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Criticality-Enhanced 
Magnetocaloric Effect in Quantum 
Spin Chain Material Copper Nitrate
Jun-Sen Xiang1, Cong Chen1, Wei Li1,2, Xian-Lei Sheng1,3, Na Su4, Zhao-Hua Cheng4, 
Qiang Chen1 & Zi-Yu Chen1

In this work, a systematic study of Cu(NO3)2·2.5 H2O (copper nitrate hemipentahydrate, CN), an 
alternating Heisenberg antiferromagnetic chain model material, is performed with multi-technique 
approach including thermal tensor network (TTN) simulations, first-principles calculations, as well 
as magnetization measurements. Employing a cutting-edge TTN method developed in the present 
work, we verify the couplings J = 5.13 K, α = 0.23(1) and Landé factors g∥= 2.31, g⊥ = 2.14 in CN, 
with which the magnetothermal properties have been fitted strikingly well. Based on first-principles 
calculations, we reveal explicitly the spin chain scenario in CN by displaying the calculated electron 
density distributions, from which the distinct superexchange paths are visualized. On top of that, 
we investigated the magnetocaloric effect (MCE) in CN by calculating its isentropes and magnetic 
Grüneisen parameter. Prominent quantum criticality-enhanced MCE was uncovered near both critical 
fields of intermediate strengths as 2.87 and 4.08 T, respectively. We propose that CN is potentially a very 
promising quantum critical coolant.

Heisenberg spin chains and nets, owing to their strong quantum fluctuations and correlation effects, can accom-
modate plentiful interesting quantum phases like topological spin liquids1,2, unconventional excitations like 
anyon-type quasi particles3, and inspiring behaviors like Bose- Einstein condensation in magnets4, which con-
tinues stimulating both condensed matter theorists and experimentalists. What is more, these low-dimensional 
systems, which at a first glance are of purely academic interest, can actually have their experimental realizations. 
People have successfully discovered and synthesized plenty of spin materials which are very well described by 
the low-dimensional Heisenberg-type spin models. The long list includes, to name only a few, the diamond spin 
chain material azurite5, the kagome spin liquid herbertsmithite6, and Cu(NO3)2·2.5 H2O (copper nitrate hemipen-
tahydrate, hereinafter referred to as “CN”) as an alternating Heisenberg antiferromagnetic chain (AHAFC)7–29.

Among many other interesting properties of low-dimensional quantum magnets, we emphasize the enhanced 
magnetocaloric effect (MCE) in quantum critical regime. MCE is an intrinsic property of magnetic materials 
which exploits the reversible entropy changes caused by varying magnetic fields. MCE has a long history of 
study30–32, and in the past decades, developing novel MCE materials which have prominent MCE properties, 
like the Gadolinium alloys with giant MCE33,34, has raised great research interest. This is due to that MCE has 
appealing applications in eco-friendly refrigeration near room temperature33,35, which provides a good substitute 
to conventional vapor compression refrigeration, and also can be utilized in space technology36,37. In addition, 
MCE materials, in particular adiabatic dimagnetization refrigerant (ADR), serve as efficient coolants for realizing 
ultra low temperatures38–41. People pursues MCE refrigerant which have higher isothermal entropy change (Δ S), 
larger adiabatic temperature difference (Tad), and also lower hysteresis dissipation34.

