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Assessing the Spatiotemporal 
Variation and Impact Factors of Net 
Primary Productivity in China
Xue Wang1, Kun Tan1, Baozhang Chen1 & Peijun Du2

In this study, the net primary productivity (NPP) in China from 2001 to 2012 was estimated based 
on the Carnegie-Ames-Stanford Approach (CASA) model using Moderate Resolution Imaging 
Spectroradiometer (MODIS) and meteorological datasets, and the accuracy was verified by a 
ChinaFLUX dataset. It was found that the spatiotemporal variations in NPP present a downward 
trend with the increase of latitude and longitude. Moreover, the influence of climate change on the 
evolution of NPP shows that NPP has had different impact factors in different regions and periods 
over the 12 years. The eastern region has shown the largest increase in gross regional product (GRP) 
and a significant fluctuation in NPP over the 12 years. Meanwhile, NPP in the eastern and central 
regions is significantly positively correlated with annual solar radiation, while NPP in these two 
regions is significantly negatively correlated with the growth rate of GRP. It is concluded that both the 
development of the economy and climate change have influenced NPP evolution in China. In addition, 
NPP has shown a steadily rising trend over the 12 years as a result of the great importance attributed to 
ecological issues when developing the economy.

With the rapid progress of industrialization and urbanization in China, the atmospheric concentrations of green-
house gases such as carbon dioxide continue to increase because of human activities such as fossil fuel burning, 
environmental pollution, and land-use change1. To reveal the causes of environmental degradation, the carbon 
cycle in the various terrestrial ecosystems needs to be better understood. As there are many different processes 
that together comprise the carbon cycle, the indicators of the cycle can be divided into the component fluxes, i.e., 
gross primary production (GPP) and ecosystem respiration (RE); the net fluxes, i.e., net ecosystem productivity 
(NEP) and net primary productivity (NPP); and the exchange fluxes, i.e., net ecosystem carbon exchange (NEE). 
The amount of chemical energy as biomass that the primary producers create is called GPP2, which is the first 
process of the exchange of carbon dioxide that assimilates atmospheric carbon dioxide into the ecosystem3. A 
certain fraction of this chemical fixed energy is used by the primary producers for heterotrophic respiration (RH) 
and autotrophic respiration (RA), which together comprise respiration (RE)4. NEP describes the photosynthetic 
product by subtracting RE from GPP in an ecosystem, i.e., NEP =  GPP− RE. Defined as the amount of organic 
matter produced by green plants per unit of time and area5, NPP is the indicator of the balance between the car-
bon gained by GPP and the carbon released by plant respiration, which is indicated by RA, i.e., NPP =  GPP− RA2. 
NEE is the indicator of equilibrium between photosynthesis and respiration in the ecosystem. A negative sign 
for NEE, which is the same as NEP numerically, denotes carbon entering the ecosystem from the atmosphere, 
whereas a positive sign denotes carbon release from the ecosystem into the atmosphere6.

As one of the key components of the terrestrial carbon cycle, NPP accounts for most of the carbon flux 
between the atmosphere and biosphere among the pools and fluxes that make up the cycle7. Therefore, accurate 
retrieval of NPP for the various terrestrial ecosystems is important for ecosystem management and the study of 
the carbon cycle, and has been the subject of a great deal of attention from academics and governmental agencies8.

Zhu et al.9 pointed out that the three main kinds of models for terrestrial NPP estimation are: (1) 
climate-productivity relationship models; (2) eco-physiological process models; and (3) light utiliza-
tion efficiency (LUE) models. Remote sensing is commonly used in the LUE models, which are efficient 
methods for both regional- and global-scale NPP estimation. Information about vegetation types and/or 
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temperature/water availability is also commonly incorporated into the LUE models10. One such technique is the 
Carnegie-Ames-Stanford Approach (CASA) model for estimating NPP from remote sensing data11. CASA is a 
widely recognized NPP model that downregulates photosynthetic efficiency in response to short-term adverse 
temperatures or dry soil conditions12.

The other approach, which was used in this study, is to calculate the NPP based on the eco-physiological 
processes using the eddy covariance (EC) technique of microclimatology. In this study, we calculated GPP based 
on a ChinaFLUX dataset. The ChinaFLUX network is a long-term national network of micrometeorological flux 
measurement sites which has been operating in China since 2002. The NPP per unit of carbon assimilated by 
gross photosynthesis (i.e., the carbon-use efficiency, CUE)13 is represented by the NPP/GPP ratio, which allows 
researchers to calculate NPP directly from GPP, or vice versa14. The ratio was observed to be approximately con-
stant among diverse vegetation types by Gifford15; however, Zhang et al.16 pointed out that areas with lower CUE 
values largely consist of wet and warm environments, and their counterparts comprise relatively dry and cold 
environments. Zhang et al.17 obtained the mean ratio of the NPP/GPP of different vegetation types using 10 
years of global remote sensing data from 2000 to 2009, which we used in this study to calculate the NPP from the 
observed GPP.

