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Quantitative analysis of 
the impacts of terrestrial 
environmental factors on 
precipitation variation over the 
Beibu Gulf Economic Zone in 
Coastal Southwest China
Yinjun Zhao1,2, Qiyu Deng2, Qing Lin1 & Chunting Cai2

Taking the Guangxi Beibu Gulf Economic Zone as the study area, this paper utilizes the geographical 
detector model to quantify the feedback effects from the terrestrial environment on precipitation 
variation from 1985 to 2010 with a comprehensive consideration of natural factors (forest coverage 
rate, vegetation type, terrain, terrestrial ecosystem types, land use and land cover change) and 
social factors (population density, farmland rate, GDP and urbanization rate). First, we found that 
the precipitation trend rate in the Beibu Gulf Economic Zone is between −47 and 96 mm/10a. 
Second, forest coverage rate change (FCRC), urbanization rate change (URC), GDP change (GDPC) 
and population density change (PDC) have a larger contribution to precipitation change through 
land-surface feedback, which makes them the leading factors. Third, the human element is found to 
primarily account for the precipitation changes in this region, as humans are the active media linking 
and enhancing these impact factors. Finally, it can be concluded that the interaction of impact factor 
pairs has a significant effect compared to the corresponding single factor on precipitation changes. The 
geographical detector model offers an analytical framework to reveal the terrestrial factors affecting 
the precipitation change, which gives direction for future work on regional climate modeling and 
analyses.

Climate change has been a topic of worldwide concern in recent years. Precipitation is the most active parameter 
of all the meteorological elements. A large number of studies show that precipitation exhibits change in many 
areas1,2. Precipitation change caused by the anomalous change of atmospheric circulation is a very complicated 
phenomenon, which is primarily the result of internal adjustment of the atmosphere itself. However, in terms 
of the regional scale, the terrestrial environment will respond to precipitation change through land-atmosphere 
interactions. It should be noted that, to some extent, terrestrial environment impact is comparable to atmospheric 
circulation and solar radiation.

The terrestrial environment primarily includes natural (vegetation coverage, vegetation type, terrain and ter-
restrial ecosystem type) and social (human activities) factors. Vegetation coverage impacts the climate through 
its effect on surface albedo3, etc. Compared to surrounding areas, the ground vegetation properties in the region, 
such as surface albedo, roughness and soil humidity, have a large variation that would influence local thermal 
and moisture conditions. This, in turn, changes local precipitation through atmospheric circulation on a small 
to medium scale. Previous research showed that precipitation can increase4–6 with the growth of forest coverage. 
Different vegetation types also have distinct impacts on the surrounding climate7. For example, a coniferous 
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broad-leaved forest and its analogues have a greater impact than other vegetation types on the change of the aver-
age annual precipitation trend8. The terrain will affect the entire atmosphere precipitation system9. The slope, alti-
tude, latitude and other similar factors will directly affect the precipitation by changing the regional atmospheric 
circulation10,11. The terrestrial ecosystem influences the concentration of greenhouse gases and aerosols in the 
atmosphere, thus affecting climate change through the energy balance between the ground and the atmosphere, 
the interaction of water vapor exchange and the biogeochemical cycle12. At the same time, the ecosystem would 
respond to the climate change13,14, namely, both climate interactions have mutual effects. Human activities, such 
as agricultural irrigation15–21 and urbanization22,23, directly or indirectly exert some impact on the precipitation 
distribution by changing regional underlying surface hydrothermal conditions to affect atmospheric circulation. 
For example, urbanization in Guangzhou accounts for 44.7% of the significant precipitation growth since 199124; 
irrigation increases precipitation while decreasing the daily average and maximum air temperatures25,26.

Most of the aforementioned researches have analyzed the change in the characteristics, temporal-spatial 
trends and impact factors of precipitation (climate) in a certain area27–33; however, these researches are lacking 
quantitative analysis on the combined effects of multiple important factors under a unified analysis framework. 
Based on the spatial variation theory, the geographical detector model34 was used initially for evaluating the rela-
tionship between health and suspicious pathogenic factors. It can measure the spatial consistency and statistical 
significance between health risk and geographical elements and determine the effectiveness of the spatial correla-
tion without many assumptions. It also effectively overcomes the limitations of processing category variables that 
exist in the traditional statistical analysis method35. Thus, the application of the geographical detector model has 
been gradually extended to other areas, such as resources and the environment35–41, for quantitative analysis of 
the mutual relationship between the factor and result variables42,43. It should be mentioned that the geographical 
detector model has never been utilized to provide an analysis framework in order to study precipitation change.

