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Renal Medulla is More Sensitive to 
Cisplatin than Cortex Revealed by 
Untargeted Mass Spectrometry-
Based Metabolomics in Rats
Pei Zhang1,2,3, Jia-Qing Chen1,2,3, Wan-Qiu Huang1,2,3, Wei Li1,2,3, Yin Huang1,2,3,  
Zun-Jian Zhang1,2,3 & Feng-Guo Xu1,2,3

Nephrotoxicity has long been the most severe and life-threatening side-effect of cisplatin, whose 
anticancer effect is therefore restricted. Previous pathological studies have shown that both renal 
cortex and medulla could be injured by cisplatin. Our TUNEL (terminal deoxynucleotidyl transferase-
mediated dUTP nick end-labeling) assay results further uncovered that medulla subjected more 
severe injury than cortex. In order to depict the underlying metabolic mechanism of spatial difference 
in response to cisplatin, in the present study, mass spectrometry-based untargeted metabolomics 
approach was applied to profile renal cortex and medulla metabolites of rat after receiving a single dose 
of cisplatin (2.5, 5 or 10 mg/kg). Eventually, 53 and 55 differential metabolites in cortex and medulla 
were screened out, respectively. Random forest, orthogonal partial least squares-discriminant analysis 
and metabolic cumulative fold change analysis revealed that metabolic changes in medulla were more 
obviously dose-dependent than those in cortex, which confirmed the conclusion that medulla was 
more sensitive to cisplatin exposure. Furthermore, 29 intermediates were recognized as the most 
contributive metabolites for the sensitivity difference. Metabolic pathways interrupted by cisplatin 
mainly included amino acid, energy, lipid, pyrimidine, purine, and creatine metabolism. Our findings 
provide new insight into the mechanism study of cisplatin-induced nephrotoxicity.

Cisplatin [cis-diamminedichloroplatinum(II)] is an effective antineoplastic agent that was widely applied in the 
treatment of various types of solid tumors in the past several decades1–3. However, due to poor selectivity, cis-
platin could cause neurotoxicity, nephrotoxicity, nausea and vomiting, and ototoxicity et al. in clinical4–10. As the 
principal excretory organ for cisplatin, kidney accumulates and retains platinum to a greater degree than other 
organs11,12. Therefore, nephrotoxicity has long been the most severe and life-threatening toxicity among these 
side-effects13,14. Statistics showed there were about 25–35% patients experienced a significant decline in renal 
function after receiving a single dose of cisplatin13,15. The declines manifested clinically as lower glomerular filtra-
tion rate, reduced serum magnesium and potassium levels et al.13,16. Research over the past few years has gained 
significant insights into the mechanisms regarding cisplatin nephrotoxicity, which mainly involved apoptosis, 
inflammation and oxidative stress et al.17–22. However, how the toxicity occurs and develops, and how various 
types of mechanisms are integrated to induce distinct kidney pathology, remain largely unknown.

Metabolomics is an emerging -omics approach that could provide information of holistic and time-dependent 
metabolic variation in response to xenobiotic interventions23,24. At present, metabolomics analysis encompasses 
different strategies depending on the objective of study, namely target analysis of a group of chemically similar 
metabolites (targeted metabolomics) and global metabolomics profiling (untargeted metabolomics)25. Research 
strategies including sample preparation, instrumental condition, data processing method, and method valida-
tion differ from targeted to untargeted metabolomics26,27. In the past decades, metabolomics has been applied in 
various research fields such as pharmaceutical and clinical research, food technology and microbiology28–31. In 
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cisplatin nephrotoxicity, metabolomics has also been introduced since 200632–37. The focus of these researches is 
discovering biomarkers that could be used for the early diagnosis of renal toxicity. Previously, we have investi-
gated the time- and dose-dependent effect of cisplatin nephrotoxicity using untargeted metabolomics approach, 
and biomarkers with characteristic of time- and dose-dependence were screened out38. In these metabolomic 
studies related to cisplatin nephrotoxicity, serum, plasma and urine were most frequently studied biological 
matrixes33–35,37,38. However, metabolic alternations in these samples reflect systematic responses originated from 
all tissues and could not show the specific changes in kidney. Boudonck K. J et al. analyzed both serum and kidney 
samples to discover biomarkers for the early prediction of nephrotoxicity32. The experiment was conducted at a 
very low cisplatin dosage (0.5 mg/kg for 1, 5 or 28 days), which was quite different from the clinical application 
strategy. What’s more, the effects of dose were not taken into consideration.

When kidney was targeted to conduct metabolomics study of cisplatin nephrotoxicity, the spatial difference 
was always neglected. Two major regions including the outer cortex and the inner medulla can be visualized if the 
kidney is bisected from top to bottom39. It is generally recognized that cisplatin-induced kidney injury occurs in 
the cortical part. However, previous morphological study has demonstrated that both cortex and medulla could 
be impaired by cisplatin as lesions were directly observed in the two parts using light microscopy, transmission 
electron microscopy and scanning electron microscopy40. Moreover, in our pre-experiments, in addition to cortex 
damage, extremely severe injuries including tubular necrosis, tubular expansion, and tube casts in medulla were 
observed in pathological sections. What is more interesting is that our TUNEL assay results further uncovered 
that medulla experienced more severe injury than cortex.