The objectives of this study were as follows: (1) to estimate the NPP of the main territories in China during 
the period from 2001 to 2012, based on MODIS and meteorological data under the CASA model; (2) to apply the 
flux data from the ChinaFLUX network to verify the accuracy of the model; (3) to assess the spatiotemporal var-
iation of NPP over the study area and explore the influence of climate change on the evolution of NPP; and 4) to 
analyze the relationship between the dynamics of NPP and human factors such as GRP and population, alongside 
economic regionalization.

Methods
Data. China, as one of the largest countries in the word, shows a clear latitudinal and longitudinal pattern of 
ecosystems because of the diverse climatic zones, which have been delineated as plateau, cold (sub-cold) temper-
ate, temperate, warm temperate, subtropical, and tropical climate zones. Geographically, the northwestern part 
of China is located in the hinterland of the Eurasian continent, the southeastern part of China faces the Pacific, 
and the Qinghai–Tibet Plateau in the southwest of China is some of the highest terrain on earth18. The data time 
period in this study was from 2001 to 2012, which includes the 10th Five Year Plan and the 11th Five Year Plan, 
which were a series of social, economic, and ecological development initiatives shaped by China through the 
plenary sessions of the Central Committee and National Congress.

In this study, the data we utilized covered terrestrial China, except for the southwest of Taiwan and the South 
China Sea Islands. Some important geographical areas that are referenced in the text have been marked in Fig. 1.

Four types of datasets were used in this study: (1) remote sensing data; (2) a meteorological monitoring data-
set; (3) a carbon dioxide flux dataset at the ecosystem level; and (4) a vector map of China. Specifically, the data-
sets were: (1) MODIS and normalized difference vegetation index (NDVI) datasets derived from the extracted 

Figure 1. Map of the whole of China and the important geographical areas referenced in this paper. This 
figure was generated by ArcGIS for Desktop 10.0 (http://desktop.arcgis.com). Area 1 is Xinjiang, the north 
of area 2 is Kunlun Mountains, area 3 denotes the mainly regions of Inner Mongolia, area 4 is cloudy all the 
year round whose data is sometimes invalid in MCD12Q1, area 5 is the Huai River basin and the Daxing’an 
Mountains, the Xiaoxing’an Mountains, and the Changbai mountains are located in area 6, area 7 have 
Northeast Plain of China and heavy industry areas such as Harbin, Changchun, and Shenyang.

http://desktop.arcgis.com
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data of the Terra satellite at a spatial resolution of 1 ×  1 km2. The Land Cover Type 4 classification system of 
MCD12Q119 was used in this study, and all the tiles of the land-cover data were merged together and converted 
into TIFF format using the MODIS Reprojection Tool (http://lpdaac.usgs.gov/tools/modis_reprojection_tool). 
The NDVI product, which is a MODIS derivative obtained from the Chinese Geospatial Data Cloud (http://www.
gscloud.cn/), has a temporal resolution of one month, and the MODIS land-cover product is a yearly product 
from NASA (http://modis.gsfc.nasa.gov/). (2) The monthly mean temperature, precipitation, and sunshine dura-
tion for the study area were gathered from the China Meteorological Data Sharing Service System (http://cdc.
nmic.cn) and spatially interpolated using the kriging interpolation method to obtain the same spatial resolution 
as the remote sensing images. The first two kinds of data used in this study were georeferenced to the geographic 
Lat./Lon. projection using the WGS84 datum. (3) The ChinaFLUX dataset18 was provided by the ChinaFLUX 
program, which is a long-term national network of micrometeorological flux measurement sites that measure the 
net exchange of carbon dioxide, water vapor, and energy between the biosphere and atmosphere20. The dataset 
we used was obtained from eight observation sites: Changbaishan broad-leaved Korean pine mixed forest (CBS), 
Qianyanzhou subtropical coniferous plantation (QYZ), Dinghushan subtropical evergreen broad-leaved forest 
(DHS), Xishuangbanna tropical evergreen broadleaf forest (XSBN), Inner Mongolia typical temperate grassland 
(NM), Haibei alpine meadow (HB), Dangxiong alpine steppe-meadow (DX), and Yuchen warmer temperate dry 
farming cropland (YC). (4) The Chinese vector map was downloaded from the website of the National Earth 
System Science Data Sharing Infrastructure of China (http://www.geodata.cn), using the WGS84 geographic 
coordinate system to produce Fig. 1.

Subtracting NEE (which was directly measured by the EC approach) from RE gives GPP21. We utilized the 
GPP to estimate the observation sites’ NPP by the NPP/GPP ratio.

