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Analysis of spatial heterogeneity 
in normal epithelium and 
preneoplastic alterations in mouse 
prostate tumor models
Mira Valkonen1,*, Pekka Ruusuvuori1,2,*, Kimmo Kartasalo1,3, Matti Nykter1, Tapio Visakorpi1,4 
& Leena Latonen1,4

Cancer involves histological changes in tissue, which is of primary importance in pathological diagnosis 
and research. Automated histological analysis requires ability to computationally separate pathological 
alterations from normal tissue with all its variables. On the other hand, understanding connections 
between genetic alterations and histological attributes requires development of enhanced analysis 
methods suitable also for small sample sizes. Here, we set out to develop computational methods for 
early detection and distinction of prostate cancer-related pathological alterations. We use analysis of 
features from HE stained histological images of normal mouse prostate epithelium, distinguishing the 
descriptors for variability between ventral, lateral, and dorsal lobes. In addition, we use two common 
prostate cancer models, Hi-Myc and Pten+/− mice, to build a feature-based machine learning model 
separating the early pathological lesions provoked by these genetic alterations. This work offers a 
set of computational methods for separation of early neoplastic lesions in the prostates of model 
mice, and provides proof-of-principle for linking specific tumor genotypes to quantitative histological 
characteristics. The results obtained show that separation between different spatial locations within 
the organ, as well as classification between histologies linked to different genetic backgrounds, can be 
performed with very high specificity and sensitivity.

Tissue histology is one of the main determinants in studying and diagnosing many pathologies, including cancer. 
Solid tumors change the structure of the tissue due to altered morphologies and localizations of tumor cells within 
the normal tissue. Histopathology is traditionally a very intuitive method, where decisions are most often based 
on visual inspection. Often, however, ability to objectively recognize and quantify pathological changes in tissue 
histology would be desired. Furthermore, gaining the decisive pathological information from basic histological 
stainings, most often hematoxylin and eosin (HE), would help to avoid using costly special stainings. Several 
current approaches aim to develop tools to help clinical pathologists to determine presence or state of a particular 
lesion from HE-stained images, e.g. to stage cancer for diagnostic and prognostic purposes1,2. Yet, a pressing need 
to diagnose cancer at earlier stages concerns several cancer types, e.g. prostate cancer and breast cancer; when 
tumors are still small and changes in them more benign, treatment options and prognoses are better. Ability to 
recognize and quantify small and subtle changes in tissue morphology are crucial also to basic and preclinical 
research aiming to identify early changes preceding and leading to malignant stages of cancer.

To be able to quantify changes in tissue morphology, measurable determinants of the pathology in question 
need to be determined. Key questions are how to differentiate between normal and pathological tissue, how to 
measure the stage of the pathological change, and even how to differentiate between several possible types of 
change, e.g. subtypes of cancer. For example, accurate separation of pathologies from normal tissue histology 
requires understanding and inclusion of all states and variables of the normal tissue, whether originating from 
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characteristics of the tissue itself, or technical variation due to e.g. orientation of the histological section cut rel-
ative to tissue structures.

In cancer research, recent years of next-generation sequencing have revealed the extent of genetic and gene 
expression alterations in cancer3,4. However, the phenotypic effects of many genetic alterations and their com-
binations is still under research. The common goal is to be able to subtype tumors better for enhanced patient 
stratification and care in the future. Combination of genetic information with histology, however, requires that 
the histological information can be transformed into a quantitative, objective form. This can be achieved through 
digital imaging and computational analysis of the histological characteristics. While computational image infor-
matics can provide a plethora of quantified descriptors of a given image, the challenge in histology is to sort out 
the relevant characteristics which can be presented in the form of useful feature representations.

Feature-based analysis combined with supervised learning has been a common approach in decision support 
systems and computer aided diagnosis based on whole slide images1,5,6,. Such approaches have been successfully 
used for quantitatively describing characteristics of prostate histology in neoplastic lesions both for a mouse 
model7 and for human tissue8. However, previous studies have left room for improved feature engineering and 
classification performance.

