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Tuning quantum measurements to 
control chaos
Jessica K. Eastman1, Joseph J. Hope2 & André R. R. Carvalho1,#

Environment-induced decoherence has long been recognised as being of crucial importance in the study 
of chaos in quantum systems. In particular, the exact form and strength of the system-environment 
interaction play a major role in the quantum-to-classical transition of chaotic systems. In this work 
we focus on the effect of varying monitoring strategies, i.e. for a given decoherence model and a 
fixed environmental coupling, there is still freedom on how to monitor a quantum system. We show 
here that there is a region between the deep quantum regime and the classical limit where the choice 
of the monitoring parameter allows one to control the complex behaviour of the system, leading to 
either the emergence or suppression of chaos. Our work shows that this is a result from the interplay 
between quantum interference effects induced by the nonlinear dynamics and the effectiveness of the 
decoherence for different measurement schemes.

Understanding how classical dynamics emerge from the more fundamental quantum theory has proven to be 
a subtle problem when the system in question exhibits chaos in the classical limit. Coherent interference effects 
lead to a rapid breakdown of the correspondence between the classical and quantum dynamics. The inclusion 
of decoherence effects destroys the interference and is a crucial step to achieve a smooth quantum to classical 
transition1–6.

Many studies of classically chaotic systems undergoing environmental coupling have focused on the ensemble 
average behaviour given by the master equation and the comparison of the classical phase space with its quantum 
counterpart via Wigner functions. Others have adopted an approach based on continuously monitored quantum 
systems7–14. In this case, the monitoring is said to produce an “unraveling” of the master equation in terms of indi-
vidual stochastic quantum trajectories that evolve conditioned on the measurement record. Using this approach, 
it has been shown that the Poincaré section of a single quantum trajectory reproduces the corresponding classical 
strange attractors in the macroscopic limit8,9, even when considering a few different monitoring strategies10. It 
also allowed a quantitative comparison between classical and quantum Lyapunov exponents as the effective size of 
the system varies11,13–15. In general, when the classical motion is large compared to the quantum noise induced by 
the stochastic nature of the trajectories, the quantum Lyapunov exponent approaches the classical value11, while 
there is a crossover to the quantum regime where noise predominates and chaos is suppressed15. Interestingly, 
positive Lyapunov exponents have been found away from the classical limit13 but perhaps even more surprising is 
the fact that they have also been reported for parameters where the corresponding classical system is regular14,16.

These results show not only that the onset of chaos at the quantum level is possible, but also that it has a 
rich behaviour due to the interplay between the strength of the nonlinear dynamics and the amount of noise 
introduced by the measurement back action. But quantum mechanics allows us to go beyond that and explore 
more complex scenarios where, even when the form and strength of the system-environment interaction are kept 
unchanged, different choices of measurement schemes can have a drastic effect on the dynamics of the system. 
This is the purpose of this contribution: we show that the Lyapunov exponent of the quantum system is sensitive 
to the choice of monitoring strategy and, consequently, one can control the degree of chaos in the system by 
tuning an easily accessible measurement parameter. Our results show that this effect originates from a fine bal-
ance between two competing factors: the appearance of interference at the quantum level due to the underlying 
classical nonlinear dynamics, and the effectiveness of certain monitoring schemes in destroying these very same 
interference fringes.
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Our starting point is the driven dissipative Duffing oscillator, a system that exhibits chaos for a wide range of 
parameters and that has been extensively studied both in the classical and quantum domains9,15,17. Classically, the 
system is described by the equation of motion
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with dissipation Γ , driving amplitude g, and driving frequency Ω. Quantum mechanically, the system dynamics 
is described by the master equation:
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where the term in parentheses represents the dissipative evolution in the Lindblad form18 with the operator 
= Γ +ˆ ˆ ˆL Q iP( ) describing the coupling to the environment. The first term corresponds to the unitary dynamics 
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 is a dimensionless parameter that defines the scale of the phase space relative to Planck’s constant9,14,15. 