ϕ=GPP NPP/ (1)

However, the NPP/GPP ratio ϕ shows a considerable spatial variation associated with the ecosystem type, geo-
graphical location, and climate16. Zhang et al.17 simulated the NPP/GPP ratio of a variety of ecosystem types. 
From these results, we chose 0.5853 (the ratio of the evergreen needleleaf forest ecosystem type) as the counter-
part of QYZ, 0.4125 (evergreen broadleaf forest) as the counterpart of XSBN, 0.5488 (mixed forest) as the coun-
terpart of DHS, 0.5523 (grass) as the counterpart of NM, HB, and DX, and 0.5399 (crops) as the counterpart of 
YC, and we obtained the NPP simulation results by month.

CASA model. Most satellite-based NPP models have been based on the theory of LUE proposed by 
Monteith22, who suggested that plant productivity is strongly related to the intercepted solar radiation, and thus 
can be estimated as the product of the intercepted solar radiation and its conversion efficiency into plant photo-
synthesis. The CASA model23, which is based on the LUE concept, modified by temperature and moisture stress 
scalars, was established to calculate monthly terrestrial NPP. The NPP estimation process we utilized introduces 
both the vegetation types and their classification accuracies. The meteorological dataset was used to estimate both 
the moisture and temperature stress factors, while the vegetation types were considered when determining the 
maximum and minimum of the NDVI and when calculating the real LUE23.

Theoretically, in the CASA model, NPP is estimated using the absorbed photosynthetically active radiation 
(APAR) and the real LUE.

ε= ×NPP x t APAR x t x t( , ) ( , ) ( , ) (2)

where NPP(x, t) represents the NPP at month t for grid position x (unit: gC · m−2 · month−1), APAR(x, t) is the 
APAR at month t for grid position x (unit: MJ · m−2 · month−1), and ε(x, t) is the real LUE (unit: gC · MJ−1)24. APAR 
is determined by both the total solar radiation and the characteristics of the plant canopy, and can be calculated 
as:

= . × ×APAR x t SOL x t fAPAR x t( , ) 0 5 ( , ) ( , ) (3)

where SOL represents the total solar radiation, which can be obtained by establishing the relationship model 
between the sunshine duration included in the meteorological dataset and the solar radiation for grid position 
x (unit: MJ · m−2 · month−2)25. fAPAR(x, t) is the fraction of APAR absorbed by the plant canopy, where 0.5 rep-
resents the proportion of the radiation which can absorbed by plants (0.38–0.71 μ m)26. Considering the good 
linear correlation between NDVI and fAPAR10, NDVI, which is calculated from the infrared and the near-infrared 
channels, is utilized to obtain fAPAR.

=
− × −
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where NDVIi,min and NDVIi,max indicate the maximum and minimum of vegetation type i, respectively. In this 
study, we used 95% and 5% in the NDVI histogram as the maximum and minimum of each vegetation type27. 
fAPARmax and fAPARmin are constants, with values of 0.001 and 0.95, respectively.

Light utilization efficiency (LUE). The LUE in realistic conditions is influenced by environmental drivers 
such as temperature and vapor pressure deficit (VPD), which can retrieved from the meteorological factors.

ε ε= × × ×ε ε ε
⁎x t T x t T x t W x t( , ) ( , ) ( , ) ( , ) (5)1 2

http://lpdaac.usgs.gov/tools/modis_reprojection_tool
http://www.gscloud.cn/
http://www.gscloud.cn/
http://modis.gsfc.nasa.gov/
http://cdc.nmic.cn
http://cdc.nmic.cn
http://www.geodata.cn
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where Tε1 and Tε2 represent the effect of high and low temperature on LUE, respectively; Wε represents the effect 
of moisture on LUE; and ε * represents the maximum light utilization rate under ideal conditions. Tε1 denotes the 
depressant effect on NPP of high and low temperatures restricting the process of photosynthesis28.

The Land Cover Type 4 classification system of the MODIS land-cover product (MCD12Q1) which was 
used in the CASA model consists of the following categories: water, evergreen needleleaf vegetation, evergreen 
broadleaf vegetation, deciduous needleleaf vegetation, deciduous broadleaf vegetation, annual broadleaf vege-
tation, annual grass vegetation, and non-vegetated and urban. The maximum LUE ε * (unit:gC · Mj−1) for each 
vegetation type was given by Zhu and Pan29 as follows: we chose 0.389 as the counterpart of water, 0.985 as the 
counterpart of evergreen needleleaf vegetation, 0.485 as the counterpart of evergreen broadleaf vegetation, 0.692 
as the counterpart of deciduous needleleaf vegetation, HB, and DX, and 0.542 as the counterpart of deciduous 
broadleaf vegetation, annual broadleaf vegetation, annual grass vegetation, non-vegetated and urban.

Pearson correlation coefficient. To analyze the correlation between the interannual variation of NPP and 
the impact factors, we calculated the Pearson correlation coefficient by pixel over the 12 years.

ρ =
×

Cov X Y
Var X Var Y

( , )
( ) ( ) (6)

where Var(X) and Var(Y) represent variables X and Y, which here mean the annual NPP and the impact factors, 
respectively. Cov(X, Y) represents the covariance between the two variables.