We aim at improving histological recognition and quantification of pathological features in prostate cancer, 
and search for descriptors to differentiate early pathological lesions from normal prostate tissue. Furthermore, the 
goal is to separate genetically different types of early neoplastic changes from each other. In here, we use two clas-
sical and popular genetic prostate cancer mouse models, namely heterozygous Pten9 and Hi-Myc10, to perform 
quantitative image analysis on early neoplasms compared to normal mouse prostatic tissue. With a computational 
separation of hundreds of features from the whole slide images of histological tissue sections and a random forest 
based machine learning approach, we find a combination of tissue features able to distinguish between 1) normal 
spatial heterogeneity in the prostate tissue, 2) early Pten+ /−  or Hi-Myc-induced neoplasms from normal tissue, 
and 3) the two types of neoplasms from each other. Our study serves as the first step towards developing tools 
for automated analysis of early neoplastic changes in prostate tissue and their linkage to different genetic groups.

Results
Spatial variation in epithelium of normal prostate. First, we wanted to assess normal spatial variation 
in the histology of the prostate. Mouse core prostate can be divided in three lobular areas: ventral prostate (VP), 
lateral prostate (LP) and dorsal prostate (DP), which surround the urethra (Fig. 1A). All three lobes are domi-
nated by prostate acini covered with an epithelial cell layer and are surrounded by a basement membrane and 
loose connective tissue. Between the lobes, subtle differences exist in the organization and direction of the acinar 
tubes, somewhat affecting the appearance and lumen size of acini in histological preparations. The epithelium 
is of specific relevance due to being the tissue component where prostate cancers originate from. The normal 
appearance of the epithelium varies between the different lobes (Fig. 1A). Epithelium in the DP is columnar, cyto-
plasm is relatively eosinophilic, and the nuclei are centrally to basally located. The epithelium can be tufted. LP 
epithelium has only sparse infoldings. The cells are cuboidal or low columnar, and the nuclei are small, uniform 
and basally located. VP has only focal epithelial tufting. The cells are cuboidal to columar, and the cytoplasm is 
less eosinophilic. Nuclei are small and basally located (Fig. 1A).

We manually selected 227 acini to represent variation in prostate epithelium in histological sections, including 
both the heterogeneity in normal appearance of the tissue, and the technical variance (e.g. acini cut in different 
orientations). For these images, we performed preprocessing to, for example, correct color variation across the 
tissue samples, and to exclude areas not including tissue (e.g. empty and secretion-containg areas inside the acini) 
(Fig. 1B). We applied color deconvolution to separate hematoxylin and eosin stains as separate color channels, 
and performed nuclear segmentation. The resulting image information we used to compute a compilation of 241 
features (listed in Supplementary Table 1). These features included numerous descriptors related to tissue texture 
and local environments, as well as numeric representations of properties, spatial arrangement, and distribution of 
nuclei. When these 241 features are used to represent the samples in dimension-reducing t-Distributed Stochastic 
Neighbor Embedding (t-SNE)11 plot, the extent of the extractable spatial variation between the normal lobes of 
the prostate is shown (Fig. 1C). While the VP shares characteristics within the range of LP, the DP is more clearly 
distinguished from the other lobes.

Quantitative characteristics of mPIN lesions. To study distinction of small pathological changes from 
normal epithelium, we wanted to compare normal tissue to early pathological lesions. Mice heterozygous for 
tumor suppressor Pten form mouse prostatic intraepithelial neoplasia (mPIN) within 8–12 months9. In here, we 
used prostate samples from Pten+ /−  mice of 10-11 months, when recognizable mPIN is evident (Fig. 2A).

We selected 199 areas of mPIN, and performed image processing and feature computation as above. A t-SNE 
plot (Fig. 2B) shows that the PIN lesions of different prostate lobes are mixed rather than separated as lobe-specific 
clusters. This indicates that, compared to normal epithelium, the spatial heterogeneity is decreased in mPIN 
(compare Fig. 2B to Fig. 1C). When comparing the relative distributions of normal epithelium and mPIN lesions, 
PIN areas are clearly separate from normal tissue areas by the computed compilation of features (Fig. 2C). When 
comparing the different prostatic lobes, it is evident that LP is furthest and DP closest to PIN lesions based on the 
computed feature profile, corresponding to the tissue characteristics observed by eye (Fig. 2A).