Hence, in order to depict the underlying metabolic mechanism of spatial difference of kidney in response to 
cisplatin, mass spectrometry-based untargeted metabolomics approach was performed in the present study. The 
results demonstrated that metabolic profiling of the two parts were distinctly affected due to cisplatin administra-
tion. More importantly, medulla showed higher sensitivity to cisplatin than cortex as its metabolic profiling was 
affected more dose-dependently. Furthermore, 29 metabolites were recognized as the most contributive metabo-
lites for the sensitivity difference by two-step cluster analysis statistical test (CAST). Together our study provides 
novel insights into the mechanism underlying cisplatin nephrotoxicity from the perspective of metabolomics.

Results
Nephrotoxicity induced by cisplatin. Body weight, kidney coefficient, blood urine nitrogen (BUN) and 
serum creatinine (SCr) of rats in different groups have been reported in our previous study38. The results demon-
strated that low-dose cisplatin induced slight kidney damage, and medium- or high-dose cisplatin induced signif-
icant renal function decline. It should be noted that the initial numbers of rats were 13, 13, 16 and 26 for group C, 
L, M and H, respectively. Eventually, 2, 3 and 10 rats in group L, M and H died, and the final numbers of animals 
were 13, 11, 13 and 16 for group C, L, M and H, respectively.

Not only the macroscopic indicators but also microscopic morphology were significantly changed after cispla-
tin administration. Figure 1a showed the representative pathological examination results of cortex and medulla 
in different groups. No abnormal changes were observed in control group (C), and only slight tubular expansion 
could be observed in medulla in low-dose cisplatin group (L). But remarkable abnormal histological changes 
can be observed in both cortical and medullar part in medium-dose cisplatin group (M) and high-dose cisplatin 
group (H). The damages manifested tubular necrosis, tubular expansion, renal epithelial casts and interstitial 
infiltration of inflammatory cells.

TUNEL assay was utilized to confirm the occurrence of cell apoptosis in cortex and medulla. As can be seen 
from Fig. 1b, there were large amount of apoptotic cells in both cortex and medulla of group M and H. Cell apop-
tosis in cortex and medulla in different groups were statistically analyzed by counting positive cells in high power 
fields (Fig. 1c). The results indicated that cisplatin induced a dose-dependent kidney damage. More importantly, 
injury of medulla was more severe than cortex.

Data quality evaluation of untargeted metabolomics. As can be seen from Figure S1a–d, for 
both medulla and cortex samples analyzed by gas-chromatography-mass spectrometry (GC-MS) or liquid 
chromatography-mass spectrometry (LC-MS), quality control (QC) samples in PCA score plot were all clustered 
very well and generally separated from other groups, indicating good reproducibility of the data.

On the other hand, the relative log abundance (RLA) boxplots for QC samples all had a median value close 
to zero and a similar range of box between samples for both cortex and medulla analyzed by GC-MS or LC-MS 
approach (Figure S2a–d), suggesting small coefficient of variations within QC samples. Variation in retention 
times of the 10 representative metabolites in QC samples was shown in Table S1. As can be seen, the variation was 
less than 0.01 min. Besides, variations in MS response of those metabolites in QC samples were calculated and 
listed in Tables S2–S5. PCA, RLA plot and variations in retention time and MS response investigation demon-
strated that our sample process procedure and detection system were stable throughout the whole experimental 
period.

Differential metabolites screened out in cortex and medulla. In order to test the overall difference 
between cortical and medullar part, samples from the same part (including four different groups i.e. C, L, M, and H)  
were combined and used to perform unsupervised PCA first. As Fig. 2a,b showed, cortical and medullar samples 
were clearly separated in PCA score plots, suggesting that these two parts were truly isolated in the sample collec-
tion procedure, and the separation technique was reliable.

Orthogonal partial least squares-discriminant analysis (OPLS-DA) was performed to discriminate differences 
between C, L, M, and H groups (Figure S3). After differential features screening and metabolite identification, 53 
metabolites in cortex and 55 in medulla were screened out, respectively (the detailed information of metabolites 
were listed in Tables S2–S5). These differential metabolites could be divided into three categories, i.e., 39 common 
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metabolites screened out in both cortex and medulla, 14 metabolites screened out especially in cortex and 16 
metabolites characteristically screened out in medulla (Fig. 2c).

Random forest (RF) revealed sensitivity difference of cortex and medulla. RF was applied to get a 
general view of the sensitivity difference between cortex and medulla. One thousand RF models were constructed 
between group C and each cisplatin-treated group respectively and the error rates of test set (ERTs) were summa-
rized to evaluate the similarity between groups. For example, the error rates of cortex or medulla between group 
C and H converged to zero, which indicated that metabolic differences between the two groups were obvious. 
On the contrary, the poor results of cortex in group C and L suggested that the two groups were similar since 
most of the models were unable to classify samples correctly. Then, as can be seen from Fig. 3a, ERTs of group 
C vs. L, C vs. M in cortex were significantly higher than those in medulla, while ERTs of group C vs. H in cortex 
and medulla were similar. These results indicated that metabolic profiling of group L and M were more similar 
with group C in cortex than medulla, i.e., metabolic profiling of medulla was more susceptible to be affected by 
cisplatin administration.