Recently, quantum spin chain materials are shown to exhibit enhanced MCE even at ultra low temperatures, 
and thus raised great research interest40–49. On one hand, through exploring low-T MCE properties of spin chain 
model materials41,42 which shows divergent Grüneisen parameter near field-induced quantum critical points 
(QCPs), people are able to directly detect and study quantum criticality43,44. On the other hand, one can inversely 
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utilize this low-temperature thermodynamic anomaly to realize enhanced cooling effects near QCPs46,47. Very 
recently, Sharples et al. realized temperatures as low as ∼ 200 mK using the enhanced MCE of a molecular quan-
tum magnet40, and Lang et al. experimentally studied a spin-1/2 Heisenberg antiferromagnetic chain material 
[Cu(μ-C2O4)(4-aminopyridine)2(H2O)]n (CuP, for short)48, and demonstrated this quantum critical coolant is 
a perfect alternative to standard ADR salts, due to its wider operating temperature range, longer holding time 
and higher efficiency49. As a typical low-dimensional quantum spin chain material, magnetic refrigeration of CN 
has also been experimentally explored, but only under a magnetic field range far from the field-induced QCPs8.

In order to study the thermodynamic information including the appealing MCE property of these strongly 
correlated spin systems, accurate thermal algorithms are of crucial significance, which is indispensable in estab-
lishing links between theoretical spin models and experimental measurements at finite temperatures. In one 
spatial dimension (1D), the transfer matrix renormalization group (TMRG) method50–52 has been long accepted 
as the method of reference, owing to its high accuracy and versatility. In ref. 53, Li et al. proposed an alternative 
approach for calculating thermodynamics of low-dimensional quantum lattice models called linearized tensor 
renormalization group (LTRG) method, which also adopts the Trotter-Suzuki decomposition54 to express the 
partition function as a d +  1 (d =  12 for 1D and 2D lattices, respectively) dimensional thermal tensor network 
(TTN) and linearly contract it along Trotter direction via renormalization group (RG) techniques.

In this work, combining three different methods, i.e., thermal quantum manybody computations, ab initio 
calculations, and experimental measurements of magnetization, we performed a comprehensive investigation of 
an AHAFC material CN. It is one of the earliest inorganic spin chain material ever studied experimentally7–29,55, 
while continues intriguing people for its abundant physics including triplon wave excitation23 and precise 
Tomanaga-Lutting liquid behavior29. We notice that, despite many efforts, discrepancy in coupling constants 
still exists: the exact diagonalization (ED) fittings (J =  5.16 K, α =  0.27) to thermodynamic quantities measurably 
deviates from those obtained from inelastic neutron scattering (INS) experiments (J =  5.14 K, α =  0.227)26.

We hereby utilize the LTRG approach with a bilayer formulation (dubbed as LTRG+ + ) which further 
improves the accuracy of calculations56. With this cutting-edge TTN method at hand, we revisit the previous 
experimental data in ref. 22 including specific heat curves (at various fields) and magnetization curves, aug-
mented with magnetization measurements done by us. The couplings are verified to be precisely J =  5.13 K, 
α =  0.23(1), consistent with that from INS experiments. In addition, first-principles calculations present electron 
density distributions and therefore visualized superexchange paths, thus providing direct and indubitable proof 
on the spin-chain alignment in material CN. Furthermore, through TTN simulations, we show that CN has large 
entropy change and pronounced peaks (and dips) in Grüneisen parameter around QCPs at low temperatures, and 
the calculated adiabatic temperature changes can fit very well to the previously measured isentropes, revealing 
that CN may be an ideal quantum critical refrigerant.

Results
Alternating Heisenberg antiferromagnetic spin chain material copper nitrate. As one of 
the common copper salts, CN possesses some special thermodynamic properties at low temperatures (see in 
Supplementary Note 1), including the zero-magnetization plateau11,20, 1D Luttinger liquid behavior under mag-
netic fields29,57, and 3D magnetic transition at ultra low temperature (150∼ 160 mK)16,19,29, etc, which has been 
arousing people’s research interest for more than half a century, significantly promoting developments of the 
research on low-dimensional quantum magnets.