To test whether the computed feature characteristics can be used to reliably separate mPIN lesions from nor-
mal epithelium, we applied machine learning. We developed a random forest based model and applied it in 
leave-one-out cross validation (LOOCV) to estimate the probability of a sample to belong to the group of PIN 
lesions based on the feature data. Figure 3A shows the classification confidence given by the machine learning 
model for each sample to belong to the group of PIN. The accuracy of the estimations by the model was analysed 
using receiver operating characteristic (ROC) curve, from which the area under curve (AUC) measure can be 
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used for quantifying the separation between the normal and preneoplastic tissues (Fig. 3B; AUC 0.988). Predictor 
importances of 20 most influential features in the model to distinquish between the morphology types are shown 
in Fig. 3C. These feature importances were given by a model that was trained with all available samples.

From the LOOCV experiment, used to validate the robustness of our random forest model, we collected 
altogether 426 models from which the average importances are shown in Supplementary Figure 1. The averaged 
feature importance list contains a similar set of features as that given by the original model trained with all avail-
able samples (Fig. 3C). These include several types of texture features, such as LBPs and SIFT-features. Nuclear 
features include several descriptors of nuclear size, density and neighbourhood (NhoodMaxDist, NhoodStdDist, 
HhoodSkewness, meanNucSize, meanNucDistInNucNB, NhoodMeanDist). Another set of important features 
are the features describing the relative positions and orientations of the nuclei (NhoodNucAngleSkewABS, 
NhoodNucAngleKurtABS, NhoodNucAngleVar, NhoodNucAngleStd0). These capture the distinctive property 
of normal epithelial tissue, where nuclei are most often oriented as “beads in a row” as opposed to scattered dis-
tribution in a tumor (Supplemental Fig. 2).

We further tested the ability of the model to distinguish mPIN from normal epithelium in each lobe 
(Supplementary Figure 3). According to the different incidence of mPIN in the prostatic lobes in the Pten+ /−  
model mice, the number of mPIN samples in the analysis varied between lobes being greatest in LP and lowest in 
VP (normal epithelium and mPIN nVP =  37, nLP =  282, nDP =  107). PIN was distinguished from normal prostate 
most accurately in LP (AUC 0.997), likely due to the clear phenotypic difference in the histology. mPIN in VP 
and DP were similarly challenging, although with these, relatively small sample sets, a very high accuracy was still 
reached (AUC 0.972).

Computational distinction between histologies of different genetic groups. High expression of 
oncogenic Myc in the mouse prostate induces neoplastic lesions visible already at 1 month of age10. These lesions 
develop later on to adenocarcinoma, in contrast to the mPIN in the Pten+ /−  heterozygous mice which does 
not develop into carcinoma without additional genetic or carcinogenic manipulation9. We wanted to compare 
these two types of early neoplasms with genetic differences, and to find computational features separating them 
from each other and from the normal epithelium. As most of the tumors in these models form in the LP, we 

Figure 1. Quantitative image analysis of normal mouse prostate histology. (A) General appearance of 
mouse prostate in a histological section (large image) and variation in the appearance of normal epithelium 
within three lobular areas of mouse core prostate: ventral prostate (VP), lateral prostate (LP) and dorsal prostate 
(DP) (small images). Urethra (U) and the muscle layer (ml) surrounding it are marked. Scale bars: 1 mm 
(large image) and 25 μm (small images). (B) Overview of the image analysis workflow that includes masking 
of ROI, correcting color variation using histogram matching, excluding areas not including tissue, separating 
hematoxylin and eosin stains, segmenting cell nuclei, and extracting quantitative feature data. (C) A t-SNE plot 
presenting the spatial variation of quantitative features in the epithelium between the normal mouse prostate 
lobes (VP, LP, DP).
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concentrated on this tissue area selecting only LP samples from Pten+ /−  model mice (normal epitheliu n =  137, 
mPIN n =  145), and manually selected samples from LP of Hi-Myc mice (normal epithelium n =  111, mPIN 
n =  189). Examples of representative histologies on normal and preneoplastic LP epithelium are shown in Fig. 4A.