Results and Discussion
Verification of the results by ChinaFlux data. The ChinaFlux dataset provides the daily GPP of the 
observation sites from 2003 to 2005, which we used as annual GPP. Using the annual GPP and the NPP/GPP ratio 
mentioned above, we could obtain the annual NPP, which was used to validate the precision of the result obtained 
by the CASA model. We located the grid position of the result of the CASA model based on the observing sites’ 
longitude and latitude, and we then used a 3 ×  3 mean filter mask to calculate the average of this grid position and 
its periphery to represent the model NPP. The comparison between the observed results and the model results in 
this study includes the eight sites during 2004 and 2005, but only six sites in 2003 (without NM and DX), because 
of missing observation data.

We calculated the average relative error by:

σ = ∑ − ×NPP NPP NPP
N

( )/ 100%

(7)
mdl obs obs

years

The average relative errors of eight sites are as follow: the error of CBS is 8.18%, QYH is 3.90%, DHS is 12.02%, 
XSBN is 5.68%, NM is 34.99%, DX is 31.66% and YC is 12.42%. There are five under 20% but were greater than 
20% for the NM, HB, DX sites. The model NPP was greater than the observed NPP for NM and HB, but was 
smaller for the DX site, whereas the range of the model NPP in all eight sites was in agreement with Zhu and 
Pan’s estimated results. The reason for this may be that remote sensing images can reflect the evolution of plants 
over a large scale, but the observation sites covered only a few hectares, so the differences between the two scales 
seriously affected the average relative error calculation in NM, HB, and DX for typical temperate grassland, alpine 
meadow, and alpine steppe-meadow, where the average NPP was 124.07 gc · m−2 · a−1, 329.41 gc · m−2 · a−1, and 
109.03 gc · m−2 · a−1, respectively. In contrast with the other sites, for NN, HB, and DX, the NPP varied significantly 
around the three sites, which can be seen in Fig. 2.

We selected the monthly NPP values of NM, DX, and HB as follows:
Figure 2 shows that the model and observed NPP match well by month in the three sites, but the model NPP 

is smoother. The reason for this could be the use of empirical values for all pixels of the same class, and the krig-
ing interpolation in the meteorological factor calculation, which could act as a smoothing process, ignoring the 
diversity of the different locations.

The monthly results of the CASA model agree with the ChinaFLUX observation data, but the average rel-
ative errors of the three sites are greater than 20%. The reason for this may be that the relative error function 
(Formula 7), i.e., the denominator for the observation data, which is very small in the HB, NM, and DX sites  
(about 100–300 gc · m−2 · a−1, while it is 600–1200 gc · m−2 · a−1 in the other five sites), has magnified the errors.

The spatiotemporal variation and impact factors of NPP. The NPP distribution from 2001 to 2012 in 
the study area, as simulated by the CASA model, is shown in Fig. 3, where it can be seen that the NPP presents a 
regular spatiotemporal distribution, and shows a decreasing trend from southeast to northwest.

The change trend was, however, different in different areas over the 12 years. The southeast of China showed 
only slight variation, while there was significant variation in the northwest area, especially in the eastern regions 
of Inner Mongolia and Xinjiang, which are marked in Fig. 1 as area 3 and area 1, respectively. We regressed the 
rate of variation of the 12 years of NPP values, obtaining the distribution of the change rate.

Figure 4(a) shows that the NPP showed a steadily increasing trend in almost all areas over the 12 years, par-
ticularly the eastern regions of Inner Mongolia (Fig. 1, area 3) and Xinjiang (Fig. 1, area 1). Nevertheless, the NPP 
showed a significant decreasing trend in the northeast region where the heavy industry cities of Harbin, Changchun, 
and Shenyang (Fig. 1, area 7) are located, as well as the Kunlun Mountains (the north of area 2 in Fig. 1). Because of 
the difference between different regions in NPP evolution, we calculated the correlation coefficients between NPP 
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and the meteorological factors such as annual precipitation, annual accumulated temperature, and annual sunshine 
duration, to explore the main impact factors for the interannual variation of the different areas.

As Fig. 4 shows, we obtained two maps showing the distribution of the impact factors. The Fig. 4(b) represents 
a positive correlation between NPP and meteorological factors, and Fig. 4(c) represents a negative correlation. 
Every pixel denotes the impact of all three meteorological factors through additive color synthesis of the three 
prime colors of red, green, and blue. The red represents the contribution of annual sunshine duration to NPP, 
green represents the contribution of annual precipitation, and blue represents the contribution of annual accu-
mulated temperature.