Note that as β →  0 the classical limit is achieved.
The final step in the description of our model is to move from the master equation (2), which corresponds to 

the ensemble averaged evolution of the open quantum system, to an equation that describes a single quantum 
system being continuously monitored. Such a description is given by quantum trajectories governed by a stochas-
tic Schrödinger equation (SSE). Here we will focus on the so-called diffusive trajectories which, for a single noise 
term, are given in Ito form by refs 19 and 20
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Here the noise term dξ is a complex Wiener process with zero mean (E[dξ] =  0) and correlations given by

ξ ξ ξ ξ= =⁎ ud d dt and d d dt, (5)

where the complex number u ≡  |u|e−2iφ must satisfy the condition |u| ≤  119,20. We can then write the complex 
Wiener process as
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where dW1 and dW2 are independent real Wiener processes. Note that the amplitude |u| and phase φ fully charac-
terise the noise process and therefore different choices of u correspond to particular ways of unraveling the master 
equation into stochastic trajectories.

At this point it is important to recognise that u, more than providing a convenient mathematical parametri-
zation of the unravelings, also bears a direct connection to a physical way of continuously monitoring the quan-
tum system20. For example, if the dissipation operator L describes an optical channel observed using the scheme 
shown in Fig. 1, there is a direct relationship between the beam splitter ratios and phases indicated in the figure 
and the value of u corresponding to that measurement:

η η= + −φ φ⁎u e e(1 ) (7)i i2 21 2

and the complex Wiener noise can be written as

ξ η η= + − .φ φ⁎ e W e Wd d 1 d (8)i i
1 21 2

By comparing equation (6) with equation (8), we can immediately establish a direct connection between u and 
the physical parameters η, φ1 and φ2 of the monitoring. Note that these diffusive quantum trajectories correspond 
to homodyne-like measurements that are routinely implemented in quantum optical setups and that have been 
measured recently in superconducting qubit systems21–23.

Previous works on quantum Lyapunov exponents and the quantum to classical transition have adopted a fixed 
monitoring strategy (a particular case of equation (4) for a given choice of u and L̂ operator) corresponding to 
either a continuous position measurement (u =  1 and =ˆ ˆL x)11,13 or to the quantum state diffusion (QSD) model 
(u =  0)14,15.

Here, however, we explore different measurement schemes by considering the case where |u| =  1 and contin-
uously varying the phase φ. In Fig. 1 this corresponds to a single homodyne measurement (η =  1) with the local 
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osci l lator  phase φ 1 =   φ  being var ied.  From the expression for  the measurement s ignal 
η= 〈 + 〉 +φ φ− ˆ ˆ †I t e L e L Wd di i

1 1 1 20, we can see that the choice of local oscillator phase corresponds to the meas-
urement of a particular quadrature, e.g. choosing φ =  0 leads to a measurement of Q, while φ =  π/2 will similarly 
measure the P component. Thus we can explore the onset of complexity in quantum systems undergoing moni-
toring strategies that are routinely implemented in experiments.

Results
We are now in the position to investigate the dynamics of a chaotic quantum Duffing oscillator under continuous 
monitoring. To establish a quantitative picture of the level of chaos in the dynamics, we calculate the quantum 
Lyapunov exponent, defined as λ = →∞ → d d tlim lim log( / )/t d t0 00

, by adapting the usual classical procedure24. 
Two quantum trajectories, starting from initial coherent states that are displaced from each other by a small dis-
tance d0, are evolved stochastically via equation (4) under the same noise realization which corresponds to the 
same measurement results. The phase-space distance = ∆ + ∆d x t p t( ( )) ( ( ))t