Sensitivity difference was visualized by heat-map. As all detected variables were compared by RF, 
in order to verify sensitivity difference between cortex and medulla from the perspective of discriminative 

Figure 1. Nephrotoxicity was induced by cisplatin. (a) Representative images of H&E staining of cortex and 
medulla (magnification, 100× ), pathological lesions were marked out by asterisks; (b) Representative images of 
TUNEL assay of cortex and medulla (magnification, 200× ); (c) Histogram of the statistical analysis of positive 
cells in each high power field. Data are expressed as mean ±  SD (n =  5). Mann-Whitney U test, #p <  0.05, in 
comparison with the corresponding group in medulla; *p <  0.05, in comparison with control group.
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metabolites, heat-maps were constructed based on identified differential metabolites (53 in cortex, 55 in medulla). 
From Fig. 3b we can see that concentrations of differential metabolites in cortex were barely influenced by low- or 
medium-dose cisplatin, while significantly up- or down-regulated by high-dose cisplatin. At variance, change 
trends of differential metabolites in medulla was dose-dependent (see Fig. 3c).

Sensitivity difference was validated by OPLS-DA score plot. Inner relation of variable X (differential 
metabolites) and Y (groups) was discriminated by OPLS-DA. The horizontal axis represented the first principal 
component and vertical axis the first grouping information. Thus, degree of dispersion of the four groups in the 
two directions could be used to visualize inter-group differences. As can be seen from Fig. 3d,e, in cortex group C, 
L and M were very close in both vertical and horizontal direction but completely separated from group H, while 
in medulla the four groups were dispersed in both the two directions. That is to say, metabolites in medulla were 
dose-dependently changed and more sensitive to cisplatin dosage.

Sensitivity difference was quantitatively evaluated by Q2 of two-group OPLS-DA. While 
heat-map and OPLS-DA score plot are excellent visualizing methods to depict sensitivity difference, other meth-
ods are needed to evaluate the difference quantitatively. Here, Q2 from OPLS-DA constructed between control 
group and each cisplatin group was used as an indicator (Table S6). Histogram of Q2 was shown in Fig. 3f. In 
cortex, Q2 of OPLS-DA model for group C and L was negative, while in medulla, it was 0.45. As for the model of 
group C vs M and group C vs H, Q2 in cortex and medulla were 0.798 vs 0.872, and 0.91 vs 0.949, respectively. 
Under the circumstances of the same number of predictive and orthogonal components, all Q2 values were lower 
in cortex than those in medulla. Thus, models constructed for medulla were more robust, indicating more distinct 
differences existed between control samples and cisplatin-treated samples. In another word, metabolite profiling 
alternations was more significant in medulla than cortex in response to cisplatin administration.

Figure 2. Differential metabolites were screened out in cortex and medulla. (a) PCA score plot for all cortex 
(red circles) and medulla (blue circles) samples based on GC-MS data, model parameters were R2X =  0.799 and 
Q2 =  0.754; (b) PCA score plot of all cortex (red circles) and medulla (blue circles) samples based on LC-MS 
data, model parameters were R2X =  0.672 and Q2 =  0.552; (c) Venn diagram of differential metabolites screened 
out in cortex and medulla.
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Metabolic cumulative fold change (MCFC) demonstrated accumulative sensitivity differ-
ence. Heat-map, OPLS-DA score plot and parameter Q2 were constructed or calculated based on all differ-
ential metabolites. To investigate if there were still differences in case of common metabolites in the two parts, 
MCFC was calculated based on 39 common metabolites (Fig. 2c). As can be seen from Fig. 3g, MCFC of group L, 
M and H in medulla were all significantly higher than that in cortex. Thus, the degree of accumulative metabolic 
change of medulla was higher than cortex, indicating that metabolites in medulla were more sensitive to cisplatin 
exposure than cortex.

Figure 3. Multiple methods were used to analyze the metabolic sensitivity of renal cortex and medulla to 
cisplatin dosing. (a) Histogram of ERT of RF conducted between control and each cisplatin-treated group;  
(b) Heat-map of differential metabolites screened out in cortex; (c) Heat-map of differential metabolites 
screened out in medulla; (d) OPLS-DA score plot constructed based on differential metabolites screened out 
in cortex; (e) OPLS-DA score plot constructed based on differential metabolites screened out in medulla; 
(f) Histogram of Q2 of OPLS-DA models constructed between control and each cisplatin group; (g) MCFC 
of group L, M and H. Data are expressed as mean ±  SD. #Negative value. Mann-Whitney U test, *p <  0.05, 
**p <  0.01, ***p <  0.001, ****p <  0.0001. Color code in heat-map: red color indicates the highest metabolite 
concentration and green indicates the lowest.
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Contributing metabolites were screened out by two-step cluster analysis statistical test 
(CAST). After validation of sensitivity difference of cortex and medulla in response to cisplatin injection, there 
must be a query that what metabolites contributed most to the difference. As metabolic changes in medulla were 
more obviously dose-dependent than cortex, metabolites with good correlation to cisplatin dosage in medulla 
were thought contributive. To screen out these metabolites, a two-step CAST method was utilized. First, fold 
changes of metabolites between each cisplatin group and control group were calculated. Then, a union of 108 dif-
ferential metabolites (53 from cortex, 55 from medulla) was imported to MeV software. After the first step CAST, 
two main clusters of metabolites were generated and kept. Cluster one included 41 metabolites which showed an 
increase trend as cisplatin dosages elevated. Cluster two was consisted of 43 metabolites whose concentrations 
decreased as the dosages increased. The left 24 metabolites had poor correlation with cisplatin dosages were 
excluded.

