the variation of paraffin components from the oral cancer tissue spectra.

From Fig. 7(a), PC1 loading shows the major contribution of collagen spectral profile: Amide I (1669 cm−1), 
CH2 bending (1453 cm−1), proline (1378–1234 cm−1), C-C stretching (936 cm−1), hydroxyproline ring (874 cm−1), 
proline ring (917, 855 cm−1) and C–O–C stretching (811 cm−1)16. We found that the PC1 score image shows 
consistent pattern with the HE stained tissue where the density of cancer cells is higher in the bottom part of the 
tissue as shown in Fig. 6B. The light blue color of scores indicates the lower amount of collagen in the cancer part 
than the top part of tissue which is rendered in pink. We presumed that the concentration of collagen in the oral 
tissue may be decreased as OSCC proliferated. The alteration of collagen contribution in OSCC was found chang-
ing from mature to immature form as OSCC progressed17. It was also suggested that the abnormality of collagen 
production in later stage of OSCC may induce the neoplastic growth18. The respiratory neoplasm studies reviewed 
that total volume of collagen was decreased as malignancy of OSCC increased19.

PC2 loading in Fig. 7(b) represents the alteration of protein contribution; Amide I (1653 cm−1), CH2 deforma-
tion (1445 cm−1), nucleic mode (1340 cm−1), asymmetric phosphate (1244 cm−1), acyl chain (1130 cm−1), −PO2  
stretching (1064 cm−1) and C-C stretching (940–928 cm−1)20. PC2 scores image shows distinctive difference 
between the normal tissue (uppermost part rendered in light blue) and the cancer (pink area) which indicates the 
higher amount of nucleic acid/phosphate/protein. Consistent with our previous study using FTIR, the distribu-
tion of −PO2  symmetric stretching of nucleic acid was found mainly in the malignant area17. In the study of OSCC 
using Raman spectroscopy, DNA, nucleic acid and protein associated components were suggested as markers for 
OSCC discrimination as they were found abundant in malignant tissues21. PC3 loading in Fig. 7(c) shows the 
variation of DNA component which contains Amide I (1652 cm−1), ring breathing modes in the DNA G, A (1574, 
1486 cm−1), nucleic acid, phosphate and DNA related component (1330 cm−1), ring breathing modes in the DNA/
RNA A, T (1258, 1209 cm−1), C-O band of ribose (1120 cm−1) and O-P-O stretching DNA/RNA (828 cm−1). 
These bands representing DNA alteration mark the activity DNA replication in cancer part as demonstrated in 
PC3 scores image (Fig. 6D). The location of DNA component found mainly at the bottom of the tissue as depicted 
in HE stained tissue as dark purple. Differential proteins expression was found in the transformation from oral 
premalignant lesions to OSCC after repeat insults using yB(a)P/DM22. This expression is the up-down regulation 
of proteins in the cells which is related to DNA replication, cell proliferation and cell cycle.

Conclusion
In the present study, we investigated the multivariate analysis methods for removing contribution of paraffin 
from cancer spectra. We found that the PCA was unable to extract the paraffin component due to its distribu-
tion. The unsupervised non-Gaussian method, ICA was introduced for estimating the component. ICA could 
remove the paraffin bands successfully, however, its effect upon the non-paraffin region was significantly high. 
The supervised methods were then employed to overcome such problems. PLS with NIPALS algorithm was used 
for determining the paraffin corresponding variables and the regression coefficients obtained were used as a 
paraffin estimator. It was found that the paraffin estimated from PLS yielded equivalent paraffin removal level 
while providing lower RSS than ICA. We then decided to combine both methods for calculating the estimator; 
IC-PLS could remove the paraffin signal in the same level as other methods while giving similar/lower RSS to PLS. 
The paraffin-removed Raman spectra using IC-PLS was analyzed by PCA for constructing the Raman images of 
oral cancer. The paraffin peaks in the PCA loadings were found to be eliminated comparing to the PCA loading 
before paraffin removal. The paraffin removal process based on IC-PLS can be incorporated into the current 
protocol of Raman studies as the data pre-processing stage especially for treating the paraffin-embedded tissue23. 
The Raman images from PC1 and 3 were found to show similarity to HE-stained tissue. We found that the key 

Figure 5. Relative residual sum of squares value of non-paraffin region of ICA (◾), PLS ( ) and IC-PLS ( ).
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Raman markers for discriminating malignant from normal tissues are collagen, phosphate and DNA. OSCC 
transformation from normal tissue could be observed using the suggested markers. The study has demonstrated 
the capability of Raman imaging and multivariate analysis for investigating the paraffin-embedded tissue. The 
result of our developed technique can be applied to wide range of Raman studies using paraffin-embedded tissue 
including dermatology, oncology or histopathological application.

Materials and Methods
Sample preparation. 14 patients with age ranges from 32 to 73 years were given informed consent with 
approval of the Ethics Committee (EK 122/04) of Innsbruck Medical University. All patients signed an informed 
consent and permitted to the spectroscopic analysis after the project had been described in detail. The OSCC 
tissues dissected from the patients during the surgery were provided by the cancer biobank of the Department of 
Pathology at the Innsbruck Medical University. All specimens were fixed in formalin, embedded in paraffin and 
stained using hematoxylin and eosin (HE). The tissue sections of 4 μ m were cut with microtome and placed on 
CaF2 slides (KORTH KRISTALLE GmbH, Altenholz, Germany) and glass slides (Menzel slides, Fisher Scientific, 
Vienna, Austria) for Raman imaging and HE histological study, respectively. The tissue sections on CaF2 were 
deparaffinised prior to Raman imaging study to reduce the influence from paraffin. The method for deparaffin-
ization was reported elsewhere8. In brief, tissue sections were washed in octane by moderate shaking for 4 h in 
water bath and then dried at room temperature and measured. HE stained tissues were subjected for Tumor, Node 
and Metastasis (TNM) Staging evaluation according to the American Society of Clinical Oncology/College of 
American Pathologists guideline. Chemical solutions and HE staining kit were purchased from Sigma Aldrich (St. 
Louis, MO, USA). All experiments were performed in accordance with the approved guideline and regulations.