2 2  is defined in terms of the 
expectation values of the position and momentum operators for the two evolving trajectories with 
∆ = −x t Q Q( ) 1 2  and ∆ = −p t P P( ) 1 2 . For the numerical calculations, one of the trajectories is period-
ically reset towards the other one to remain within the linear regime, and log(dt/d0), calculated before every reset, 
is averaged over time. Convergence occurs within 500 cycles of the driving term, and the final Lyapunov exponent 
is obtained after averaging out over multiple realisations (20 runs) of the stochastic noise. The numerical calcula-
tions can be computationally intensive as the size of the system is increased. However, since the state in a chaotic 
system is confined to the strange attractor, we need only a large enough basis size to encompass this region of 
phase space for a given choice of β. In this work we vary the scaling parameter from β =  1 to 0.1, which requires a 
range of basis size from N =  35 to 200 (using the harmonic oscillator energy eigenstates).

The effect of the monitoring angle on the quantum Lyapunov exponents is shown in Fig. 2d for Γ  =  0.10, 
g =  0.3, Ω =  1, and β =  0.3. The quantum dynamics is chaotic (λ >  0) for most choices of the phase φ, with the 
quantum Poincaré section (Fig. 2b) roughly following the classical strange attractor, which is shown in Fig. 2a 
for comparison. For φ ≈ π/2, however, the quantum attractor is significantly blurred (Fig. 2c) leading to a strong 
suppression of chaos. This shows that we can tune the behaviour of the system from chaotic to regular by simply 
changing which quadrature is measured in the homodyne setup.

It is evident that in the classical limit, there is no dependence on the monitoring scheme, so there must be a 
value of β beyond which the choice of monitoring can have an effect on the complex behaviour of the system. 
To investigate that, we plotted in Fig. 3 the quantum Lyapunov exponents for φ =  π (dashed black) and φ =  π/2 
(solid red), corresponding approximately to the maximum and minimum values of λ, as a function of our mac-
roscopicity parameter β The curves show that for large β, the quantum Lyapunov exponent is always negative and 
it is not significantly affected by the choice of φ. This is the region where the quantum noise is dominant, chaos is 
suppressed, and the exact form of the monitoring is irrelevant. In the opposite limit, the quantum curve is always 
positive and should approach the classical value of λcl =  0.16 for small enough β. This region also shows very little 
dependence with φ, but now for a different reason: in this limit the classical dynamics prevails over the quantum 
noise and the choice of measurement ceases to affect the system. However, there is an intermediate region, high-
lighted in Fig. 3, where there is a noticeable dependence on φ. This is exactly the window of the macroscopicity 
parameter where controlling the onset of chaos through quantum measurements is possible.

Figure 1. Monitoring scheme for the unraveling parametrisation in terms of u. The first beam splitter 
has transmittance η while the ones at the detectors end are balanced. The local oscillators (LO) used in the 
homodyne-like measurements have phases φ1 and φ2.
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To utilise this window of control and predict the monitoring parameters that provide minimum or maxi-
mum Lyapunov exponents for a given chaotic system, one first needs to understand the physical mechanism 
behind this dependency with the angle φ. A first hint towards the explanation comes from the semiclassical 
results shown by the top two curves in Fig. 3, obtained using a Gaussian approximation25. We see a negligible 
difference between the Lyapunov exponents for the two curves, indicating that the difference we see in the quan-
tum dynamics cannot be explained by the Gaussian approximation. This approximation retains the measurement 
terms and the stochastic aspect of the dynamics, but restricts the state to remain as a Gaussian in phase space. The 
latter aspect prevents the formation of the complex interference fringes that we see in the full quantum evolution 
(see Supplemental Material for an animation of the dynamics for φ =  π/2 (see Supplementary video S1) φ =  π 