Then, the second CAST was executed within cluster one and two, respectively. As a result, four sub-clusters 
were generated from cluster one. Sub-cluster 1 included 12 metabolites showed great correlation with cisplatin 
dosages, i.e. fold changes gradually increased as the dose elevated. Representative tendency chart was shown in 
Fig. 4a, and the corresponding heat-map was shown in Fig. 4b. These metabolites may contribute largely to the 
sensitivity difference as they were very sensitive to cisplatin dosage. In this sub-cluster, 4 metabolites were from 
cortex, and the left 8 were from medulla. Sub-cluster 2 included 3 metabolites whose concentrations in group M 
and H were significantly higher than that in group L (Fig. 4c). They were all from medulla (Fig. 4d). Sub-cluster 3 
included 22 metabolites, whose fold changes also increased as dosages elevated. However, fold changes of metab-
olites in group M were similar with group L, while in group H, they were significantly higher than those in 
group L and M (Fig. 4e). It was indicated that these metabolites were sensitive to high-dose while not to low- or 
medium-dose cisplatin. In this sub-cluster, 12 metabolites were from cortex and 10 from medulla (Fig. 4f). As 
shown in Fig. 4g,h, metabolites in sub-cluster 4 had poor correlation with cisplatin dosages were all screened out 
from cortex.

Similarly, cluster two was further divided into four sub-clusters after the second CAST. As shown in Fig. 5a, 
metabolites in sub-cluster 1 were greatly correlated to cisplatin dosages, 4 of which were from cortex and 8 from 
medulla (Fig. 5b). These metabolites were also speculated to be contributive to the sensitivity difference. In 
sub-cluster 2, there were 13 metabolites, whose fold changes in group M and H were significantly lower than those 
in group L (Fig. 5c), indicating that they were more sensitive to medium- and high-dose cisplatin. Of metabolites 
in sub-cluster 3, only 3 were from cortex, and the left 10 were from medulla (Fig. 5d). Sub-cluster 3 included 16 
metabolites. In group H, fold changes of these metabolites were significantly lower than those in group L and M, 
indicating that those metabolites were only affected by high-dose cisplatin and lacking sensitivity to low- and 
medium-dose cisplatin (Fig. 5e). 15 of 16 metabolites in this sub-cluster were from cortex (Fig. 5f). The left 2 
metabolites without good correlation with cisplatin dosages were included in sub-cluster 4 (Fig. 5g), and they 
were all from cortex (Fig. 5h).

Altogether, most of the metabolites sensitive to both medium- and high-dose cisplatin were from medulla 
(Figure S4a), while the majority metabolites that only sensitive to high-dose cisplatin and all metabolites poorly 
correlated with cisplatin dosages were derived from cortex (Figure S4b). Totally 29 metabolites greatly cor-
related with cisplatin dosages or sensitive to both medium and high-dose cisplatin in medulla were thought 
contributed most to the sensitivity difference. These metabolites were sphingosine, diacylglycerols (DG) includ-
ing DG(38:2) and DG(33:0), lyso-phosphatidylcholines (LysoPC) including LysoPC(22:5) and LysoPC(18:3), 
lyso-phosphatidylethanolamines (LysoPE) including LysoPE(22:4), LysoPE(18:1), LysoPE(20:4), LysoPE(16:0) 
and LysoPE(18:2), phosphoinositol (PI) like PI(20:4), free fatty acids (FFA) including FFA C22:4, FFA C22:5 
and FFA C22:6, ceramide(d18:1/16:0), ethanolamine, palmitoylcarnitine, linoleylcarnitine, cytidine, malic acid, 
glutamic acid, pyroglutamic acid, proline, alanine, threonine, valine, aspartic acid, serine and xanthurenic acid.

Altered pathways related to cisplatin nephrotoxicity. As can be seen from Fig. 6, several metabolic 
pathways were affected by cisplatin including amino acid, energy, lipid, pyrimidine and purine metabolism, as 
well as creatine pathway. Of these metabolic pathways, lipid and amino acid metabolism were the most perturbed 
ones.