Figure 1 depicts the crystallographic structure of CN, which is monoclinic with space group I12/c19. The spin 
chain structure and the spin-spin interaction paths can be seen in Fig. 1(b–d). The distances between one Cu2+ to 
its three neighbors are 5.33 Å, 6.22 Å, and 6.32 Å18, which leads to three distinct couplings J1, J2, and J3, respec-
tively [Fig. 1(b)]. We depict two possible inter-dimer superexchange paths J2 and J3 in Supplement Fig. S2, and 
Fig. 1(b) shows that the spin chain could have had two possible routes on (101) planes. Until recently, INS deter-
mines that J3 =  − 0.01 meV (of magnitude about 1/10 of J2)28, so that J2 is confirmed to be the dominant 
inter-dimer interaction, which connects dimers to form a tilted alternating chain, as shown in Fig. 1(b–d).

Therefore, it is concluded that an AHAFC model can very well describes the magnetic properties of CN (in the 
temperature regime above ∼ 160 mK), which reads
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=S S S S{ , , }x y z  is the vector spin operators in different directions; J =  J1 is the strongest superexchange 
coupling; α =  J2/J1 is the relative strength of dominant inter-dimer interaction, whose precise value was measur-
ably different in various experiments and left undetermined between 0.227 and 0.2722,26. Also note that in the 
magnetic-field coupling (Zeeman) term, the Landé factors are different ( ≠ ⊥g g ) on the direction along b axis 
and that perpendicular to it. This magnetic anisotropy has been observed experimentally in the magnetic suscep-
tibility measurements for a period of time7.

Moreover, from Fig. 1(d), we can see that there exist four inequivalent types of (101) planes in which the spin 
chains are arranged in different ways, namely, the planes I to IV shown in Fig. 1(d). In I and III planes, the 
AHAFCs stretch along [111] direction [from left top to right bottom, see Fig. 1(c)]; while in planes II and IV, the 
chains go from left bottom to right top ([111] direction). The parallel chains in I(II) planes have a shift of  

b/2  2.45 Å along b axis to those in nearest III(IV) planes as shown in Fig. 1(c).
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Electron density distributions of CN. We scraped together quite a number of experimental observa-
tions7,8,23,25 in the previous section, arriving at an AHAFC model description of CN. However, a thorough study 
of electronic structures in CN via ab initio calculations is indispensable, which may provide a direct check for 
the existence of spin-chain type magnetic interactions in CN and offers insight into exchange paths other than 
intra-chain couplings.

Figure 2 shows the simulated results of electron density distributions. Remarkably, in Fig. 2(a,b) the spin chain 
alignment in (101) plane is clearly demonstrated, where the electrons tend to reside along the chain directions and 
thus leads to larger exchange integrals J1 and J2 [see Fig. 1(a)]. Note that from the calculated results, we can dis-
criminate J2 from J3 without any ambiguity, where the Fig. 2 shows that the electron densities (hence also the 
coupling strengths) have different orders of magnitudes in J2 and J3 bonds. This conclusion, as well as the fact that 
the tilted chains are along difference directions between I, III and II, IV planes [Fig. 2(a,b)], agree with the INS 
observations in ref. 28. Moreover, in Fig. 2(c) we show the electron densities in (010) plane, where the J1 dimers 
are highlighted, from which we can see that there exist a weak dimer-dimer exchange coupling Jm between every 
pair of dimers along [001] direction, this again has been observed experimentally23.

In refs 23 and 26, INS experiments also show that there exists inter-chain interactions between nearest dimers 
along [001] and [100] directions. However, we find that by shifting dimers along [1/2 0 0] as indicated by the 
authors in refs 23 and 26, there locates no dimer in the supposed position (see Fig. 1). This is also verified in our 
ab initio calculations, where Fig. 2(c) shows clearly that there is no visible dimer-dimer coupling between a dimer 
and its nearest neighbor along [100] direction. Therefore, we include only the inter-dimer coupling Jm along [001] 
direction, and propose a novel 3D Heisenberg model (see in Supplementary Note 2), while leaving it as an open 
problem about the possibility of adding more inter-chain coupling terms to this 3D model [Eq. (S2)]. Note that 
the inter-chain interactions are rather weak and does not alter the physical properties except for ultra low tem-
peratures. In the followings, the 3D model will not be involved, and we focus on the AHAFC model description 
in Eq. (1) exclusively.