Therefore, this paper attempts to answer the following questions: First, what is the major determinant affecting 
precipitation change? Second, does each factor affect precipitation change independently or interactively? Third, 
what is the relative importance of these affecting factors? The Guangxi Beibu Gulf Economic Zone was selected as 
the case study in this research. The Guangxi Beibu Gulf Economic Zone is located in the southwest China coast 
and consists of the administrative regions of Nanning, Beihai, Qinzhou, Fangchenggang, Yulin, and Chongzuo 
city (Fig. 1). The land area covers 425,000 km2. The Beibu Gulf Economic Zone is located south of the Tropic of 
Cancer and is a subtropical maritime monsoon climate zone with transitional characteristics from tropical to 
subtropical. The annual average temperature ranges between 21.5 °C and 23.4 °C, while the average daily temper-
ature stabilizes above 10 °C. The multi-year average precipitation ranges between 1251.27 mm and 2717.87 mm. 
The Dongxing-Qinzhou region on the southeast of Shiwan Dashan Mountain is one of the three rainy districts in 
Guangxi. The precipitation amount during flood season, generally from April to September, accounts for 80% of 
the annual precipitation, with peak precipitation occurring in July and August.

Results and Interpretation
Precipitation change in the Beibu Gulf Economic Zone. The precipitation trend of each meteorolog-
ical observation (88 total meteorological observatories in Guangxi Province) was calculated from annual pre-
cipitation for the period of 1985~2010 using Equation (1). Linear trends indicate that 76% of the meteorological 
stations show a positive trend in annual precipitation during 1985–2010, and notably, five of them are statistically 
significant at the 90% confidence level (see Supplementary Table S1, Fig. S1). The other 24% of the meteorological 
stations show a negative trend (see Supplementary Table S1). A station-by-station analysis was performed and 
mapped using ArcGIS 10.1 with the Empirical Bayesian Kriging interpolation method in order to explore spatial 
patterns of precipitation changes in Guangxi Province. Then, the precipitation changes in the Guangxi Beibu Gulf 
Economic Zone were clipped and are shown in Fig. 2. This might be better than using direct interpolation of fewer 
meteorological observatories from the Guangxi Beibu Gulf Economic Zone, especially in the border area, because 
of the regional characteristics of precipitation.

Index Terrestrial environmental factors Factor codes PD,H values Remarks

Precipitation 
trend rate

Forest coverage rate change FCRC 50.3% Natural impact

Urbanization rate change URC 47.3% Social impact

GDP change GDPC 43.5% Social impact

Farmland rate change FRC 35.2% Social impact

Population density change PDC 27.4% Social impact

Vegetation type VT 10.0% Natural impact

DEM DEM 7.3% Natural impact

Geomorphic type GT 2.4% Natural impact

Gradient GRD 0.8% Natural impact

Aspect ASP 0.4% Natural impact

Land use and land cover change LUCC 0.3% Social impact

Terrestrial ecosystem type TET 0.1% Natural impact

Table 1.  Sorting of the terrestrial environmental factors and their PD,H values relating to precipitation 
change.
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Figure 2 shows that the precipitation trend rate of the Beibu Gulf Economic Zone is between − 47 and 
96 mm/10a. The character of the spatial precipitation change is primarily in the northwest-southeast direction. 
The low value zones are located in the southwest Beibu Gulf Economic Zone, while the high values are located 
in the northeast. The figure also shows that the precipitation changes in the middle zone are relatively lower than 
those in the neighboring south and north areas. A relative increasing precipitation trend from south to north is 
observed as a whole. We also found two zero lines of precipitation change in the middle and southwest zone of 
the Beibu Gulf Economic Zone.

According to Li & Su’s research, the Mann-Kendall mutability test found that precipitation in Guangxi 
Province had sudden changes in the years of 1984 and 1994. Specifically, from 1984 to 1994, Guangxi Province 
had less rain, while beginning in 1994, Guangxi Province entered into a relatively pluvial period44. Existing 
research also shows that there was a positive trend center of precipitation in northwest Guangxi. Therefore, in 
general, the linear trend is increasing.

The feedback of terrestrial environmental factors to precipitation change. The leading factors 
of precipitation change. The factor detector ranked the terrestrial environment layers by their influences (PD,H 
values) on precipitation change in the following order for the study area (Table 1):

FCRC (50.3%) >  URC (47.3%) >  GDPC (43.5%) >  FRC (35.2%) >  PDC (27.4%) >  VT (10.0%) >  DEM 
(7.3%) >  GT (2.4%) >  GRD (0.8%) >  ASP (0.4%) >  LUCC (0.3%) >  TET (0.1%).