Discussion
Cisplatin is taken into the cells primarily by organic cation transporter 2 (OCT2) of the proximal tubules and then 
transported to the apical site where it is bio-activated into a more potent metabolite (cysteinyl-glycine-conjugates) 
by gamma-glutamyl transpeptidases that are present in the proximal tubules. Then cysteinyl-glycine-conjugates 
are further metabolized to cysteine-conjugates by aminodipeptidases, also expressed on the surface of the prox-
imal tubule cells. The cysteine-conjugates are then transported into the proximal tubule cells, where they are 
further metabolized by cysteine-S-conjugate beta-lyase to highly reactive thiols41,42. Previous mechanism studies 
of cisplatin nephrotoxicity showed that the most damaged region is renal proximal tubule12,43, which is generally 
thought to be located in cortex. But actually, renal proximal tubule could be further divided into three segments, 
i.e. S1, S2 and S3 segment. The S1 and S2 segments make up the pars convolute and are situated in cortex, while 
the S3 segment locates in the outer stripe of medulla and in medullary rays. Study found that OCT2 which 
responsible for transporting cisplatin was mainly located in the S2 and S3 segment44. In addition, Dobyan’s study 
showed that the S3 segment accumulated the highest concentration of cisplatin and is the most prominent dam-
aged segment after cisplatin administration40. The findings in the present study also demonstrated that medulla 
would be more severely damaged than cortex under the same dosage of cisplatin, which might be a suggestion 
to researchers that more attentions should be paid on the medullar part when mechanism studies related to 
cisplatin-induced nephrotoxicity conducted. Besides, for the time being more attentions was paid on cortex in  
cisplatin nephrotoxicity, and medulla seemed to be ignored. In in vitro studies, renal cortical slices, primary cells 
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Figure 4. Four sub-clusters were generated within cluster one after the second CAST. (a) Representative change 
trend of metabolites in sub-cluster 1. (b) Heat-map of metabolites in sub-cluster 1. (c) Representative change trend 
of metabolites in sub-cluster 2. (d) Heat-map of metabolites in sub-cluster 2. (e) Representative change trend of 
metabolites in sub-cluster 3. (b) Heat-map of metabolites in sub-cluster 3. (g) Representative change trend of 
metabolites in sub-cluster 4. (b) Heat-map of metabolites in sub-cluster 4. Capitalized C before metabolite name 
means this metabolite was screened out from cortex, and M from medulla.
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Figure 5. Four sub-clusters were generated within cluster two after the second CAST. (a) Representative change 
trend of metabolites in sub-cluster 1. (b) Heat-map of metabolites in sub-cluster 1. (c) Representative change trend 
of metabolites in sub-cluster 2. (d) Heat-map of metabolites in sub-cluster 2. (e) Representative change trend of 
metabolites in sub-cluster 3. (b) Heat-map of metabolites in sub-cluster 3. (g) Representative change trend of 
metabolites in sub-cluster 4. (b) Heat-map of metabolites in sub-cluster 4. Capitalized C before metabolite name 
means this metabolite was screened out from cortex, and M from medulla.
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or passage cells (including NRK-52E, normal rat kidney proximal cell; LLC-PK1, porcine kidney epithelial cell 
line; HK-2, human renal proximal tubule epithelial cell) derived from cortex were most routinely used for cyto-
toxicity test, while no cell model originated from medulla was established and adopted45–49. In the future, cell lines 
derived from medullar part could be established for cytotoxicity researches.

Previous studies revealed that during cisplatin-induced acute renal failure, there was a significant reduction 
in proximal tubule of fatty acid oxidation, which lead to the accumulation of fatty acids35,36. In this study, fatty 
acids in cortex and medulla were observed up-regulated. In addition, DGs were also found elevated. DGs are 
glycerides consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. 
They also serve as precursors to triacylglycerol (TG) by the addition of a third fatty acid to the DG under the 
catalysis of diglyceride acyltransferase. A 1H-NMR based metabolomics study discovered increased TGs after cis-
platin exposure18. Taken together, cisplatin administration exerted great influence on lipid metabolism in kidney.  
Inhibition of lipid accumulation in kidney may have the potential to alleviate cisplatin nephrotoxicity. It has been 
reported that precursors like PPAR-α  possessed the ability of decreasing fatty acid and TG accumulation, and 
cisplatin nephrotoxicity was then reduced35,36. This finding suggested that inhibiting lipid accumulation might 
be a target to ameliorate cisplatin-induced nephrotoxicity. Ceramide and its metabolite sphingosine were found 
up-regulated in both cortex and medulla in the present study. Ceramide has been demonstrated plays impor-
tant role in cell apoptosis by acting on several putative and direct targets like ceramide activated protein kinase, 
cathepsin D, and serine/threonine protein phosphatase 1 and 2A50,51. The relationship of ceramide and cell apop-
tosis has been identified in many other disease models. Though there is no direct evidence, we speculate that 
ceramide might have significant effect on cisplatin-induced renal injury.

In case of amino acid metabolism, it has been reported that one of the strongest responses induced by nephro-
toxin was a dramatic decrease in amino acids in kidney32. Previous metabolomics studies have demonstrated 
the significant changes of amino acids in cisplatin-induced nephrotoxicity. In our study, except for glutamic acid 
was found increased in the two parts, other amino acids were down-regulated in both cortex and medulla. In 
mammals, about 99% of filtered amino acids are reabsorbed in the proximal tubule. However, under nephrotoxic 
conditions, amino acid excretion often increase because of impaired reabsorption by the renal tubules, increased 
cellular turnover, or increased permeability of the glomerular membranes. As a result, contents of amino acids in 
kidney obviously decreased. Preclinical studies demonstrated that the supplement of amino acids could amelio-
rate acute kidney injury52,53, which indirectly demonstrated the deficiency of amino acids in kidney during the 
development of nephrotoxicity. Besides, other urinary metabolomic studies in cisplatin-induced renal toxicity 
revealed that amino acids in urine were drastically increased32,35,54, which also in accordance with the findings in 
the present study. More and more attentions had been drawn on the protective effects of endogenous metabolites. 
Glutamine has been demonstrated with the ability of attenuating cisplatin nephrotoxicity by decreasing cisplatin 
accumulation in rats and HK-2 cells55. Glycine and L-arginine were also proved with protective effect against 
cisplatin-induced nephrotoxicity in rat renal cortical slices56. In future studies, we plan to investigate whether 
other metabolites have protective effects on cisplatin renal injury.