Thermal tensor network approach. High-precision thermal quantum manybody calculations are 
indispensable for relating the spin models discussed to the thermodynamical measurements of CN. The LTRG 
method, which is proposed by some of the authors, provides an accurate and efficient way to accomplish this task. 
Furthermore, we utilize here a double-layer algorithm LTRG+ + , which has significantly improved accuracy, 
compared to previous single-layer LTRG method, in computing thermodynamic properties (see some technical 

Figure 1. Crystal structure and magnetic exchange couplings in Cu(NO3)2·2.5 H2O.  (a) The unit cell of 
Cu(NO3)2·2.5 H2O, where the coordinate axes coincide with the crystal axes. The lattice constants are shown in 
the figure, indicating that CN belongs to the monoclinic system. (b) Structure in a typical (101) plane, where the 
Cu2+ are highlighted while other atoms left transparent. The heavy solid lines are the intradimer J1, the 
interdimer J2 and interchain J3 couplings are plotted differently (in black solid and red dashed lines, 
respectively). A labels one out of two sublattices of honeycomb lattice in (101) plane, and ˆ ˆ ˆi j k, ,  are vectors 
connecting one site (in A sublattice) with its three nearest neighbors. (c) Superexchange paths between spins 
along chains in four inequivalent (101) planes which are adjacent to each other. (d) Projected view of the crystal 
structure in (010) plane, where the alternating solid lines represent the J1–J2 chains. We denote the four existing 
(101) planes as I, II, III, and IV, respectively, where the chains have different paths in each plane. Arrows indicate 
the directions along [100] and [001], which represent interchain exchange paths JL, Jm.
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details in the Supplementary Note 3, and also a comprehensive discussion of LTRG+ +  for both spin and fermion 
models in ref. 56).

Simulations of magnetothermal properties and precise coupling constants. We per-
form state-of-the-art TTN simulations developed and fit the magnetothermal data both taken from refs 
7,8 and 22 and those measured in the present work. Various CN single-crystal specimens are prepared [see 
Supplementary Fig. S1] and we measure their magnetization in high-precision SQUID devices.

We start from the specific heat curves at various magnetic fields B =  0, 0.87, 2.82, and 3.57 T, as shown in Fig. 3. 
Experimental data (symbols) are taken from ref. 22, and the coupling constant J, chosen to be 5.13 K, is within the 
fiducial range of 5.16(4) K from previous thermal fitting and 5.13(2) K from scattering fitting. Actually we find 
that small change of J (say, ± 0.3 K) does not cause significant changes to calculated results so as to affect other 
fitting parameters.

In Fig. 3(a,b), we plot specific heat curves of low magnetic fields (B =  0, 0.78 T), and both fittings with α =  0.23 
(solid lines) and 0.27 (broken lines) are displayed as comparisons. It is seen clearly that the calculated curves of 
both α values can fit the magnetic specific heat curves almost equally well, for either B =  0 or B =  0.78 T case. 
Therefore, it is difficult making a preferable choice amongst these two α values, as well as potentially many other 
values in between.

In Fig. 3(c) the measured specific heat curve Cp shows double peak structure, and α =  0.23 and 0.27 curves 
start to show some qualitatively different behaviors: While the α =  0.27 curve only presents a shoulder below 1 K, 
the α =  0.23 curve correctly captures the double-peak structure, making the latter fitting noticeably better than 
the former. Moreover, the difference between two fittings becomes more striking in Fig. 3(d), where Cp in the 
regime 0.3∼ 1.5 K is quite sensitive to the change of α, and α =  0.23 is obviously superior than 0.27 in this case.