Among the terrestrial environmental factors, the PD,H value of FCRC is the maximum. Obviously, there is a 
large break in sorted PD,H values between PDC and VT. The PD,H values of FCRC, URC, GDPC, FRC and PDC 
are in a group with high values and small differences, while the rest of the factors belong to another group with 
lower values. In a general sense, if the PD,H value of a factor is larger than 0.2(20%), then the factor can be regarded 
as a leading factor39 that strongly explains the spatial pattern. Therefore, FCRC, URC, GDPC, FRC and PDC are 
potential leading factors that may exert the largest impact on precipitation change (spatial pattern) in this study 

Figure 1. Location map for the study area showing the 29 meteorological observatories selected from 88 
meteorological observatories located in Guangxi Province. It was generated by ArcGIS10.1(http://www.
esrichina.com.cn/softwareproduct/ArcGIS/); the locations of the meteorological observatories were obtained 
from the China meteorological data network (http://data.cma.cn).

http://www.esrichina.com.cn/softwareproduct/ArcGIS/
http://www.esrichina.com.cn/softwareproduct/ArcGIS/
http://data.cma.cn


www.nature.com/scientificreports/

4SCiEnTifiC REpoRTS | 7:44412 | DOI: 10.1038/srep44412

area. In contrast, the values of VT, DEM, GT, GRD, ASP, LUCC and TET are comparatively small at less than 
0.1(10%), which likely reflects their smaller contributions to the precipitation trend (spatial pattern).

The ecological detector (Table 2) shows the differences of the PD,H values. Among the five potential leading 
factors (FCRC, URC, GDPC, FRC and PDC), approximately 80% of them (FCRC, URC, GDPC and PDC) are 
not statistically significant with each other, whereas statistically significant differences between FRC and other 
potential leading factors (URC and GDPC) were found. That is, URC and GDPC have a larger significant effect on 
the precipitation change than FRC. With the factor detector and the ecological detector, we concluded that FCRC, 
URC, GDPC and PDC are leading factors, and FRC was eliminated from the potential leading factors. Therefore, 
FCRC, URC, GDPC and PDC have the largest contribution to the precipitation change, whereas the remaining 
factors have a relatively weak influence.

Figure 2. The spatial distribution of precipitation changes in the study area. It was generated using ArcGIS 
10.1 (http://www.esrichina.com.cn/softwareproduct/ArcGIS/).

Difference FCRC URC GDPC FRC PDC VT DEM GT GRD ASP LUCC TET

FCRC

URC N

GDPC N N

FRC N Y Y

PDC N N N N

VT N N N N N

DEM N N N N N Y

GT N N N N N Y N

GRD N N N N N Y N N

ASP N N N N N Y N N N

LUCC N N N N N N N N N N

TET N N N N N Y N N N N N

Table 2.  Statistically significant difference of influence factors on precipitation change. Y means the 
difference of the influence between the two factors is significant with a confidence of 95%, while N means no 
significant difference.

http://www.esrichina.com.cn/softwareproduct/ArcGIS/
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In view of the above considerations, we also found that the power of social factors is much larger than that of 
natural factors in changing precipitation in the study area. This can be seen from the leading factors (FCRC, URC, 
GDPC and PDC) and whole sorting of the PD,H values, which means that people are likely to be a very powerful 
factor in changing the terrestrial environment to influence local precipitation on a regional scale.

On the surface, FCRC is the first leading natural factor. However, the increase of forest coverage rate change in 
the study area is predominantly due to ecological construction for tourism and sustainable development in recent 
years. The forest coverage rate change of this study area is higher than the rate of other places in China and occurs 
in a sustainable growth manner. The Shiwan Dashan National Forest Park and the Daming Mountain National 
Natural Reserve are located in this research area. Some research has already highlighted that the significant role 
of precipitation may increase or decrease alongside afforestation4–6 or deforestation.

The Guangxi Beibu Gulf Economic Zone is the first international regional economic cooperation zone in 
China. According to the statistics, the population of this region was 15.81 million in 1985 and rose by 43 percent 
to 22.68 million in 2010. The GDP of this region increased from 8.3 billion Yuan (RMB) to 412.1 trillion Yuan 
(RMB) between 1985 and 2010, which is a huge growth of 49.37 times the initial GDP. With the sustainable 
growth of population and the increasing development of the economy, the GDP, the population density, urbani-
zation, construction activities, energy consumption and greenhouse gas emissions have experienced a relatively 
rapid growth in the Beibu Gulf Economic Zone, and among them, the GDP growth rate is the largest.