Figure 6. Metabolic pathways interrupted by cisplatin. Metabolite names appear in blue fonts are 
differential metabolites identified in the present study. Abbreviations in this figure: TCA, tricarboxylic 
acid; DGs, diacylglycerols; LysoPC, lyso-phosphatidylcholine; PC, phosphatidylcholine; LysoPE, lyso-
phosphatidylethanolamines; PE, phosphatidylethanolamines; PI, phosphoinositol; FFAs, free fatty acids; 
BCAAs, branched-chain amino acids; GPC, glycerophosphocholine; IMP, inosine monophosphate; CTP, 
cytidine triphosphate.
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Methods
Chemicals and reagents. Cisplatin injection was purchased from Haosen Pharmaceutical (Lianyungang, 
China). Chemicals used in GC-MS derivatization process including O-Methoxyamine hydrochloride, N-methyl-
N-trifluoroacetamide (MSTFA) and pyridine were purchased from Sigma-Aldrich (St Louis, MO, USA). Standard 
compounds used for metabolite identification were also obtained from Sigma-Aldrich. LC-MS grade reagents like 
methanol, acetonitrile and ethyl acetate were obtained from Merck (Germany). Deionized water was produced 
using a Milli-Q system (Millipore, Bedford, MA, USA).

Animal experiment and sample collection. All animal experimental protocols were according to the 
guide for the care and use of laboratory animals (8th edition) released by the National Research Council of the 
National Academies, and all experimental protocol was approved by the Animal Ethics Committee of China 
Pharmaceutical University (License Number: SYXK 2012-0035). Male Sprague-Dawley rats, six to seven weeks 
old (Nanjing, China), were allowed to acclimatize for a week. All rats were fed with a standard commercial diet 
while housed in a light- and temperature-controlled room (12/12 h light/dark, 22–25 °C, 45–55% humidity).

At the first day after acclimatization, rats were intravenously administered with a single dose of cisplatin, and 
the dosages were 2.5 mg/kg (low dose, group L, n =  13), 5.0 mg/kg (medium dose, group M, n =  16) and 10.0 mg/kg  
(high dose, group H, n =  26). The dosages were made according to converted human dosage (7.75 mg/kg), lethal 
dose of 50% (LD50) in rats (approximately 13 mg/kg), our pre-experiment results and existing literature. Rats in 
control group (group C, n =  13) was intravenously administered with an equivalent volume of normal saline.

At the seventh day after dosing, rats were sacrificed after blood collection. The sampling time was made 
combining results of our pre-experiment and existing literature32–35,37. The left kidneys were removed, weighted 
and dissected on an ice plate to separate the cortical and medullar part. All the samples were kept at − 80 °C 
until metabolomics analysis. The right kidneys were removed, weighted and cut into two portions. One por-
tion was fixed in 10% neutral-buffered formalin for hematoxylin and eosin (H&E) staining and another in 4% 
neutral-buffered paraformaldehyde for TUNEL assay.

H&E staining and TUNEL assay. After fixed overnight in 10% neutral-buffered formalin, kidneys were 
dehydrated in alcohol and then embedded in paraffin. Paraffin sections were prepared and stained using standard 
H&E staining methods. TUNEL assay kit (In Situ Cell Death Detection Kit, POD) was purchased from Roche 
(USA). Briefly, following dewaxing and hydration, kidney sections were digested with proteinase K and labeled 
with a TUNEL reaction mixture for 60 min at 37 °C in the dark. After the addition of converter and substrate 
solution, samples were analyzed by light microscopy. H&E staining and TUNEL assay were conducted by a pro-
fessional pathologist of Nanjing Medical University.

Sample pretreatment for instrumental analysis. Frozen renal cortex or medulla (20 mg) were firstly 
placed into pre-cooled 2 mL homogenization tubes containing ceramic beads. Then, pre-cooled methanol was 
added (10 μ L/mg tissue). The samples were homogenized for three times (5.5 m/s for 30 s), with 60 s intervals 
between homogenization steps. After two centrifugations (14000 rpm, 5 min, 4 °C), the supernatant was removed 
and named as kidney homogenate. For LC-MS analysis, 125 μ L acetonitrile was added to a 25 μ L aliquot of the 
kidney homogenate. The solution was mixed thoroughly and centrifuged twice (14000 rpm, 5 min, 4 °C), and the 
supernatant was removed for LC-MS analysis. For GC-MS analysis, 100 μ L methanol was added to a 10 μ L kidney 
homogenate. The next derivation steps referred to our previous studies16,29.

GC-MS analysis of kidney samples. GC-MS analysis was carried out on Shimadzu GCMSQP2010 
Ultra (Ultra GC-Q/MS; Shimadzu Inc., Kyoto, Japan) equipped with a fused silica capillary column (Rtx-5MS; 
30 m ×  0.25 mm, 0.25 μ m, Restek, USA). Helium was employed as the carrier gas the flow rate was set at 1.0 mL/min.  
The programmed oven temperature was started at 70 °C for 2 min, followed by an increase to 320 °C at the rate of 
10 °C/min and maintained at 320 °C for 2 min. The temperature of the injector and ion source were maintained at 
250 °C and 200 °C, respectively. Electron impact mode with the energy of 70 eV was employed for the ionization. 
Data acquisition was performed in full scan mode with the mass to charge ratio (m/z) from 45 to 600. The injec-
tion volume was 1 μ L, and the split ratio was 50:1. GCMS Solution software (Shimadzu Inc., Kyoto, Japan) was 
used for auto-acquisition of total ion chromatograms (TICs) and fragmentation patterns.