Figure 2. (a) Strange attractor for the classical Duffing oscillator with parameters Γ  =  0.10, g =  0.3 and 
Ω =  1. (b) Quantum Poincaré section for a single trajectory with 1000 points for φ =  π with points taken once 
every driving period (t =  2πn). (c) Quantum Poincaré section for φ =  π/2. (d) Average Lyapunov exponent λ 
(black curve) and average negativity δ (blue curve) as a function of φ for |u| =  1, β =  0.3, Γ  =  0.10, g =  0.3 and 
Ω =  1. The averages are constructed from the Lyapunov exponents and negativities calculated for 20 different 
individual trajectories. Error bars are given by the standard error in the mean. The arrows indicate the choice of 
φ that correspond to the Poincaré sections in (b) and (c). For (b), (c) and (d), with the choice β =  0.3, a basis size 
of N =  65 is used.
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(see Supplementary video S2)) and indicates that the effect we observed is intrinsically quantum, arising from 
the interplay between the interference generated by the nonlinear dynamics and the way different monitoring 
strategies destroy them.

In order to assert that interference effects are indeed the key factor at play, we must quantify the level of inter-
ference present in the evolution. To do this we use the negativity of the Wigner function which has previously 

Figure 3. (a) Average quantum Lyapunov exponent λ for |u| =  1, Γ  =  0.10, g =  0.3 and Ω =  1. The points are 
constructed from averaging 20 different noise realisations, each starting with a pair of coherent states. Error bars 
give the standard error from the mean. In (a) λ is shown as a function of the macroscopicity parameter β for the 
full quantum simulation with two values of the phase φ =  π (black, dashed) and φ =  π/2 (red, solid). The straight 
line at the top corresponds to the classical Lyapunov exponent λcl =  0.16 for these parameters. λ is also plotted 
as a function of β using a semiclassical approximation (triangles) to obtain the equations of motion, again 
with the same phases. (b) Negativity δ of the Wigner function, is averaged over the 20 trajectories for the same 
parameters and phases as in (a) and plotted as a function of β. The region where we see a pronounced difference 
between monitoring strategies is highlighted in green.

Figure 4. Evolution of the negativity of the Wigner function for  φ = π/2 (red) and  φ = π (black) averaged 
over 20 noise realisations. The horizontal lines show the average negativity for the last 2 forcing periods, a value 
that is used in Fig. 2d. We see that smaller (higher) values of negativity correspond to higher (smaller) values of 
the Lyapunov exponents.
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been proposed as an indicator of non-classicality26 and is defined as ∫ ∫δ = | | −ψ ψW q p q p( , ) d d 1. Here, both 
the Wigner function and the negativity are calculated for the pure state ψ evolved in each individual quantum 
trajectory. The average negativity is then found by averaging over the 20 noise realisations δ δ= ∑ ψ

= M/i
M 20

i
. In 

Fig. 4, where we show the average negativity as a function of time, we see that for both choices of monitoring 
angles in the figure (red curve for φ =  π/2 and black for φ =  π) the negativity starts from zero (initial coherent 
state) and has a surge at around 0.8 Ωt. This is the time that it takes for the quantum state to start probing the 
skeleton of the classical attractor and start developing fringes in the Wigner function (see Supplemental Material 
for an animation of the dynamics for φ =  π/2 (see Supplementary video S1) and φ =  π (see Supplementary  
video S2)). After this build up period, the effect of the monitoring on the dynamics becomes evident: for φ =  π/2 
the negativity fluctuates around higher values than for φ =  π. To make a connection with the Lyapunov exponents 
calculated previously, we averaged the negativity from Fig. 4 for the last 2 forcing periods and plotted the results 
in Fig. 2d. What we see is a clear anti-correlation between the negativity and the quantum Lyapunov exponents, 
which is also observed for the different values of β in Fig. 3. The large negativity at φ  ≈ π/2 explains the dip in the 
Lyapunov exponent: the larger the interference effects, the further the quantum system is from the classical 
behaviour, leading to a stronger suppression of chaos.