Therefore, from the direct comparisons in Fig. 3, we conclude that α =  0.23 is an overall better parameter than 
α =  0.27 in the fittings of specific heat curves at various fields. The latter was obtained by the authors in ref. 22, 
who performed fittings based on ED results of small systems with the coupling ratio α =  0.27. We would like to 
stress that the discrimination between α =  0.23 and 0.27 can be done only if an accurately calculation is possible 

Figure 2. The electron density distributions. The projected electron densities on (a) III-type (101), (b) IV-type 
(101), and (c) (010) planes. .a 0 530  Å is the Bohr radius, the projection range of electron density is of 
thickness [− 0.5, 0.5] d (d is the interplane distance), respect to [101] unit vector for (a,b) and to [010] vector 
(i.e., primitive vector b) for (c) (refer to Fig. 1 for the specific crystal directions). The positions of copper ions are 
marked by solid spheres. In (a,b) the tilted chain structures are clearly shown by high electron densities along 
the chain direction [111] for (a) and [111] for (b). In (c) the dimers with different heights along b axis are labeled 
in different colors, from which it is clear that there exist weak inter-dimer interactions (denoted as Jm) along 
[001] direction, while there exists no visible exchange path between two nearest neighboring dimers connected 
by 
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for the low-temperature thermodynamic property of CN at high fields (2.82 and 3.57 T) where the ground state 
is a critical Luttinger liquid.

Then, we check whether the preferred parameter α =  0.23 can also fit other magnetothermal quantities such 
as zero-field susceptibility χ and the magnetization curves at various temperatures. Figure 4 illustrates the fittings 
to magnetic susceptibility results, which comprises data measured in the present work and those taken from  
ref. 22. In particular, the present magnetic susceptibility measurements are performed in order to fill up the gap 
in the temperature range 5 K <  T <  15 K where the old susceptibility data are absent. It is seen that in Fig. 4 the 
TTN calculations can fit the experimental results very well. Note that the magnetic susceptibilities are measured 
both along and perpendicular to the crystal b axis, Fig. 4 reveals that there exists quite prominent anisotropy in 
the spin chain material. It turns out, through the fittings of both susceptibilities with Hamiltonian Eq. (1), that this 
anisotropy can be attributed to different Laudé factors in the directions parallel ( = .g 2 31) and perpendicular 
( = .⊥g 2 14) to the b axis.

Besides the zero-field χ, we also fitted the magnetization curves at various temperatures (517 mK, 2, 2.03, and 
5 K). In Fig. 5, the magnetization curves with fields perpendicular to b axis measured by us, parallel magnetization 
curves taken from ref. 22, as well as 517 mK data from ref. 29, are quantitatively fitted with the set of parameters 
J =  5.13 K, α =  0.23, = .g 2 31, and = .⊥g 2 14.

Criticality-enhanced magnetocaloric effect. In Fig. 5 the calculated magnetization at T =  40 mK, where 
two QCPs, i.e., the plateau-closing field Bc =  2.87 T and saturation field Bs =  4.08 T, are clearly shown. This ideal 
magnetization curve is calculated from 1D Hamiltonian Eq. (1) where inter-chain couplings are ignored. This 
curve is plotted just for elaborating two quantum critical points in the course of applying magnetic fields, and 
might have some distiction from realistic magnetization curve of CN since the interchain coupling might have 
some significant influence on the curve at such low temperatures (40 mK).

Figure 3. Fitting to experimental data of specific heat. The curves under various magnetic fields, (a) B =  0, 
(b) 0.78, (c) 2.85, and (d) 3.57 T. The experimental data (symbols) are taken from refs 8 and 22, and the dashed 
fitting lines are calculated with α =  0.27, while the solid lines are fittings with α =  0.23. The B =  0.78 T curve in 
(b) was measured with powder samples22, thus is fitted using average Landé factor .g 2 2av ; and the B =  2.82 
and 3.57 T curves in (c,d) are measured along crystal b axis, with Landé factor = .g 2 31.
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Between these two QCPs, there exists a continuous critical Luttinger liquid phase which hosts gapless mag-
netic excitations. The TTN simulations have be employed to explore the isentropes and magnetic Grüneisen 
parameters, and revisit the early isentropic data in ref. 20. We reveal that there exists criticality-enhanced MCE 
near two field-induced QCPs.