The urbanization levels of both Nanning City and Beihai City are over 55%. In contrast, Guangxi has a rela-
tively extensive development model for their economy, with an energy consumption per unit of GDP of 1.036 tons 
of standard coal per ten thousand Yuan (2010), which is 1.28 times the national average of 0.81 tons of standard 
coal per ten thousand Yuan. A large amount of energy consumption emits a large amount of greenhouse gas, 
such as carbon dioxide, which is the main source45 of carbon emissions. This greatly influences the climate of this 
region and possibly the climate on a larger regional scale. Urbanization is a comprehensive process, which will 
influence a city’s precipitation, temperature, humidity, visibility and wind, forming a special local meteorological 
environment and causing material climate changes. The GDP may actually be viewed as a comprehensive result 
of many human activities. The increase of population density leads to an increase of artificial thermal discharge, 
directly influencing the change of surficial sensible heat flux, which will influence precipitation significantly46. In 
addition, approximately 45% of China’s farmland is irrigated farmland47, whereas Guangxi Province has a higher 
percentage. The PD,H value of FRC on precipitation change is 35.3% (much higher than 20%). This occurs mainly 
because the heavy irrigation of farmland affects the distribution of surface net radiation between latent heat flux 
and sensible heat flux change (latent heat flux increases, but sensible heat flux decreases), and farm irrigation 
has a cooling effect on the earth’s surface; at the same time, the increase of soil humidity enhances transpiration 
and further increases the moisture content in the atmosphere and the unstable energy of latent heat, leading 
to an increase of convective precipitation48 and producing a marked effect on the region’s precipitation. This 
finding is supported by other cases. Irrigation over the Ogallala Aquifer in the central United States increased 
dramatically over the 20th century and has enhanced regional precipitation49. The precipitation increase in the 
Texas Panhandle from 1952 to 1980 was obviously due to the increase in the irrigation area25. On the other hand, 
the amount of precipitation in central and southern India decreased due to a lower surface temperature over the 
irrigated areas of India in July26.

The Beibu Gulf Economic Zone is a relatively small area, which is on a small scale compared to the majority 
of research on precipitation. In the region, the DEM, geomorphic type, slope aspect, gradient, ecosystem and 
vegetation form are similar or experience less change, so they probably have a weak effect on precipitation change.

The effect of the interaction of terrestrial environmental factors on precipitation change. The interaction detector 
was used to check whether or not two factors work independently. The joint impacts of two factors measured by 
the PD,H values are shown in Table 3 and Table S2 and can be compared with their separate impacts.

It must be noted from Table S2 that the PD,H values of 22 interactive pairs are greater than that of the primary 
leading factor (FCRC). The max PD,H value comes from interaction of FRC with GDPC (FRC ∩  GDPC =  84.4%). 
Specifically, all the interactive effects between FCRC and the rest of the factors (FCRC ∩  GDPC =  83.1%, 

Interaction FCRC URC GDPC FRC PDC VT DEM GT GRD ASP LUCC TET

FCRC

URC B

GDPC B B

FRC B B A

PDC B B B A

VT B B A A A

DEM B A A A A A

GT A A A A A A A

GRD A A A A A A A B

ASP A A A A A A A A A

LUCC A A A A A A A A A A

TET A A A A A A A A A A A

Table 3.  Effects of interactions (measured by the PD,H value)between pairs of factors on precipitation 
changes. A means nonlinear enhancement and B means bienhancement.
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FCRC ∩   FRC =   76.5%, FCRC ∩   URC =   74.1%, FCRC ∩   PDC =   75.0%, FCRC ∩   DEM =   57.3%, 
FCRC ∩  GRD =  53.6%, FCRC ∩  ASP =  50.9%, FCRC ∩  TET =  51.0%, FCRC ∩  GT =  54.8%, FCRC ∩  VT =  59.8%, 
FCRC ∩  LUCC =  51.0%) are stronger than the effect of the single FCRC (50.3%, the strongest effect on precipita-
tion changes). We found that FCRC interacting with any other factors is always enhanced. Similarly, all the inter-
action effects between URC and the rest of the factors are higher than the single URC (47.3%) effect. Even of those 
factors with the lowest PD,H values, interactions between them enhance their separate effects on precipitation 
changes. In general, all interactive pairs of impact factors showed enhanced results compared to the correspond-
ing single factor, and among them, 45 interactive pairs have PD,H values larger than 0.2 (20%).

The top PD,H values of interactive pairs are FRC ∩   GDPC =   84.4%, FCRC ∩   GDPC =   83.1%, 
FRC ∩   URC =   77.0%, FCRC ∩   FRC =   76.5%, FCRC ∩   PDC =   75.0%, FCRC ∩   URC =   74.1%, 
URC ∩  GDPC =  72.3%, URC ∩  PDC =  71.0%, FRC ∩  PDC =  70.1% and GDPC ∩  PDC =  70.0%, and all of them 
are larger than 70%. We thought that FCRC is also a social factor because FCRC is mainly due to human ecolog-
ical construction. Therefore, these factors are all social factors, and it clearly implies that humans are the most 
important aspect in changing precipitation (similar to the analysis of leading factors) in this region via economic 
activities such as urban construction, afforestation, changing and developing hillside fields, irrigation and planta-
tion. Under the high pressure of growing population and development, humans are the best medium compared to 
other natural factors to change and affect the spatial distribution of other factors according to their purposes, and 
with the development of science and technology, this situation is amplified. For example, large-scale afforestation 
in the northern mid-latitudes warms the Northern Hemisphere and alters global circulation patterns to redistrib-
ute the anomalous energy absorbed in the northern hemisphere, which results in a precipitation decrease over 
parts of the Amazon basin and an increase over the Sahel and Sahara regions in Africa50.