The remaining issue to be explained is why the suppression is stronger at that particular measurement angle. 
The best way to understand the role of the phase φ is to examine a simple class of states that present interference. 
Here we look at superpositions of coherent states in the form ψ α α= + −+ −c c0  (Schrödinger cat state), 
with α =  |α|eiϕ. The interference fringes in these states have a well defined structure, being aligned along the 
direction defined by the angle ϕ. The evolution of the state conditioned on the measurement only is given by 
equation (4) with H =  0. Looking just at the noise term ψ ξ−ˆ ˆa a( ) d  for |u| =  1, we have

ψ α α α| 〉 = | | | 〉 − |− 〉ϕ φ ϕ φ
+

−
−

−c e c e Wd ( )d , (9)i i
0

( ) ( )

where we have assumed that the initial coefficients are equal (c+ =  c−) and that α is large, such that α α− ≈ 0.
For each term the evolution is given by

α= ϕ φ
+ +

−c c e Wd d , (10)i ( )

α= − .ϕ φ
− −

−c c e Wd d (11)i ( )

From these equations one can see that when the monitoring angle φ is parallel to the interference fringes 
(ϕ −  φ =  0), then in a short time the system stochastically evolves to one of the components of the original super-
position and interference fringes quickly disappear (see Supplemental Material for an animation of this effect 

Figure 5. (Top) Snapshots of the Wigner function (for a single quantum trajectory) for the full dynamics at 
three different times (for Γ = 0.10 and β = 0.3). These states are evolved solely under the monitoring dynamics 
and the decay of the negativity is shown in the bottom plots, averaged over 20 noise realisations. As in the case 
of cat states, negativity decays faster when the monitoring angle is parallel to the interference pattern. This is 
confirmed by the insets in the top panels where the density plots of the negativity decay rates, obtained by fitting 
the curves in the bottom plots, are shown with the minimum (maximum) decay rates corresponding to the 
darker (brighter) colors.
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on a cat state for φ =  π (see Supplementary video S3) and φ =  π/2 (see Supplementary video S4)). On the other 
hand, when the measurement direction is perpendicular to the fringes (ϕ −  φ =  π/2), the short term evolution 
corresponds to a phase rotation between the two components and the fringes survive for longer. Therefore, the 
efficacy of the the stochastic term in equation (4) in eliminating interference depends directly on the alignment 
between φ and ϕ.

This is exactly what explains the dependency of the quantum Lyapunov exponent with the monitoring param-
eter. Given the complexity of the dynamics and the geometric structure of the strange attractor in phase space, it 
is non-trivial to justify that there is a privileged direction where this effect can take place. However, by following 
the dynamics of the Wigner function for a single trajectory in real time (see Supplemental Material for an ani-
mation of the dynamics for φ =  π/2 (see Supplementary video S1) and φ =  π (see Supplementary video S2)), it 
is possible to distinguish certain structures that repeat over time. These structures, representing the stretching 
region around the origin and also the left and right bending regions of the classical strange attractor, are depicted 
in the snapshots of the Wigner function of Fig. 5. Even though the interference in these plots are not perfectly 
aligned, they are concentrated in the range of angles orthogonal to the ones that lead to higher negativity (around 
φ =  π/2). This dependency with the angle is quantified by calculating the decay rate of the negativity for the evo-
lution of these states under monitoring dynamics only (bottom plots in Fig. 5), and they match the region where 
the Lyapunov exponent dips in Fig. 2d.

Figure 6. (a) Lyapunov exponent (black) and average negativity (blue) as a function of the monitoring 
parameter φ for Γ  =  0.05. The Lyapunov exponents for φ =  π (black, dashed) and φ =  π/2 (red, solid) are given 
in (b) as a function of the macroscopicity parameter β for the quantum and semiclassical (triangles) for values 
from 0.1 to 1.0. The points here are constructed from 10 different noise realisations. The classical Lyapunov 
exponent in this case is λcl =  − 0.05 and is represented by the horizontal line in the plot. (c) Average negativity of 
the Wigner function as a function of β for the same phases as in (b). Each point is constructed from 20 different 
noise realisations. The error bars give the standard error in the mean.
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Given the evidence presented so far, it is tempting to always associate the presence of negativity in the Wigner 
function with suppression of chaos. However, in certain cases a higher value of negativity seems to be connected 
with enhancement of chaos, as shown in Fig. 6, where the quantum Lyapunov exponents for Γ  =  0.05 are shown 
(all other parameters are as in Fig. 2). This is an interesting case recently investigated by Pokharel et al.16. where 
the classical dynamics is regular but chaos can emerge quantum mechanically. While this seems to be a counter 
example of our discussion so far, the fact that the dependency of the Lyapunov exponent with the monitoring 
angle is also seen in the semiclassical calculations (see Fig. 6b), indicates that a different mechanism is at play in 
this case, overshadowing the effects of negativity.