Raman measurement. Raman measurements of cancerous tissue sections was carried out using inVia con-
focal Raman microscope (Renishaw Inc., UK). Tissue sections were placed on a motorized stage for acquiring 
Raman imaging spectra. The system was equipped with a Nikon objective lens (50× ), a laser diode, and a CCD. 
The laser spot was refocused at each point to compensate the surface roughness prior to the measurement. The 
spectra were measured using 532 nm excitation wavelength with 10 mW at sampling point. Each sampling point 
was exposed to the laser for 20 second to reduce the fluorescence effect. The Raman spectra were acquired in 
10 seconds (5 s ×  2 times).

Data preprocessing. Fluorescence background was removed from each Raman spectrum using 6th polyno-
mial baseline correction. The spectral intensity was corrected by the normalization using a phenylalanine band 

Figure 6. (A) H&E stained image and (B–D), Raman image from PC1–3 scores.

Figure 7. PCA loading plots for PC1–3 of oral cancer tissue section. 
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(1003 cm−1). The low signal-to-noise spectra were removed from the normalized spectra and centered to their 
mean. At this point, the pretreated spectra were ready for the paraffin removal process.

Data analysis. Independent component analysis (ICA). The artificial component embedded inside the tissue 
can be estimated by independent component analysis (ICA) due to its non-Gaussian distribution. ICA model 
assumes that the mixture of data set is the linear combination of non-Gaussian sources. ICA can be calculated 
from the Raman spectra matrix X(n ×  m) where n and m is observations and wavenumber. The X matrix can be 
transformed into linear combination of mixing matrix A(n ×  k) and independent components, S(k ×  m) where k 
is number of component. The objective of ICA is to determine the unmixing matrix, W(k ×  n), which is inverse 
of A to recover the independent source, Ŝ(k ×  m).

=X AS (1)

=Ŝ WX (2)

Prior to estimating independent component, the whitening process is generally performed to simplify the ICA 
problem. The whitened data are uncorrelated and their variance is equal to unity. PCA was used in this study to 
construct the linear combination of orthogonal components24,25.

Partial least square (PLS) regression. The algorithm for PLS used in this study is based on NIPALS. The brief 
explanation of NIPALS algorithm is as follows;

=w X y X y/ (3)T T

The first step is to estimate the loading weight where X is Raman spectra, y is the peak area of paraffin bands 
and w is normalized loading weight with length 1.

=t Xw (4)

=q y t t t/ (5)T T

=p X t t t/ (6)T T

Score t is the linear combination of X and w which is used for calculating loading q and p.

= −X̂ X tp (7)T

X̂ is deflated by pi−1 and ti−1

= −b W p W q( ) (8)T 1 T

The regression coefficient b is used as an estimated paraffin component.

Independent component – partial least square (IC-PLS) regression. This method was developed by Westad as the 
implementation of ICA algorithm for reconstructing the loading weight of NIPALS algorithm15. The first step is 
to determine optimal rank using leave-one-out cross validation. The loading weight of 1-ith component is applied 
to ICA for independent component calculation (Eq. 9). The extracted independent components are the rotation 
of NIPALS loading weight to non-Gaussian subspace.

=t XW (9)ICA ICA

The components calculated from ICA are then used as loading weight, WICA, for further calculation following 
Eqs (4–8).

Non-negative least square (NNLS). The estimated components were subtracted from the spectra using 
least square method with non-negative constrain.

=′ − ≥argminc x ca csubject to 0 (10)c 2

where x, c and a are Raman spectra, paraffin concentration profile and paraffin estimated component, respective-
ly.c′ is non-negative concentration profile of c which yields lowest error.

′ = − ′x x c a (11)

The paraffin removed spectra, x′ , calculated by subtracting the Raman spectra with estimated paraffin 
component.

Residual sum of squares. The residual sum of squares was used to evaluate the error in the non-paraffin region.
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∑= − ′
=

x xRSS ( )
(12)i

n

1

2

The paraffin component estimated from ICA, PLS and IC-PLS may contain not only the paraffin component 
but also included peaks in the non-paraffin region (1670–1570, 1280–1200 and 1000–400 cm−1) which deteri-
orate the informative part of spectra. RSS of the paraffin estimation method showing the Raman spectra in the 
non-paraffin region with smallest RSS was selected for further analysis in cancer imaging.

Raman imaging. The processed Raman spectra were used for analyzing the variations in biological compo-
nents such as protein, collagen, etc. using PCA. Spectral preprocessing and data analysis were performed using 
Unscrambler 10.1 (CAMO Software AS., Oslo, Norway) and in-house MATLAB software (Mathworks Inc., 
MATLAB Version 7.1 R2010a). The FastICA package is Copyright (C) 1996–2005 by Hugo Gävert, Jarmo Hurri, 
Jaakko Särelä, and Aapo Hyvärinen.
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