As the two preneoplastic change types occur at different ages, our samples from the two different models 
represented prostate epithelium from mice of very different age (10–11 months in Pten+ /−  mice compared to 1 
month in Hi-Myc mice). Thus, to ensure consistency and comparability of the data from hiMyc and Pten+ /−  tis-
sues, we selected features whose distributions did not show statistically significant difference (threshold α =  0.05) 
according to Kolmogorov-Smirnov test in the two control groups to use in the further analysis. Altogether 59 fea-
tures fulfilled the criterion (Supplementary Table 2, Supplementary Figure 4). It is evident already by the feature 

Figure 2. Quantitative characteristics of mouse PIN. (A) Examples of prostatic acini containing normal 
epithelium and PIN lesions from the three lobular areas (VP, LP, DP). (B) Representation of the quantitative 
features of PIN lesions in three mouse prostate lobes (VP, LP, DP) in two-dimensional feature space using 
t-SNE. (C) A t-SNE visualisation reveals decreasing spatial heterogeneity in PIN lesions compared to normal 
epithelium in the mouse prostate.
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values that the three groups of samples have their own, distinct signatures (Fig. 4B). Furthermore, these groups 
are clearly distinguished in representation of the samples according to the feature values in t-SNE (Fig. 4B).

We developed a machine learning model based on the selected subset of features to estimate the probability of 
a sample to belong to any of the three groups (normal epithelium, Pten heterozygous mPIN, or Hi-Myc-induced 
early neoplasia). The model is successful in predicting accurately the histological classes of the samples, as shown 
in a confusion matrix of the predictions (Fig. 5A) and a ROC-curve of accuracy analysis (Fig. 5B; AUC 0.997 for 
normal, 0.990 for Pten+ /− , and 0.995 for Hi-Myc). Similarly as in distinguishing mPIN from normal epithelium, 
the predictor importances of the most valuable features in this random forest model (Fig. 5C) include nuclear 
density and angle-related features (NhoodNucAngleKurtABS; NhoodMeanDist, numberOfNucInNucNB). As 
expected, however, the separation of two morphologically different neoplastic histologies brings features cap-
turing more detailed textural information from the stain intensities and from nuclear density map to the top list 
of features (e.g. DensityLBP6, LBP4H). These remain in the list of most influential features even when averaging 
the predictor importances of 582 trainings of the random forest model (Supplementary Figure 5), and provide 
detailed, quantitative information of the differences between Hi-Myc and Pten+ /−  -provoked early neoplasms 
(Fig. 5D).

Discussion
Automatic recognition and quantitative analysis of tissue pathologies requires ways to computationally identify 
representative histological features separating normal and altered tissue. In this work, we extracted a set of 241 
features from images of prostate tissue, and used them to analyze spatial heterogeneity within normal prostate, as 
well as to separate different types of early neoplastic changes from normal tissue and from each other. Our results 
show that separation between different spatial locations within the organ, as well as classification between histol-
ogies provoked by different genetic lesions, can be performed with very high specificity and sensitivity.

We applied traditional machine learning approach based on extraction of a large set of engineered features 
followed by a random forest ensemble classifier. Given the very high accuracy obtained for the relatively low 
number of samples and small size of regions of interest, this approach appears to be well justified. Recently, neural 
network based deep learning approaches12 have gained much attention in efforts to recognize cancerous tissue 
from normal tissue, and in developing pre-screening tools for pathologists to indicate suspect areas in tissue13,14. 
The set-back of these approaches so far is the difficulty of examining the relevance and meaning of model prop-
erties, i.e. network weights and output layer values used in the decision flow in the context of the tissue. In order 
to interpret the model properties used computationally to a pathologist or a research biologist, meaningful and 
recognizable features of the tissue are preferred, especially if the information of the tissue features need to be com-
bined with readouts obtained from other measurement modalities. Methods to avoid the interpretability issues 
in using deep learning are likely to follow, while combination approaches of deep learning and traditional, feature 
based machine learning are also being investigated15,16.