Indeed, simulations of the dynamics using the Gaussian approximation show that for the phase φ correspond-
ing to the smallest value of the Lyapunov exponent, the semiclassical system remains most of the time con-
centrated along the classical stable orbit, rarely making incursions into the central region corresponding to the 
classical chaotic transient (see Fig. 7). In the stable region, the quantum state remains mostly Gaussian, explaining 
the small values for the negativity. On the other hand, for the phase linked to the maximum Lyapunov exponent, 
the semiclassical system spends more time in the chaotic region, visiting the stable classical orbit from time to 
time, but eventually coming back. While visiting the chaotic region, the quantum state is allowed to stretch along 
the unstable direction and then fold, interfering with itself and producing negative values of the Wigner function 
(see Supplemental Material for animations of the Wigner function for minimum (see Supplementary video S5) 
and maximal (see Supplementary video S6) Lyapunov exponents). The existence of negative values is therefore a 
consequence of a semiclassical dynamical effect of the monitoring process, which, for certain values of φ, induces 
transitions between the coexisting regular and chaotic regions. These transitions seems to be related to the recent 

Figure 7. Phase space projection (left column) and momentum time series (right column) for: (a) classical; 
and semiclassical with (b) φ =  π and (c) φ =  π/2. The bold black line corresponds to the classical dynamics with 
the transient removed. Classically, the central chaotic region is only visited in the initial transient before the 
system settles in its periodic behaviour. Semi-classically, the system can transition from one region to another. 
Different choices of the monitoring parameter φ induce preferences towards the classical periodic orbit (b), or 
the irregular region (c).
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analysis of the quantum-classical correspondence in terms of transient chaos done by Wang et al.27. Note, how-
ever, that here the noise strength is fixed, it is therefore the form of the coupling between the noise and the system 
variables, determined by the measurement choice, that dictates the average time spent in each region. Once again, 
just a change in our measurement parameter allows us to radically alter the complexity of the dynamical evolution 
of the system.

In conclusion, our results show that the choice of monitoring plays a crucial role in the emergence of chaos 
in quantum systems, adding yet another layer of complexity to the already intriguing problem of the quantum to 
classical transition. We showed that the effect of the measurement choice on the quantum Lyapunov exponent 
manifests in two distinct ways: at the semiclassical level, by inducing transitions between regions corresponding 
to a classical periodic orbit and a transient chaotic regime; at the quantum level, by influencing the way interfer-
ence fringes in the Wigner function are destroyed. In both cases, the more quantumness in the system, as meas-
ured by the amount of negativity, the more its dynamical behaviour departs from the classical: by suppressing 
chaos in the latter and creating it in the former. In the case where the corresponding classical system is chaotic, 
the effectiveness of certain monitoring schemes in suppressing interference depends on the relative angle between 
the measurement direction and the fringes induced by the nonlinear dynamics. In this way, we have predictive 
power over the monitoring parameters that will lead to minimum or maximum quantum Lyapunov exponents by 
analysing the geometrical structure of the classical attractor. In both cases it is remarkable that despite the fact that 
the form and amount of dissipation in the system, as well as the system size, are kept constant, we are still able to 
manipulate the onset of complex behaviour in the system by tuning a purely quantum parameter associated with 
the appropriately chosen measurement scenario.
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