LC-MS analysis of kidney samples. LC-MS analysis was performed on a Shimadzu Prominence series 
ultra-fast liquid chromatography (UFLC) system coupled to ion trap/time-of-flight hybrid mass spectrometry 
(IT/TOF-MS, Shimadzu, Japan). Chromatographic separation was achieved by a Phenomenex Kinetex C18 col-
umn (100 ×  2.1 mm, 2.6 μ m; Phenomenex, USA). The column temperature was held at 40 °C. The gradient elution 
involved a mobile phase consisting of (A) 0.1% formic acid in water and (B) acetonitrile, with a programmed 
gradient as follows: linear gradient from 5% B to 95% B, 0–20 min; maintained with 95% B in 10 min. The flow 
rate was at 0.4 mL/min and the injection volume was 5 μ L. Electrospray ionization method was applied. The mass 
range of the full scan was set from m/z 100 to 1000 in both positive and negative ion mode, with interface voltage 
of 4.5 kV and − 3.5 kV, respectively. The curved desorption line and heat block temperature were both 200 °C. 
The detector voltage of the TOF analyzer was 1.65 kV. Nitrogen was used as the nebulizer and drying gas, set at a 
constant flow rate of 1.5 L/min and 10 L/min, respectively. In the tandem mass spectrometry experiments, argon 
was employed as the collision gas, and the collision energy was set at 10, 20, 30, 40, 50 or 60 eV. LCMS Solution 
software (Shimadzu Inc., Kyoto, Japan) was used for auto-acquisition of TICs and fragmentation patterns.

Data quality evaluation. During the instrument analysis, all samples from control and cisplatin-treated 
rats were randomized in order to avoid inter-batch differences. QC samples were prepared by pooling equal ali-
quot of each kidney homogenate and treated congruously with real samples. The first 10 QCs were tested in both 
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GC-MS and LC-MS before the real sample analysis to stabilize the analytical system and removed before data 
processing. In order to monitor the robustness of sample preparation and the stability of instrument analysis, QC 
samples were intermittently injected through the analytical batch. Ten real samples were inserted with one QC 
sample in LC-MS analysis, and six real samples were inserted with one QC sample in GC-MS analysis.

Data quality evaluation strategy included the following aspects: 1) unsupervised pattern recognition method 
PCA was constructed based on all QC samples and cortex or medulla samples (SIMCA-P software, Version 
13.0, Umetrics, Sweden). PCA score plot was used to evaluate the data quality; 2) within-group RLA plot based 
on all extracted features was utilized to evaluate the coefficient of variations of QC samples (R program)57,58. 
Within-group RLA plot was calculated by subtracting median value within- or across-group for each metabolite 
after log transformation. For within-group RLA, the boxplot of features of each QC sample would have a median 
value close to zero and a similar range of box between samples if the coefficient of variations in QC samples was 
small; and 3) retention time variation for representative metabolites were investigated in QC samples in both 
GC-MS and LC-MS analysis.

Data preprocessing, analysis and differential features screening. Data extraction was performed 
by Profiling Solution Software (Shimadzu Inc., Kyoto, Japan). After the data pretreatment59,60, a matrix containing  
grouping information, sample names, retention times and normalized peak intensities were obtained. Mass spec-
trometry total useful signal (MSTUS) method was used for the normalization of signal intensities. OPLS-DA was 
performed by SIMCA-P software. Features (a feature here was defined as a unique pair of RT and m/z record) 
were treated as differential if the following conditions were met. First, variable importance in the projection (VIP) 
value should be greater than 1.0 in OPLS-DA constructed between control and each experimental group. Second, 
confidence intervals on VIP column plot should be positive. Third, adjusted p value of Wilcoxon Mann-Whitney 
Test and stricter false discovery rate (FDR) correction based on Benjamini-Hochberg method (MeV, Version 
4.6.1, http://www.tm4.org/) should be lower than 0.05. After the feature screening process, those differential 
features were prepared for metabolite identification.

Metabolite identification. For LC-MS analysis, a comprehensive strategy was used for metabolite iden-
tification. Firstly, Pearson correlation analysis was performed to cluster features (i.e., molecule ions, in-source 
molecular fragments, (de)protonated molecule ions, adducts ions and 13C isotopes) originating from the same 
metabolite. Second, Formula Predictor in LCMS Solution software was utilized to predict the compound formula 
by the comparison of theoretical and observed m/z values and isotopic patterns. Then, retention time, accu-
rate m/z, and the MS/MS fragmentation of features of interest were compared with those standard compounds 
available in our lab. Features that did not match with any standard compounds were then compared with those 
provided by existing literatures and online databases, such as HMDB (http://www.hmdb.ca), METLIN (http://
metlin.scripps.edu), LIPID MAPS (http://www.lipidmaps.org) and Mass Bank (http://www.massbank.jp) et al. 
Finally, the confidence of identified metabolites was ranked by referring to the metabolomics standards initiative 
(MSI) proposed by Oliver Fiehn et al.61.