In Fig. 6(a), we plot the isentropic curves of various magnetic entropies (from S/R =  0.05 to 0.5). For curves 
with relatively large entropies (0.2 ≤  S/R0.48), the lowest temperature appears at around .B 3 5 T, roughly 
located in the center of gapless region. However, with further lowering temperatures, we see that the broad dip 
eventually splits into two sharper dips in the isentropic curves, signalling two QCPs. Therefore Fig. 6(a) manifests 
that in the vicinities of QCPs and in the quantum critical region, the thermal entropies are relatively large, which 
in turn results in criticality-enhanced MCE.

Along each isentropic curve, one can read out the adiabatic temperature changes. A quite distinct future of 
Fig. 6(a) for CN chain is that on both small and large field sides, one experiences large temperature changes by 
varying fields (i.e. from 0 to 3 T, and 8 to 4 T). This is in contrast to uniform Heisenberg model (see, for instance, 
Fig. 3 in ref. 49 for spin chain material CuP), where significant MCE is observed only on large field (right) side 
of saturation QCP; while little temperature change was seen by increasing fields from 0 to saturation due to the 
presence of Luttinger liquid all along the magnetization curve. On the contrary, for the CN chain, the situation 
is different due to the existence of dimerization, which opens up a gap at low fields < Bc. This fact enables us to 
realize criticality-enhanced MCE for relatively small fields (< 4 T), and one could even properly design a thermal 
cycling to make use enhance MCE around both low and high critical fields in one complete cooling process.

In Fig. 6(b), we show the experimental data of isentropes (low-field region) taken from refs 15 and 20 and 
compare it to the simulated curves. From Fig. 6(b), we can see that, for isentropes with relatively large entro-
pies (say, S/R =  0.23,0.18,0.15), the fittings based on 1D model [Eq. (1)] are strikingly good; when the entropy 
decreases and the lowest temperature obtained in the adiabatic experiments reaches ∼ 100 mK [see S/R =  0.08 in 
Fig. 6(b)], slight deviation starts to show up in the vicinity of QCP (Bc =  2.87 T). Such deviation may be ascribed 

Figure 4. Fittings to measured magnetic susceptibility χ. The experimental data taken from previous 
experiments (ref. 22), as well as those obtained in the present work (squares and circles). The latter is measured 
under a small magnetic field (B =  0.6 T) to mimic the zero-field susceptibility. χ has clear anisotropic g factors 
along the crystal b axis and the direction perpendicular to it.

Figure 5. Various magnetization curves at different temperatures and their LTRG fittings. The two 
curves (at 2 and 5 K) under magnetic fields applied perpendicular to the b axis, are measured with a SQUID 
in the present work; while the 2.03 K curve parallel b axis and 317 mK curve perpendicular to b axis are taken 
from refs 22 and 29, respectively. A 40 mK line ideally calculated from the spin chain model is also included, 
demonstrating two quantum critical points Bc =  2.87 T and Bs =  4.08 T which are identified by two diverging 
peaks of dM/dB.
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to inter-chain interactions [see Supplementary Eqs. (S1,S2)] since the magnitudes of J3 and Jm are both about 
0.01 meV (∼ 100 mK). Nevertheless, the good agreements to adiabatic temperature changes evidences that CN 
indeed has criticality-enhanced MCE characterized by large temperature change even for moderate fields (say, 
from 0 to 3.5 T).