The three impact factors are evenly distributed in the central and south regions, but the NPP in the Huai River 
basin (Fig. 1, area 5) is positively correlated with annual sunshine duration and annual accumulated temperature, 
and negatively correlated with annual precipitation. For the northeast of China, the influences are even in the 
Daxing’an Mountains, the Xiaoxing’an Mountains, and the Changbai mountains (Fig. 1, area 6), while annual 
precipitation shows a positive correlation with NPP in the northeast plain. Both annual sunshine duration and 
annual accumulated temperature are positively correlated with NPP in the heavy industry areas such as Harbin, 
Changchun, and Shenyang (Fig. 1, area 7). For the Inner Mongolia steppe (Fig. 1, area 3), annual sunshine dura-
tion is positively correlated with NPP in the north-central region, while annual sunshine duration and annual 
accumulated temperature are negatively correlated with NPP in the central region. NPP shows a positive correla-
tion with annual sunshine duration and annual accumulated temperature in the Kunlun Mountains (the north of 
area 2 in Fig. 1) and a negative correlation with annual precipitation.

However, not only meteorological factors can influence NPP, but also human factors, through affecting the 
material circulation and energy flow of ecosystems and the land transformation caused by urbanization. We 
therefore divided the study area into four economic regions—eastern, middle, western, and northeastern—based 
on the divisions made by the 16th National Congress of China in 2002. The GRPs of the four regions show dif-
ferent trends depending on the different national strategy arrangements of the 11th Five Year Plan. Therefore, we 
compared the NPP pattern of the study area with the economic regionalization (Fig. 5).

As Fig. 5 shows, compared with the western and northeastern regions, the NPP of the central and eastern 
regions showed more significant fluctuations over the 12 years. The standard deviation of NPP for the central and 
eastern regions is 38.67 and 29.95, respectively, and the standard deviation of NPP for the western and north-
eastern regions is 14.87 and 11.46, respectively. For GRP, the eastern region showed the fastest rate of increase, 
whereas the northeastern region showed the slowest rate of increase. The western region and central region 

Figure 2. Comparison between the monthly model NPP and observed NPP for the NM, DX, and HB sites. 
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showed similar rates of change. We can see that there is a relationship between the economic growth rate and 
the fluctuation of NPP. The faster the rate of economic growth in a region, the more unstable its NPP, except for 
the central region, which showed the most significant fluctuations among the four economic regions, but only 
showed a low growth rate in GRP. To explore the different factors influencing the NPP, we used the three meteor-
ological factors mentioned above, plus GRP and population, to calculate the correlation with NPP.

Table 1 shows the correlation between NPP and the impact factors, with economic regionalization. This shows 
that NPP in the eastern region is positively correlated with annual solar radiation at the 5% significance level and 
is positively correlated with annual solar radiation at the 10% significance level in the central region, indicating 
that solar radiation promotes NPP in these regions, while NPP in the two regions shows a negative correlation 
with the growth rate of GRP. There is no significant correlation between precipitation and NPP in the western 
region, while Fig. 4 shows that NPP in the northwestern region is positively correlated with precipitation. The 
reason for this is down to the difference in vegetation types in the northwestern and southwestern regions, which 
together comprise the western economic region. Other than the northwestern region with semi-dry grassland 
and dry desert, the northwestern region with humid and semi-humid forest30 makes the main contribution to the 
NPP of the western economic region, so that the correlation of the western region is different from the northwest-
ern region. Because of the high latitude, the annual temperature is stable and low in the northeastern region, and 
has a negligible effect on the NPP of this region, which is also affected by pollution.

To assess the seasonal change of NPP, we chose the NPP of March to May as the “spring” NPP, the NPP of 
June to August as the “summer” NPP, the NPP of September to November as the “autumn” NPP, and the NPP of 

Figure 3. The evolution of NPP from 2001 to 2012. These figures were generated by ArcGIS for Desktop 10.0 
(http://desktop.arcgis.com), ENVI v4.8/IDL v8.0 (http://www.esrichina.com.cn/softwareproduct/EI/ENVI/), 
and the MODIS Reprojection Tool (http://lpdaac.usgs.gov/tools/modis_reprojection_tool).

http://desktop.arcgis.com
http://www.esrichina.com.cn/softwareproduct/EI/ENVI/
http://lpdaac.usgs.gov/tools/modis_reprojection_tool
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December to February of the next year as the “winter” NPP. The final seasonal NPPs included 12 spring, summer, 
and autumn NPPs, respectively, and 11 winter NPPs, which was enough to show the different changes in NPP 
among the four seasons of the year. As Fig. 6 shows, the seasonal evolution of NPP is very different to the annual 

Figure 4. The NPP and meteorological factors over 12 years. These figures were generated by ArcGIS 
for Desktop 10.0 (http://desktop.arcgis.com) and ENVI v4.8/IDL v8.0 (http://www.esrichina.com.cn/
softwareproduct/EI/ENVI/).

Figure 5. The NPP and GRP, with economic regionalization. 

Water Sun t GRP GRP rate Pop.