In addition to the above mentioned, we also noted that interactions between social factors and natural fac-
tors have two types: nonlinear enhancement and bienhancement (Table 3). Each type indicates that the factors 
bienhance or nonlinearly enhance each other. As shown in Table 3, the interactions between social factors and 
natural factors have predominantly strong, nonlinear synergies. For example, the interactions of PDC and DEM 
(PD ∩  DEM =  40.3% >  34.7% =  PDC (27.4%) +  DEM (7.3%)) are larger than the PD,H value sum of PDC and 
DEM; therefore, the interaction between PDC and DEM has a larger impact on precipitation changes. This is 
likely due to the city and farmland expansion toward a relatively bad condition of DEM that changes the under-
lying surface conditions. It also indicates that social factors and natural factors have synergies and can enhance 
each other’s effect on precipitation change.

In conclusion, social factors have a larger impact on the precipitation change compared to natural factors. 
Partial natural factors have a relatively small impact on precipitation change but show a strong synergy with the 
interaction of other factors. The feedback of terrestrial environmental factors on precipitation change mainly 
arises from interactions of impact factors and interactive pairs of impact factors, which have a larger influence 
on precipitation change than the single factor does through the feedback. Interactions between factors play an 
important role in the precipitation change in this region.

Regional analysis of the leading impact range (type) of leading factors on precipitation change. The risk detec-
tor shows that the average precipitation change in the different FCRC zones (from I to VI) are − 0.66 mm/10a, 
− 9.98 mm/10a, 53.18 mm/10a, 6.88 mm/10a, 23.48 mm/10a and 11.66 mm/10a, respectively, and they are signif-
icantly different. It also implies that precipitation will increase or decrease with the increase or decrease of forest 
coverage. However, higher precipitation change is not consistent with a larger FCRC zone, and precipitation 
change fluctuates with FCRC values. A similar analysis of other terrestrial environmental factors can be con-
ducted using the risk detector. The small and continued growth of annual urbanization rates will lead to a large 
increase in annual precipitation. The main impact ranges of FCRC, URC, GDPC and PDC tend to be located at 
the relatively low-middle value zones. We selected the largest types (ranges) of each leading factor as the main 
impact types (ranges) by sorting the average precipitation change. The main impact types (range) are tabulated in 
Table 4 and mapped in Fig. 3.

From Table 4, we can see that the main impact types (ranges) of FCRC, URC, GDPC and PDC are 
0.7411~4.7979%/10a, − 7.7920~2.5006%/10a, 87824~128190ten thousand yuan/10a or 276670~399510ten thou-
sand yuan/10a, and 36.81~52.33person/km2/10a, respectively. This means that these ranges probably have more 
contributions to local zones’ precipitation changes.

As shown in Fig. 3, the leading impact type or range of each leading factor on precipitation change is pre-
dominantly located in the northeast-southeast of the Beibu Gulf Economic Zone. This indicates that the largest 
precipitation change is in the northeast-southeast of the Beibu Gulf Economic Zone, and the range of the precipi-
tation trend rate is between 39 and 96 mm/ 10a (Fig. 3). Therefore, the main distribution areas of the main impact 

Index Leading factors

Impact type (range) of leading factors Mean value of 
Precipitation changeGrade of Types Values

Precipitation trend 
rate (mm/10a)

FCRC (%/10a) I 0.7411~4.7979 53.18

URC (%/10a) I~II − 7.7920~2.5006 41.42~41.54

GDPC (ten thousand yuan/10a)
I 87824~128190 50.33

IV 276670~399510 49.34

PDC (person/km2/10a) VI 36.81~52.33 41.97

Table 4.  Main impact ranges of social factors on precipitation change in the study area.
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range (type) of the leading factors on precipitation revealed by the results of the risk detector are consistent with 
the distribution of the relatively large area of precipitation change trend rate calculated by the linear regression 
model. This illustrates the flexibility of applying the geographical detector model to obtaining initial detection 
results of the precipitation change mechanism. Figure 3 shows that the precipitation change for the county of 
Rongxian is strongly controlled by FCRC, URC and PDC. According to the interaction detector, we also found 
that the PD,Hvalues of FCRC ∩  URC (74.1%), FCRC ∩  PDC (75.0%), and URC ∩  PDC (71.0%) are very high and 
enhance each other to increase precipitation change, which emphasizes directions for future work. In conclusion, 
the largest precipitation change is present in the northeast-southeast region of the Beibu Gulf Economic Zone and 
is predominantly influenced by the interactions of factors such as FCRC, URC, GDPC and PDC.