In this study, we used two popular prostate cancer mouse models17, to compare the histology of early pathol-
ogies originating from different genetic alterations. Pten is a tumor suppressor that functions by inhibiting Akt 
pathway, and it is often deleted in human prostate cancer18. Mice heterozygous for Pten form cancer in many 
organs9. In the prostate, these mice develop mPIN9, which is a type of in situ lesion not reported to develop to 
invasive carcinoma without additional genetic or carcinogenic manipulation. Myc, on the other hand, is a tran-
scription factor and a powerful oncogene overexpressed in many cancers, including prostate cancer19. Hi-Myc 
mice10 are a popular model to study prostate cancer, as it is one of the few genetic mouse models forming adeno-
carcinoma, thus exhibiting the cancer type most common in human prostate. Both our models represent an early 
phase in the step-wise development of cancer, and thus can be used in studying the early pathological changes 
in tissue. We achieved a successful separation between the histologies provoked in these two models by their 

Figure 3. Classification of mouse PIN using supervised machine learning. (A) Classification confidence 
given by the random forest model for each Pten+ /−  sample to belong to the group of PIN using LOOCV.  
(B) The sensitivity and specifity of the random forest model classification shown in A presented as a ROC curve, 
and the performance measured by area under the curve (AUC). (C) List of 20 most significant features and their 
relative importances in the separation of mPIN from normal epithelium given by a classification model trained 
with all Pten+ /−  samples.
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different genetic alterations with very high specificity and sensitivity. This gives promise for future aims to auto-
matically link genetic and quantitative histological information for more varied genetic populations and tumor 
subtyping.

The method we presented here is generic, and the applicability is not limited to mouse tissue. Tumor mate-
rial from human patients, however, includes higher genetic and phenotypic variability compared to genetically 
restricted mouse model material. Thus, well annotated, large enough datasets are required to further develop and 
validate automated image analysis pipelines for future use in clinical and research applications in human cancer. 
Another current challenge is to automate the detection step of regions of interest. Recently, machine learning has 
been applied in automated ROI detection in, e.g., metastasis detection from human breast cancer samples13. Our 
approach for ROI classification could also be applied for ROI detection. This requires quantitative processing of 
not just the interest areas, but all the neighbouring tissue types and structures as well, including the basement 
membrane, stromal cells and fibers, nerves, vasculature, smooth muscle, and adipose tissue. Acquiring quantita-
tive representations of these different tissue components and types will benefit applications of digital pathology 
also beyond cancer research.

In addition to tumor genotypes, data representing tumor phenotypes are desired to combine with quantitative 
representations of histology provided by methods such as the ones presented here. Recent advances in spatial 
transcriptomics20,21 integrated with computational histological analyses will undoubtedly provide understanding 
of spatial variation and evolution of tumors. Further, quantitative representation of tissue features and heteroge-
neity along with three-dimensional reconstructions of whole organs from serial sections, such as the prostate22, 

Figure 4. Quantitative characteristics of normal epithelium, Pten heterozygous mPIN, and Hi-Myc-
induced preneoplasia in mouse lateral prostate. (A) Examples of representative histologies of normal and 
preneoplastic LP epithelium from Pten+ /−  and Hi-Myc mouse model prostates. Scale bars 25 μm. (B) Distinct 
feature value patterns of Pten heterozygous PIN, Hi-Myc-induced early neoplasia, and normal epithelium 
presented in a heatmap after hierarchical clustering of normalized feature values. (C) Three-dimensional t-SNE 
visualisation shows distinctive patterns for the three histological populations.
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will enable intuitive visulization and provide novel insight into the spatial variation within tissue, as well as tumor 
growth patterns, in a natural context.

Methods
Ethical permissions. All animal experimentation and care procedures were carried out in accordance 
with guidelines and regulations of the national Animal Experiment Board of Finland, and were approved 
by the board of laboratory animal work of the State Provincial Offices of South Finland (licence numbers 
ESAVI/6271/04.10.03/2011 and ESAVI/5147/04.10.07/2015).

Tissue samples. FVB/N mice either heterozygous for Pten (Pten+ /− 9) or transgenic for MYC oncogene 
(Hi-Myc10) were used. Prostates were fixed in PAXgeneTM tissue fixative according to manufacturer’s protocol, 
and embedded in paraffin. 5 μm tissue sections were cut, attached to glass slides, and stained with hematoxylin 
and eosin.