Northeast 0.38 − 0.22 − 0.01 0.07 0.1 0.13

East − 0.28 0.57** 0.23 − 0.34 − 0.61** − 0.27

West 0.11 0.13 − 0.08 0.38 0.1 0.39

Central 0.33 0.52* 0.43 − 0.39 − 0.56* − 0.37

Table 1.  The correlation between NPP and the impact factors, with economic regionalization. We used 
an F-test to assess the joint significance of the factors. **and *indicate significance at the 5% and 10% levels, 
respectively.

http://desktop.arcgis.com
http://www.esrichina.com.cn/softwareproduct/EI/ENVI/
http://www.esrichina.com.cn/softwareproduct/EI/ENVI/
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patterns depicted in Fig. 3. The NPP in the north of China has shown an increasing trend in spring over the 12 
years, while the NPP in northeastern China (Fig. 1, area 6) has shown a decreasing trend. What is more, a clear 
boundary can be observed from the southwest to the northeast in the study area in Fig. 6(a). Because of the dry 
desert in Xinjiang (Fig. 1, area 1), the NPP is zero in summer as the desert becomes even drier. This is similar 
to the NPP in the north of China in winter under cold temperatures, which also shows missing data at this time 
of year. In Fig. 6(b), it can be found that there are several areas with obvious increasing or decreasing trends in 
summer. One area with a significant increasing trend is the northeast plain (Fig. 1, area 7), which has the highest 
latitude in the whole study area, alongside heavy industry. Another area with a decreasing trend in summer is the 
Tibetan Plateau (Fig. 1, area 2).

We also calculated the average monthly NPP of the study area over the 12 years, which effectively eliminates 
the invalid pixels. The results shown in Fig. 7(a) indicate that the trends are different in every month. The monthly 
average NPP always achieves the highest values in June, July, and August each year, with a slight fluctuation at the 
end of the year. To explore the correlations between human factors and NPP more accurately, we extracted the 
NPP of the three highest-value months and plotted this against the growth rate of GRP over the 12 years.

Figure 6. The seasonal change of NPP from 2001 to 2012. These figures were generated by ArcGIS 
for Desktop 10.0 (http://desktop.arcgis.com) and ENVI v4.8/IDL v8.0 (http://www.esrichina.com.cn/
softwareproduct/EI/ENVI/).

Figure 7. The monthly change of NPP from 2001 to 2012. 

http://desktop.arcgis.com
http://www.esrichina.com.cn/softwareproduct/EI/ENVI/
http://www.esrichina.com.cn/softwareproduct/EI/ENVI/
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From Fig. 7(b), we can see that the NPP reaches a maximum in July, followed by August. Moreover, the NPP 
of the three months shows the same change trend over the 12 years, except for 2008. Based on the correlation 
between the growth rate of GRP and NPP, we can conclude that the increase of GRP has caused the decrease of 
NPP, which is consistent with the variation of NPP in June over the 12 years. In other words, the faster the econ-
omy develops, the lower the NPP in China, which can be considered as a warning that it is undesirable to develop 
the economy at the expense of the environment.

Conclusion
In this study, we determined the monthly NPP of terrestrial China, except for the southwest of Taiwan and the 
South China Sea Islands, based on the CASA model and meteorological datasets for the period of 2001 to 2012, 
which includes the period of the 10th Five Year Plan made by the 9th National People’s Congress and the 11th 
Five Year Plan made by the 10th National People’s Congress. We verified the model NPP precision by the use 
of a ChinaFLUX dataset (eight sites), and the average relative error was less than 20% for five of the eight sites. 
The model NPP of all eight sites was within the range of the NPP of terrestrial China given by Zhu and Pan29. 
The distribution of annual NPP which we obtained presented obvious geographical characteristics, presenting a 
decreasing trend with the increase of latitude and longitude and significant interannual variation in the north-
western region. We obtained the rate of variation by regression of the 12 years of NPP values, and we explored the 
distribution by a spatial distribution analysis. The NPP showed low variability in almost all parts of the central 
and southern regions, a slight downward trend in the northeastern industrial region (Fig. 1, area 7) and Kunlun 
Mountains (the north of area 2 in Fig. 1), and a slight upward trend in Inner Mongolia (Fig. 1, area 3) and the 
Xinjiang region (Fig. 1, area 1). We also determined the distribution of the correlation between the model NPP 
and the different meteorological factors. The NPP showed different responses to the change of climate in the 
different regions, which means that the dominant factors were different. We also divided the study area into four 
economic regions based on the national development program given in the 10th Five Year Plan in 2001. We then 
calculated the mean NPP of each economic region and analyzed the effect of both meteorological and human 
factors. It was found that NPP in the eastern and central regions was significantly positively correlated with 
annual solar radiation, while NPP in these two regions was significantly negatively correlated with the growth 
rate of GRP. As NPP has shown a steadily increasing trend in almost all areas over the 12 years, we can see the 
great importance attributed to ecological issues by the Chinese government when developing the economy. For 
a more precise analysis, we also calculated the seasonal NPP over the 12 years, it and was found that there was a 
significant amount of invalid data in the winter and summer because the NPP is often zero in these seasons. The 
seasonal evolution of NPP was also very different to the annual pattern. In addition, we calculated the average 
monthly NPP of the study area over the 12 years, and it was found that the NPP always achieves the highest val-
ues in June, July, and August each year, so we used the data from these three months to analyze the relationship 
between the growth rate of GRP and NPP. This analysis suggested that the GRP growth rate has caused the NPP 
fluctuation, and the higher the GRP growth rate, the lower the NPP.