Conclusions and Discussion
The causes of precipitation changes are very complicated due to the interaction of the land surface with the 
atmosphere. In addition, the research resources, such as shared data, are limited in developing countries, creating 
a high demand for useful detecting and/or analyzing tools. In this study, we used geographical detectors to verify 
the effects of some of the natural and social factors on precipitation change at a regional scale. We believe that 
this program is unique because it extracts the interrelationships between precipitation change and terrestrial 
environmental factors using the correspondence of their spatial distribution and, most importantly, because it is 
easily implemented.

The feedback of terrestrial environment to precipitation changes can be partially explained by forest cover, 
urbanization, terrain, irrigation and other single factors. Typically, the comprehensive consequences are the result 
of interactions of multiple factors. In this study, we found the following:

1. The precipitation trend rate of the Beibu Gulf Economic Zone is between − 47 mm/10a and 96 mm/10a. The 
minimum and maximum values occur in the southwest and northeast of the Beibu Gulf Economic Zone, 
respectively.

2. The results found by the factor detector and the ecological detector show that FCRC, URC, GDPC and PDC, 
as the leading factors of precipitation change, have a relatively large contribution to the precipitation changes.

3. The interaction of pairs of impact factors has far larger effects than the corresponding single factor does on 
precipitation changes.

4. The precipitation change is predominantly due to human factors, and thus, humans act as an active media 
linking and enhancing the other impact factors.

5. The results of the risk detector show that the main impact types (ranges) of the leading factors of FCRC, URC, 
GDPC and PDC on precipitation change are 0.7411~4.7979%/10a, − 7.7920~2.5006%/10a, 87824~128190ten 
thousand yuan/10a or 276670~399510ten thousand yuan/10a, and 36.81~52.33person/km2/10a, respectively.

Figure 3. Distribution map of the leading impact type or range of each leading factor on precipitation 
change in the study area. The map was generated using ArcGIS 10.1 (http://www.esrichina.com.cn/
softwareproduct/ArcGIS/).

http://www.esrichina.com.cn/softwareproduct/ArcGIS/
http://www.esrichina.com.cn/softwareproduct/ArcGIS/
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Our research suggests that the geographical detector offers a quantitative and objective analytical framework 
that could be used to find the essence of many geosciences phenomena. There are still several aspects for future 
study. First, spatial scale transformation is an important aspect of geographical detectors. Transforming the 
administrative regions into the same grid cells might be subjective, as the grid size can have different values. We 
also found that discretization methods to classify continuous variables into several categories might affect the 
results because these methods do not currently have standardized rules. Second, due to the limitation of range 
and data accessibility in this study area, quantitative analysis was not conducted overall based on impact factors 
in this study. Third, the main impact ranges of leading factors (FCRC, URC, GDPC and PDC) fluctuated with 
precipitation change, and the largest precipitation change is typically only consistent with the smallest range of 
URC. In the future, threshold values of the main impact ranges can be overcome by collaboration with climate 
models. This is likely a better way to integrate geographical detectors with traditional meteorology methods to 
discover the precipitation change mechanism.

Despite some limitations, we still believe that this study will be meaningful. The geographical detectors are 
statistical and are not a causality tool; however, they can distinguish high potential impact factors and leading fac-
tor ranges to emphasize the next step in research. The results from this study can help researchers to understand 
the spatial pattern of precipitation change with impact factors and provide clues for further studies by integrating 
traditional observation, simulation, contrast testing, etc.

Materials and Methods
Research methods. Trend rate. Tests for trend detection of the climatic element in a time series can be 
classified as parametric and non-parametric methods (e.g., the Mann-Kendall test). The linear regression method 
is a very simple and common parametric method51, and the trend rate method generally adopts the unitary linear 
regression model, that is:

= +y a bx (1)

where y represents a climatic element or other sequence (e.g., precipitation); x represents a yearly time series 
(from 1985 to 2010); and b represents a linear trend term, the value of which is a linear trend rate, in mm/10a.

Geographic detector model. Geographical detectors are composed of the factor detector, ecological detector, risk 
detector and interaction detector34,43. Factors significantly affecting precipitation change can be selected as the 
leading factors through analysis using the factor detector and ecological detector models; the risk detector can 
further analyze leading impact types or scopes (confidence level of 95%) of impact factors that significantly affect 
precipitation change; and the interaction detector can analyze the interaction among various factors. The core 
concept of the factor detector is as follows: there is certain differentiation of the factors affecting the development 
of geographical phenomenon in space. If a certain factor has a remarkable consistency with the change of that 
geographical phenomenon in space, then the factor will have a definite determinant power on the occurrence 
and development of a geographical phenomenon34, measured by the size of the power determinant value (PD,H). 
Details of the geographical detector can be found in the original paper34. Here, in our research context, the calcu-
lation model for detecting impact factors of precipitation change in the Beibu Gulf Economic Zone is reviewed 
as follows:

We assume that precipitation change would present a spatial distribution similar to that of an impact factor if 
the impact factor leads to the change of precipitation (see Supplementary Fig. S2). All impact factors are quanti-
fied by these power values as follows:

∑
σ

σ= − ⋅
=

P
n

n1 1 ( )
(2)

D
H i

m

D i H,H 2
1

,
2

D,i

In equation (2), D represents an impact factor layer (e.g., DEM or slope) that must already be categorized (e.g., 
DEM values can be categorized into eight categories); m is the number of zones (categories) of the factor D 
(D =  {D1,D2,D3, … , Dm}); H represents the precipitation trend rate; PD,H represents the power of determinant D 
on H; n and σH

2  represent the number of total samples and the global variance of H over the entire study area, 
respectively; nD i,  and σH

2
D,i

 represent the number of samples in the i-th sub-regions of D (layer D) and the variance 
of H over the i-th sub-regions of D, respectively; and = ∑ =n ni

m
0 D,i. If it is a perfect division and local variance is 

0 (assuming σH
2≠ 0), then PD,H= 1. In general, the value range of PD,His [0, 1]34,41. PD,H= 1 means that the impact 

factor stratum completely explains the spatial precipitation change, whereas PD,H= 0 implies a completely random 
spatial occurrence of the precipitation change.

The ecological detector compares which suspected impact factor (e.g., C factor) determinant is more signif-
icant than the other (e.g., D factor) in causing precipitation change in the study area. This is measured using the 
F-test:

σ

σ
=

−

−

n n
n n

F
( 1)
( 1) (3)

C p C p C m

D p D p D m
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2

, , ,
2

In equation (3), F is the test value of F, nC,p and nD,p denote the number of samples of impact factors C and D 
in sample unit p, respectively, and σC,m

2  and σD,m
2  are dispersion variances of impact factors C and D, respectively. 

The null hypothesis is H0 : σC,m
2  =  σD,m

2 . If H0 is rejected conditioned on a significant level α  (usually 5%), we con-
clude that the impact factor C is more significant than the impact factor D in affecting precipitation change.



www.nature.com/scientificreports/

9SCiEnTifiC REpoRTS | 7:44412 | DOI: 10.1038/srep44412

Figure 4. Spatial distribution of potential natural factors in the study area. This map was generated by 
ArcGIS 10.1 (http://www.esrichina.com.cn/softwareproduct/ArcGIS/). (a) DEM with the sea-level elevation 
data at the resolution of 90 m of SRTM, which was divided into 8 types through QV; (b) Gradient data results 
obtained from the gradient analysis on DEM in ArcGIS, which was divided into 7 types through QV; (c) Aspect 
map results from the analysis of aspect on DEM in ArcGIS, which was divided into 8 types through NB;  
(d) Geomorphic type derived from a 1: 1,000,000 geomorphic map at the spatial resolution of 1000 * 1000 m; 
(e) Data of the terrestrial ecosystem type were derived from spatial distribution data of the Chinese terrestrial 
ecosystem types at the spatial resolution of 1000 * 1000 m; (f) Forest coverage rate change was calculated 
through Equation (1), and then, the trend of the forest coverage rate of each county (b value) was mapped and 
classified into 6 types through NB; (g) Data of the vegetation types were derived from a 1: 1,000,000 vegetation 
map at the spatial resolution of 1000 * 1000 m.

http://www.esrichina.com.cn/softwareproduct/ArcGIS/
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Figure 5. Spatial distribution map of the potential social factors in the study area. This map was generated 
by ArcGIS 10.1. (http://www.esrichina.com.cn/softwareproduct/ArcGIS/). (a) Population density change was 
calculated using Equation (1), and then, the trend of the annual population density of each county from 1985 
to 2010 (b value) was mapped and classified into 8 types through QV; (b) GDP change was calculated using 
Equation (1), and then, the trend of the annual GDP of each county from 1985 to 2010 (b value) was mapped and 
divided into 8 types through QV; (c) Farmland rate change was calculated using Equation (1), and then, the trend 
of the annual farmland rate of each county from 1985 to 2010 (b value) was mapped and divided into 8 types 
through QV; (d) Urbanization rate change was calculated using Equation (1), and then, the trend of the annual 
urbanization rate of each county from 1985 to 2010 (b value) was mapped and divided into 6 types through GI;  
(e) Landuse and landcover change was derived from the subtraction of land use maps between the 1980 s and 2010.

http://www.esrichina.com.cn/softwareproduct/ArcGIS/
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Different types or ranges of an impact factor have different influences on precipitation change. The risk detec-
tor compares the differences through the t-test. The computational formula is as follows:

σ σ
=

−


 + 



t
R R

n n/ / (4)
ij

i j

i i j j
2 2 1/2

In equation (4), tij is the test value of t; Ri and Rj are average values of the precipitation tendency rate over 
property i and property j of the impact factor R; σi