Another important quantity measuring MCE property is the magnetic Grüneisen parameter Γ = ∂
∂( )B T

T
B s

1 , 
which is a differential characterization on the temperature change Δ T over small magnetic field variation Δ B in 
an adiabatic process. In the vicinity of QCPs, Γ B diverges as T tends to zero, whose scaling behavior is intimately 
related to the quantum criticality43,44. In Fig. 7(a), we show the calculated Γ B of CN, and also the measured Γ B of 
uniform spin-1/2 Heisenberg chain material CuP as a comparison (taken from ref. 49), from which it is seen that 
the CN chain has much larger Γ B around either one of its two QCPs, 2∼ 3 times as large as that of CuP around the 
saturation field. The latter has been proposed as a perfect alternative for ordinary demagnetization refrigerant due 
to its wide operating range, large cooling power, and high efficiency49. Our TTN simulations show that the 

Figure 6. Numerically simulated and experimentally measured isentropes of CN. (a) The contour lines 
represent entropy per site 0.08 ≤  S/R ≤  0.48 (bottom to top) with interval Δ S/R =  0.04, where .R 8 314 
J·K−1·mol−1 is the gas constant. (b) Comparisons to measured adiabatic isentropes of CN around the critical 
field .B 2 87s  T, the experimental data are taken from refs 15 and 20.

Figure 7. Magnetic Grüneisen parameter ΓB, which characterizes differentially the temperature change 
over a unit magnetic field change. The lines plotted, with different heights of peaks, correspond to different 
Γ B at various temperatures, which decrease from 640 mK to 320 mK (top to bottom). The dotted line is the 
measured Γ B of spin-1/2 Heisenberg chain model material CuP, taken from ref. 49.
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dimerized spin chain CN studied in the present work has even more promising potential as quantum critical 
coolant, not only because it has two sharp dips at suitable fields (Fig. 6), one at Bc =  2.87 T and the other at 
Bs =  4.08 T, but also due to large temperature changes in response to field variations as revealed by Γ B in Fig. 7(a). 
In addition, we show in a color map the (dT/dB)s as a function of various temperatures T and magnetic fields B, 
which turns out to resemble the experimental results with a high degree of similarity (inset in Fig. 8).

Discussion
In this paper, we generalize the LTRG method to a bilayer form and employ this method to accurately study the 
thermodynamics of a 1D dimerized spin chain material copper nitrate. We calculate and fit the experimental data 
of specific heat, magnetic susceptibility, and magnetization curves, some of which are measured experimentally 
in the present work.

Through the large scale TTN simulations, we resolve the previous discrepancy in coupling constants verified 
from different experiments. In particular, since at strong field (2.8 T <  B<  4.4 T) the ground state of the system 
is in a quantum critical regime (Luttinger liquid phase29) and is thus supposed to have rather long correlation 
lengths at low temperatures. Through high-precision fittings, we find that the verified coupling ratio α is close 
to that (α =  0.24) obtained from INS experiments23, while “measurably” different from α =  0.237 in previous 
papers20,22. The similar values α =  0.235 has been obtained by the ED fittings29. But due to finite-size effects, ED 
method is insufficient to give an accurate estimation of thermodynamic properties at low temperatures (like spe-
cific heat curves under critical fields). In contrary, Our TTN methods could directly access infinite-size chain and 
provide a faithful thermodynamic fitting.

Therefore, we conclude that the set of parameters J =  5.13 K, α =  0.23(1), = .g 2 31, and = .⊥g 2 14 yielded from 
thermal fittings, is actually in remarkable consistency with those determined from INS experiments. This finding 
reveals that the thermal and scattering experiments are actually consistent with each other, and the previously 
supposed discrepancy may be due to limited simulations in fitting low-T thermal data of gapless Luttinger liquid 
phase. In addition, based on electron density distribution pattern, we have for the first time visualized the 
spin-chain exchange path in CN, through ab initio calculations.