References
1. Mitchell, J. F. B. The “greenhouse“effect and climate change. Reviews of Geophysics 27, 115–139 (1989).
2. Chapin, F. S. III, Matson, P. A. & Vitousek, P. Principles of terrestrial ecosystem ecology. Ch.5, 97–98 (Springer Science & Business 

Media, 2011).
3. Yuan, W. et al. Global estimates of evapotranspiration and gross primary production based on MODIS and global meteorology data. 

Remote Sensing of Environment 114, 1416–1431 (2010).
4. Edwards, nbsp & Nelson, T. Effects of Temperature and Moisture on Carbon Dioxide Evolution in a Mixed Deciduous Forest Floor. 

Soil Science Society of America Journal 39(2), 361–365 (1975).
5. Field, C. B., Randerson, J. T. & Malmström, C. M. Global net primary production: combining ecology and remote sensing. Remote 

sensing of Environment 51, 74–88 (1995).
6. Zhang, Q. Study on the Spatial-temporal Change Characteristics of Net Ecosystem Exchange(NEE) in China. Journal of Anhui 

Agricultural Sciences 37, 3108–3140 (2009).
7. Hazarika, M. K., Yasuoka, Y., Ito, A. & Dye, D. Estimation of net primary productivity by integrating remote sensing data with an 

ecosystem model. Remote Sensing of Environment 94, 298–310 (2005).
8. Haines, A. Climate Change 2001: The Scientific Basis. Contribution of Working Group 1 to the Third Assessment report of the 

Intergovernmental Panel on Climate Change. JT Houghton, Y Ding, DJ Griggs, M Noguer, PJ van der Winden, X Dai. Cambridge: 
Cambridge University Press, 2001, pp. 881, £ 34.95 (HB) ISBN: 0-21-01495-6; £ 90.00 (HB) ISBN: 0-521-80767-0. International 
Journal of Epidemiology 32, 321–321 (2003).

9. Zhu, W., Chen, Y., Dan, X. U. & Jing, L. I. Advances in terrestrial net primary productivity (NPP) estimation models. Chinese Journal 
of Ecology 24, 296–300 (2005).

10. Ruimy, A., Saugier, B. & Dedieu, G. Methodology for the estimation of terrestrial primary production from remotely sensed data. 
Journal of Geophysical Research Atmospheres 99, 5263–5284 (1994).

11. Bradford, J. B., Hicke, J. A. & Lauenroth, W. K. The relative importance of light-use efficiency modifications from environmental 
conditions and cultivation for estimation of large-scale net primary productivity. Remote Sensing of Environment 96, 246–255 
(2005).

12. Potter, C. S. et al. Terrestrial Ecosystem Production: A Process Model Based on Global Satellite and Surface Data. Global 
Biogeochemical Cycles 7, 811–841 (1993).

13. †, R. C. D., Medlyn, B. E. & Mcmurtrie, R. E. A mechanistic analysis of light and carbon use efficiencies. Plant Cell & Environment 
21, 573–588 (1998).

14. Waring, R. H., Landsberg, J. J. & Williams, M. Net primary production of forests: a constant fraction of gross primary production? 
Tree Physiology 18, 129–134 (1998).

15. Gifford, R. M. The Global Carbon Cycle: a Viewpoint on the Missing Sink. Australian Journal of Plant Physiology 21, 1–15 (1994).
16. Zhang, Y., Ming, X., Hua, C. & Adams, J. Global pattern of NPP to GPP ratio derived from MODIS data: effects of ecosystem type, 

geographical location and climate. Construction Economy 18, 280–290 (2009).
17. Zhang, Y. et al. Climate-driven global changes in carbon use efficiency. Global Ecology & Biogeography 23, 144–155 (2013).
18. Yu, G. R. et al. Overview of ChinaFLUX and evaluation of its eddy covariance measurement. Agricultural & Forest Meteorology 137, 

125–137 (2006).



www.nature.com/scientificreports/

1 0SCIENTIfIC REPORTS | 7:44415 | DOI: 10.1038/srep44415

19. DAAC, L. Land Cover Type Yearly L3 Global 500 m SIN Grid (MCD12Q1). Land Processes Distributed Active Archive Center  
(LP DAAC), located at the US Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center (lpdaac. usgs. 
gov), Sioux Falls. URL: https://lpdaac. usgs. gov/lpdaac/products/modis_products_table/land_cover/yearly_ l3_global_500_m/
mcd12q1 (2009).