2 and σ j
2 are the variances of the precipitation tendency rate from 

property i and property j, respectively; and ni and nj are the sample sizes of the two properties.
The interaction detector shows that when the two different factors of x and y are combined, they either 

weaken or enhance each another or they are independent in changing precipitation, determined by comparing 
PD,H(x ∩  y) with the values of PD,H(x) and PD,H(y), where the symbol ‘ ∩  ’ denotes the intersection between the 
x layer and y layer. If PD,H(x ∩  y) <  min (PD,H(x), PD,H(y)), the variables nonlinearly weaken each other; if min 
(PD,H(x), PD,H(y)) <  PD,H(x ∩  y) <  max (PD,H(x), PD,H(y)), the variables uniweaken each other; if PD,H(x ∩  y) >  max 
(PD,H(x), PD,H(y)), the variables bienhance each other; and if PD,H(x ∩  y) >  PD,H(x) +  PD,H(y), the variables non-
linearly enhance each other. If PD,H(x ∩  y) =  PD,H(x) +  PD,H(y), then the variables are independent of each other.

Based on the precipitation trend rate in the Beibu Gulf Economic Zone from 1985 to 2010, geographical 
detectors were utilized to explore the impact and indication effect of terrestrial environmental factors on the 
precipitation change through climate feedbacks.

Technical process. Modeling of the geographical detector mainly involves the following steps: first, determina-
tion of the optimal classification method for the factor data; second, determination of the impact of factors on the 
precipitation change; and third, determination of the leading role of factors in the precipitation change. Regarding 
the technical process in detail, please see Supplementary Fig. S3.

Data sources and processing. Precipitation data. The selected observation data are the mean annual precipita-
tion of 29 meteorological stations from 1985 to 2010 in the Beibu Gulf Economic Zone (Fig. 1). The above data 
were derived from the China meteorological data network (http://data.cma.cn).

Potential natural factors. According to the main impact factors of precipitation change discussed in the intro-
duction, almost all of the environmental factors, except for climate type, were considered as main potential natu-
ral factors, such as geomorphic type, the types of terrestrial ecosystem, vegetation type, elevation, gradient, aspect 
and forest coverage rate, to reveal the feedback. Based on the results of China’s ecological geographic division, the 
entire study area belongs to the climate type of the south subtropical-humid region; thus, the climate type factor 
can be ruled out here.

During the study period (1985–2010), the elevation, gradient and aspect of the Guangxi Beibu Gulf Economic 
Zone remain relatively stable, so SRTM DEM was used and also to produce the gradient and aspect. Similarly, 
the changes of geomorphic type, the type of terrestrial ecosystems and vegetation type were relatively small and 
fragmented, so we selected a middle year (around 2000) of these datasets to represent the entire study period. The 
datasets above were provided by the Data Center for Resources and Environmental Sciences, Chinese Academy of 
Sciences (RESDC) (http://www.resdc.cn). Annual forest coverage rates were collected from the Guangxi Forestry 
Yearbooks (1958–2003) and the Guangxi Statistical Yearbooks. To ensure the continuity of the dataset in time, 
regression analysis was used to fix missing data.

Data sorting and pretreatment were conducted in ArcGIS10.1. Based on the input requirements of the geo-
graphical detector model (http://www.sssampling.org/Excel-GeoDetector/), projection was unified to the pro-
jection coordinate system of Krasovsky-1940-Albers, and raster data were reclassified as 6 to 8 grades27,36,37 and 
then converted to the vector data type. ArcGIS provided some discrete classification methods, such as the Equal 
Interval Method (EI), Quantile Value Method (QV), Natural Break Method (NB) and Geometrical Interval 
Method (GI), to reclassify the raster data. Different classification methods result in different PD,H values for the 
classified factor. The highest PD,H value result will indicate that this impact factor classification, using the discrete 
method, can be more representative as the classification of a geographical phenomenon, thus better revealing 
spatial distribution laws of the geographical phenomenon38. Natural factors were processed and classification 
methods were selected after many experiments (Fig. 4).

Potential social factors. Population density, GDP, farmland rate, urbanization rate and land use were selected as 
potential social factors that likely caused regional precipitation change because of changes in them, as described 
in the introduction. The population density, GDP and urbanization rate were derived from the Guangxi Statistical 
Yearbooks (1986~1991, 1993~1999 and 2001~2010), while the farmland rate was derived from the Guangxi 
Rural Statistical Yearbooks (1985~2010), and regression analysis methods were used to fill the entire 26-year 
period (1985–2010). Land use data (1980s and 2010) were collected from the Data Center for Resources and 
Environmental Sciences, Chinese Academy of Sciences (RESDC) (http://www.resdc.cn). We used the trend rates 
of these factors, derived from Equation (1), to express change because these factors have changed greatly over the 
26-yearperiod. Similarly, the social factors adopted the same processing method as the potential natural factors 
(Fig. 5).

http://data.cma.cn
http://www.resdc.cn
http://www.sssampling.org/Excel-GeoDetector/
http://www.resdc.cn
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