Imaging and ROI separation. HE-stained slides were whole slide imaged with Zeiss Axioskop40 micro-
scope (Carl Zeiss MicroImaging, NY, USA) with 20x objective and a CCD color camera (QICAM Fast; QImaging, 
Canada) and a motorized specimen stage (Märzhäuser Wetzlar GmbH, Germany). The automated image acqui-
sition was controlled by the Surveyor imaging system (Objective Imaging, UK). Uncompressed bitmap output 
was converted by JVSdicom Compressor application to JPEG2000 WSI format23. Snapshot images for Figures 
were obtained through JVSView virtual microscope (http://jvsmicroscope.uta.fi) and ImageJ software (National 
Institutes of Health, Bethesda, MD, USA24). Regions of interest were manually marked using a freehand selection 
tool in ImageJ. The resulting binary mask was used for extracting the ROI from the full resolution original HE 
image for further processing. In normal tissue, epithelial layer of prostate acini was included, excluding other tis-
sue components in the organ such as stroma, urethra, vessels and nerve bundles. Pathological lesion masks each 
included solely mPIN/neoplastic epithelium. In the case of Hi-Myc samples, these were always within a single 
acinus each. In the case of Pten+ /−  lesions, where one mPIN tumor could reach several acinar lumen within a 
certain section, all affected lumen were included in a single mask.

Preprocessing of images. The preprocessing of the images included histogram matching in order to 
remove the color variation between samples, exclusion of unwanted regions, color deconvolution to separate 

Figure 5. Classification between normal epithelium, Pten heterozygous mPIN, and Hi-Myc-induced 
preneoplasia in mouse lateral prostate using supervised machine learning. (A) Classification accuracies 
for separating the three histological populations given by the proposed classification model as a confusion 
matrix. (B) ROC curves representing the performance of the classification model when distinguishing Pten 
heterozygous mPIN, Hi-Myc-induced early neoplasia, and normal epithelium. Each curve presents the 
classification accuracy for separating one group of the three from the two of the other groups. Performances 
as measured by the area under the curve (AUC) are shown. (C) List of 20 most significant features and their 
relative importances in the separation of Pten heterozygous mPIN, Hi-Myc-induced early neoplasia, and 
normal epithelium by the random forest model trained with all of the LP samples from Pten+ /− , Hi-Myc, 
and normal epithelium. (D) Values of four most significant features in C as boxplots showing the differences 
between Pten heterozygous mPIN, Hi-Myc-induced early neoplasia, and normal epithelium.

http://jvsmicroscope.uta.fi
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hematoxylin and eosin stains, and nuclei segmentation. These steps were implemented for bounding box areas 
around each ROI.

Histogram matching was performed to balance staining variation between sections. For a reference histogram, 
a mean histogram was computed from a representative set of samples consisting of ROI images of preneoplastic 
lesions and normal prostate epithelium from all three lobular areas. After this, histogram matching was per-
formed by using a transform function computed between the image’s histogram and the reference histogram.

To segment the effective tissue area within each ROI, a mask for secretion-filled regions and empty areas was 
obtained by subtracting different color channels and performing contrast limited mapping of the intensity values 
similarly as in Ruusuvuori et al.7. The final binary mask was obtained by thresholding using Otsu’s method25. To 
smoothen the binary segmentation mask, morphological opening, closing, and filling were performed.

A color deconvolution algorithm26 was applied to convert the red, green, and blue channels of each image into 
hematoxylin stain, eosin stain, and background. Hematoxylin stains mainly the cell nuclei and therefore, hema-
toxylin channel was further processed to segment cell nuclei. Maximally stable extremal regions (MSER)27 were 
extracted from the grayscale image of hematoxylin stain. MSER is a method for blob detection from an image. Set 
of detected regions were selected based on the size corresponding to potential nuclei size. Additionally, regions 
that did not contain high grayscale intensity values related to high amount of hematoxylin stain, were excluded. 
To get the map for high rate of hematoxylin, tophat filtering, maximum filtering, Gaussian filtering, and image 
intensity adjustment was performed. Binary mask for high hematoxylin rate was obtained by thresholding using 
Otsu’s method25. To get the final binary mask for cell nuclei, MSER regions that were overlapping with mask for 
high rate of hematoxylin were selected.