For GC-MS, an in-house program named ‘Feature Fusion’ developed especially for GC-MS data refinement 
was firstly carried out to discriminate ions derived from the same metabolite. Identification of the metabolite 
was done by comparison of mass spectra with those available in National Institute of Standards and Technology 
(NIST) library using a similarity index as a percentage for discrimination from nearest neighbors62. Only those 
peaks with similarity more than 80% were assigned for compound names. Finally, they were further confirmed by 
comparing the retention time and mass spectra with standard compounds available in our lab.

Sensitivity analysis. As showed in Figure S5, after differential metabolites screening, sensitivity of cortex 
and medulla to cisplatin administration was analyzed and validated using RF, heat-map, OPLS-DA score plot, 
parameter Q2, and MCFC methods.

First, to get a general view of the sensitivity difference between cortex and medulla, RF models (R package ran-
domForest) were constructed based on all extracted features from GC-MS and LC-MS. It was used to evaluate the 
similarity between group C and cisplatin-treated group (i.e. C vs L, C vs M and C vs H) in cortex and medulla63,64. 
Based on random stratified sampling, all samples in two groups were divided into training set (two-third) and test 
set (one-third) randomly. The error rate of test set (ERT) was recorded to evaluate the similarity between the two 
groups (e.g. higher ERT indicates less distinction). In some cases, the high ERT suggested the model itself was not 
stable enough for further application. But this, in turn, indicated the similarity between groups. For each pair of 
groups, RF analysis was repeated 1000 times with two levels of argument ‘ntree’ (500 or 1000) and four levels of 
another primary argument ‘mtry’ (one-fifth, one-fourth, one-third or two-fifth of total number of features). Since 
ERT was sensitive to sampling and the two primary arguments, random stratified sampling process was repeated 
125 times for each pair of arguments. This bootstrap analysis strategy was aimed to eliminate the influence of 
primary parameters and the limitation of each model. Finally, all ERT values were summarized and the difference 
between cortex and medulla in corresponding groups was compared.

After metabolite identification, heat-map (MeV, Version 4.6.1, http://www.tm4.org/) with hierarchical cluster 
analysis results on it was used to exhibit the overall variation trend of metabolites among the four groups (i.e. C, 
L, M, and H) in cortex and medulla. All identified metabolites in cortex or medulla were included.

Furthermore, based on all those identified differential metabolites, inner relation of variable X (differential 
metabolites) and Y (groups) were discriminated by OPLS-DA (SIMCA-P software). Here, the horizontal axis 
represented the first predictive component and vertical axis the first grouping information. From the degree of 
dispersion of the four groups in X and Y directions, sensitivity difference could be discriminated visually.

http://www.tm4.org/
http://www.hmdb.ca
http://metlin.scripps.edu
http://metlin.scripps.edu
http://www.lipidmaps.org
http://www.massbank.jp
http://www.tm4.org/
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After that, OPLS-DA models based on identified metabolites between control group and each cisplatin-treated 
group were constructed. Notably, OPLS-DA here was traditional, which was different with the above. Here, the 
horizontal axis represented the first predictive component and vertical axis the first orthogonal component. 
Parameter Q2 that can reflect the predictive ability of the model was compared among different OPLS-DA models.  
To achieve Q2 comparability, all the models were assigned with the same number of predictive and orthogonal  
components. With Q2 as an indicator, sensitivity of cortex and medulla to cisplatin could be evaluated 
quantitatively.

Metabolic cumulative fold change (MCFC) reflects the cumulative fold change of the metabolites was cal-
culated and used as an aggregated response parameter for metabolic fingerprints. The following process was 
adapted from the calculation method of metabolic effect level index (MELI)65. Firstly, fold changes of the com-
mon metabolites between cisplatin-treated groups and control group in cortex and medulla were calculated. 
Then, fold changes lower than 1.0 were transformed into their reciprocals. Finally, fold changes of all common 
metabolites were added together and named as MCFC. MCFC of group L, M and H in cortex and medulla was 
compared to evaluate the degree of cumulative metabolic changes in the two parts.

Contributing metabolite screening. CAST is a cluster analysis method embedded in MeV software 
(MeV, Version 4.6.1, http://www.tm4.org/). This method could be used for the clustering of metabolites with 
strong correlation relationship utilizing Person correlation analysis. In the present study, after sensitivity analysis, 
two-step CAST strategy was conducted to screen metabolites with large contribution to the sensitivity difference 
between cortex and medulla (Figure S5). For comparing metabolite variations among cisplatin-treated groups, 
fold changes of metabolites between cisplatin groups and control group were calculated firstly. Then, a union of 
metabolites with fold change values were imported to MeV software to perform CAST. The first-step CAST was 
executed with the correlation coefficient of 0.80, and those metabolites with similar change trends were clustered 
roughly. Furthermore, the second-step CAST was carried out with the correlation coefficient of 0.98 to clus-
ter metabolites more elaborately. After two-step CAST, metabolites would be classified into several clusters that 
owned different type of change trend. Heat-map was drawn to exhibit the variation trend of metabolites in each 
cluster visually. In addition, line plot with fold change value as Y-axis and group as X-axis was utilized to express 
the variation trend of the representative metabolites in each cluster.

Pathway analysis. Open database sources, including the KEGG (http://www.genome.jp/kegg/), 
MetaboAnalyst (www.metaboanalyst.ca), HMDB, and METLIN, were used to identify metabolic pathways 
related to cisplatin nephrotoxicity.
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