20. Zhang, L. M. et al. Seasonal variations of ecosystem apparent quantum yield (alpha) and maximum photosynthesis rate (P-max) of 
different forest ecosystems in China. Agricultural & Forest Meteorology 137, 176–187 (2006).

21. Gao, Y. et al. A MODIS-based Photosynthetic Capacity Model to estimate gross primary production in Northern China and the 
Tibetan Plateau. Remote Sensing of Environment 148, 108–118 (2014).

22. Monteith, J. L. Solar Radiation and Productivity in Tropical Ecosystems. Journal of Applied Ecology 9, 747–766 (1972).
23. Dan, D. & Jian, N. I. Modeling changes of net primary productivity of karst vegetation in southwestern China using the CASA 

model. Acta Ecologica Sinica 123, 492–500 (2011).
24. Zhu, W. Estimation of Light Utilization Efficiency of Vegetation in China Based on GIS and RS. Editorial Board of Geomatics & 

Information Science of Wuhan University 29, 685–694 (2004).
25. Pang, J. P., Zong-Xue, X. U. & Liu, C. M. Weather Generator and Database in the SWAT Model. Journal of China Hydrology 27, 25–30 

(2007).
26. Zhu, W.-q. et al. Estimating net primary productivity of terrestrial vegetation based on GIS and RS: a case study in Inner Mongolia, 

China. Journal of Remote Sensing-Beijing 9, 300 (2005).
27. Juan, G. U., Xin, L. I., Huang, C. L., Zhang, X. F. & Jin, X. Simulating net primary productivity of Chinese terrestrial vegetation 

during 2002-2010. Journal of Lanzhou University 49, 203–213 (2013).
28. Field, C. B., Behrenfeld, M. J., Randerson, J. T. & Falkowski, P. Primary production of the biosphere: integrating terrestrial and 

oceanic components. Science 281, 237 (1998).
29. Zhu, W. Q. & Pan, Y. Z. Estimation of net primary productivity of chinese terrestrial vegetation based on remote sensing. Journal of 

Plant Ecology 31, 413–424 (2007).
30. Tian, G. & Zhi, Q. Assessing the impact of the urbanization process on net primary productivity in China in 1989–2000. 

Environmental Pollution 184, 320–326 (2014).

Acknowledgements
This research was supported in part by the Natural Science Foundation of China (No. 41471356), the Fundamental 
Research Funds for the Central Universities (2014ZDPY14), and the Priority Academic Program Development of 
Jiangsu Higher Education Institutions. The MCD12Q1 data from 2001 to 2012 were obtained from http://e4ftl01.
cr.usgs.gov/MOTA/MCD12Q1.051/, which is maintained by the NASA EOSDIS Land Processes Distributed 
Active Archive Center (LP DAAC) at the USGS/Earth Resources Observation and Science (EROS) Center, Sioux 
Falls, South Dakota. The data product for the image was produced by the NASA LP DAAC. The NDVI dataset 
was provided by the International Scientific & Technical Data Mirror Site, the Computer Network Information 
Center, Chinese Academy of Sciences. (http://www.gscloud.cn). The map of China was downloaded from the 
website of the National Earth System Science Data Sharing Infrastructure of China (http://www.geodata.cn).

Author Contributions
P.D. and K.T. conceived the idea; B.C. and X.W. conducted the experiments and analyzed the results; K.T. and 
X.W. wrote the main manuscript text. All authors reviewed the manuscript.

Additional Information
Competing Interests: The authors declare no competing financial interests.
How to cite this article: Wang, X. et al. Assessing the Spatiotemporal Variation and Impact Factors of Net 
Primary Productivity in China. Sci. Rep. 7, 44415; doi: 10.1038/srep44415 (2017).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2017

https://lpdaac. usgs. gov/lpdaac/products/modis_products_table/land_cover/yearly_ l3:global_500_m/mcd12q1
https://lpdaac. usgs. gov/lpdaac/products/modis_products_table/land_cover/yearly_ l3:global_500_m/mcd12q1
http://e4ftl01.cr.usgs.gov/MOTA/MCD12Q1.051/
http://e4ftl01.cr.usgs.gov/MOTA/MCD12Q1.051/
http://www.gscloud.cn
http://www.geodata.cn
http://creativecommons.org/licenses/by/4.0/

	Assessing the Spatiotemporal Variation and Impact Factors of Net Primary Productivity in China
	Introduction
	Methods
	Data
	CASA model
	Light utilization efficiency (LUE)
	Pearson correlation coefficient

	Results and Discussion
	Verification of the results by ChinaFlux data
	The spatiotemporal variation and impact factors of NPP

	Conclusion
	Additional Information
	Acknowledgements
	References