Feature extraction. Properties of each ROI were described with extraction of 241 features 
(Supplementary Table 1). These features included local descriptors related to image texture and distribution of 
nuclei. Texture features were extracted from local neighborhoods representing distinct levels of tissue archi-
tecture and, thus, measured as different features (e.g. Contrast-H, NhoodContrast-H, ROI-BlockContrast-H, 
ROIContrast-H), and also from both hematoxylin and eosin channels (e.g. Contrast-H, Contrast-E). The neigh-
borhoods for texture features included bounding box of each segmented nucleus, 35 ×  35 pixel neighborhood 
around each nucleus, non-overlapping 50 ×  50 pixel neighborhoods within effective tissue area with unwanted 
regions included and excluded (e.g. mROI-BlockContrast-H, ROI-BlockContrast-H), and the whole bounding 
box image of the ROI. Nuclei distribution features were extracted from a 100 ×  100 pixel neighborhood around 
each nucleus. To obtain a single feature vector for the whole ROI area, mean feature values were calculated from 
all blocks presenting one combination of certain feature and neighborhood. Details about each extracted feature 
and the applied local neighborhoods are presented in Supplementary Table 1.

Texture features. The extracted texture based features included, e.g., mean intensity value, contrast, cor-
relation, and energy, calculated from gray level co-occurrence matrix (GLCM). Properties of the texture within 
each ROI were also extracted using local binary patterns (LBP)28,29 and scale-invariant descriptors obtained via 
the Scale-invariant feature transform (SIFT)30. Additionally, properties of MSER regions were used as features. 
VLFeat31 implementations of SIFT and MSER were used in this work.

Nuclei distribution features. Features related to distribution of cell nuclei were calculated from a nuclei 
location map, generated by marking the center point of each segmented nucleus. Features included descriptors 
related to inter-nuclei distance, nuclei locations with respect to each other described with angular statistics, num-
ber of nuclei within a neighborhood, and density features. The density features were calculated from a Gaussian 
filtered nuclei location map.

The angular statistic features were extracted using CircStat toolbox32. For each nucleus, an angle to all its 
neighbouring nuclei within a 100 ×  100 pixel block was calculated. Supplementary Figure 2 presents an example 
polar histogram of these calculated angles from both normal epithelium sample and preneoplastic lesion sample. 
The features related to angular statistics included properties of this polar histogram, such as, variance, standard 
deviation, skewness, and kurtosis.

Feature selection. To study the spatial variation in epithelium within different lobular areas of normal tis-
sue, as well as in the comparison of normal tissue and preneoplastic mPIN lesions, we used all the extracted 241 
features. For the comparison of three groups (normal, Pten+ /− , and Hi-Myc), a feature selection was performed 
by statistical testing between features extracted from both Hi-Myc and Pten+ /−  normal prostate epithelium sam-
ples. Two-sample Kolmogorov-Smirnov test33 (significance threshold α =  0.05) was used to determine if the fea-
ture data extracted from these two normal sample groups were from the same continuous distribution. Altogether 
59 features not showing statistically significant differece between the two normal populations were included in 
further analysis (Supplementary Table 2).

Classification. The feature representations of ROI samples were used to train a random forest model34. 
Random forest algorithm was chosen due to its capability to handle both high data dimensionality and varying 
sample sizes in a computationally efficient manner. Additionally, the algorithm assigns weights for input features 
based on their importance in the classification task, providing an interpretable classification model and additional 
insight in the contribution of features. Bootstrap aggregation, which is a machine learning algorithm that com-
bines multiple versions of decision trees into a random forest model, was used to improve the stability and accu-
racy of the model. Each decision tree version is constructed from a randomly sampled dataset with replacement. 
The implemented model was an ensemble of 50 decision trees.

Leave-one-out cross-validation was used for estimating the classification performance of or our random for-
est model. For example, when distinguishing mPIN from normal epithelium, we had 426 samples in total, and 
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therefore, we trained 426 random forest models. For each model, one sample was left out from the training phase 
and then the trained model was used to predict the probability for this excluded sample to belong to the group 
with early neoplastic changes.

From the LOOCV experiments, average feature importances and corresponding standard deviations 
were compiled. When distinguishing mPIN from normal epithelium, these were calculated from the feature 
weights given by each of the trained 426 models (Supplementary Figure 1). When distinguishing between 
Hi-Myc-induced early neoplasia, Pten heterozygous mPIN, and normal epithelium, the average feature impor-
tances of the 582 models were calculated (Supplementary Figure 5).
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