Moreover, we uncover, though accurate TTN simulations of the model determined by thermal fittings, that 
there exists criticality-enhanced large MCE near two quantum phase transition points, even at very low temper-
atures. Based on the quantum anomaly in low-T isentropes and their good agreements to experimental data, as 
well as the large peaks/dips in magnetic Grüneisen parameters, we propose that CN is a very promising quantum 
critical coolant with significant temperature changes in response to magnetic field variations of moderate values.

There are still a number of interesting questions deserving further discussions, on both experimental and 
theoretical sides. To name a few, the direct experimental measurement of adiabatic temperature change for wider 
field ranges, instead of the rather limited field range between 2 to 4 T in previous experiments, is important to 
verify our prediction of CN as a promising coolant. In addition, the performance characteristics such as operation 
temperature range, cooling power, and efficiency, are also in due to be investigated. Another important ingredient 
missing in the present work is the effect of inter-chain couplings, as shown in the Supplementary Eqs (S1,S2). The 
inter-chain couplings could be of importance since the coolant is supposed to work in a circumstance with lowest 
temperature T <  100 mK, an energy scale comparable to inter-chain interactions.

Methods
Thermal quantum manybody computation. In order to simulate the thermodynamic properties and 
fit the experimental data, we employ thermal tensor network method to perform a high-precision calculation. In 
practices, Trotter slice is set as τ =  0.025, the lowest temperature reached is T/J =  1/150 (i.e., inverse temperature 
β =  150), and χ =  400∼ 600 bond states are retained, with truncation error smaller than 10−13. The numerical 
convergence versus χ of various concerned quantities including free energy, specific heat, magnetization curve, 
etc, has always been checked.

Figure 8. The calculated (dT/dB)s versus magnetic fields and temperature, where the values of (dT/dB)s are 
illustrated with colors. Inset is taken from ref. 58, which is obtained from experimental measurements. Note 
that the calculated color map bears remarkably similarity as the measured one.
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First-principles calculations and electron density distributions. We employ a self-consistent field 
calculation, based on the all-electron projector augmented wave (PAW) method59,60 implemented in VASP61,62, to 
investigate the electron density distributions in CN. We adopt the generalized gradient approximation of Perdew, 
Burke, and Ernzerhof of exchange-correlation functional63. The cutoff energy for the plane wave expansion is cho-
sen as 1000 eV, and the k-point mesh is 2 ×  3 ×  2. In practical calculations, little changes both in the cell shape and 
atomic positions have been observed after structure relaxation, hence the experimental lattice parameters shown 
in Fig. 2(a) are used, and two unit cells which comprise 264 atoms (including 16 copper atoms) are selected.

Sample preparation and magnetization measurement. The Cu(NO3)2·2.5 H2O single crystals are 
obtained by cooling the hot saturated water solution of copper nitrate (CN) down to low temperatures. The 
solution was heated to increase the concentration, but the highest temperature should be below 75 °C to prevent 
copper nitrate from decomposition8. In practice, we heat the hot solutions to 75 °C, and then transfer it directly 
to a cooler container (< 25 °C) to facilitate crystal seed formation. The temperature of latter controls the final 
single-crystal size of the specimen. Sequentially, the container is put into the 60 °C environment, which is slowly 
cooled down to 35 °C. The grown single crystals have quite large system sizes, ranging from several milimeters to 
one or two centimeters (see Supplementary Fig. S1), and are in needle shapes with the long edge right along the 
crystal b axis. Note during the process of sample preparation, the CN solution should be kept away from organic 
materials or solution.

We point out that there exist more than one kind of copper nitrate hydrates. In order to ensure the purity of 
Cu(NO3)2·2.5 H2O in the specimen (i.e., to remove superfluous water and other possible CN hydrates), the sample 
is heat to 45 °C for 10 min everytime before measurements27. The data in Figs 4 and 5, including the isothermal 
magnetization curves and the zero-field susceptibility are measured in the high-precision SQUID device by scan-
ning fields and temperatures, respectively.
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