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Cardiac Autonomic Alteration 
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Metabolic syndrome (MetS) has been associated with chronic damage to the cardiovascular system. 
This study aimed to evaluate early stage cardiac autonomic dysfunction with electrocardiography 
(ECG)-based measures in MetS subjects. During 2012–2013, 175 subjects with MetS and 226 healthy 
controls underwent ECG recordings of at least 4 hours starting in the morning with ambulatory one-lead 
ECG monitors. MetS was diagnosed using the criteria defined in the Adult Treatment Panel III, with a 
modification of waist circumference for Asians. Conventional heart rate variability (HRV) analysis, and 
complexity index (CI1–20) calculated from 20 scales of entropy (multiscale entropy, MSE), were compared 
between subjects with MetS and controls. Compared with the healthy controls, subjects with MetS had 
significantly reduced HRV, including SDNN and pNN20 in time domain, VLF, LF and HF in frequency 
domain, as well as SD2 in Poincaré analysis. MetS subjects have significantly lower complexity index 
(CI1–20) than healthy subjects (1.69 ± 0.18 vs. 1.77 ± 0.12, p < 0.001). MetS severity was inversely 
associated with the CI1–20 (r = −0.27, p < 0.001). MetS is associated with significant alterations in heart 
rate dynamics, including HRV and complexity.

Metabolic syndrome (MetS), also known as the cardiometabolic syndrome, is a medical disorder that consists 
of a complex combination of abdominal obesity, hypertension, impaired glucose tolerance and dyslipidemia1,2. 
With those interrelated risk factors, MetS causes chronic damage to the cardiovascular system and thus is strongly 
linked with incident cardiovascular diseases (CVD), diabetes, and related mortality and morbidity. It is estimated 
that MetS affects 20–25% of adults in general population3. It has also been predicted that the incidence and preva-
lence of MetS will keep increasing4–8, imposing an inevitable and profound impact on global healthcare systems9. 
Compared with healthy population, people with MetS have a five-fold greater risk of developing type 2 diabetes10, 
twice as likely to develop CVD11, three times as likely to have a heart attack or stroke9,12. The more components of 
the MetS that are evident, the higher is the cardiovascular mortality rate13.

Reciprocal reinforcement of insulin resistance14–16 and sympathetic activity17–19 plays an important role in 
the pathophysiology of cardiac dysfunction. Cardiac autonomic function can be evaluated non-invasively 
with ECG-based measurements. Heart rate variability (HRV), including time domain, frequency domain and 
non-linear analysis, is one of the most frequently studied measurements with its predictive power20–22. In recent 
years, system complexity gradually becomes a more established theory to evaluate health. Decrease of complexity 
has shown to be a common sign of pathological conditions or aging23–25. Healthy physiologic function represents 
the body’s capacity to adapt to ever changing stresses by complex interactions between multiple control systems, 
feedback loops, and regulatory processes that operate over multiple scales of time and space25. Entropy measure-
ment is considered an important index for complexity. Therefore, multiscale entropy (MSE)26–28 has been widely 
used to evaluate human health conditions on a system level, but has not yet been applied in subjects with MetS.
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We hypothesized that subjects with MetS may have early cardiac autonomic dysfunction in terms of alterations 
of heart rate dynamics, which may further lead to significant cardiovascular comorbidities and complications. To 
test the hypothesis, we prospectively recruited subjects from a Chinese general population, who attended periodic 
health check-ups in our institute. All subjects have undergone a comprehensive evaluation for components of 
MetS, as well as an ambulatory ECG monitoring. We compared various ECG-derived measurements of cardiac 
autonomic functions between subjects with and without MetS. Furthermore, we tested the clinical utility of com-
plexity index in the evaluation of the presence and the severity of MetS in the general population.

Results
Subjects and demographics. From Jan 2012 to June 2013, 175 subjects with MetS and 226 healthy sub-
jects were identified and included in the final analysis (Table 1). Since age and gender were different in these two 
groups, comparisons of various outcome measures were adjusted for age and gender. Comparing with healthy 
subjects, subjects with MetS had significantly higher body mass index (BMI), waist circumference (WC), body 
fat percentage and blood pressure. In addition, more subjects with MetS had the comorbidities of sleep apnea.  

MetS (N = 175) Healthy (N = 226) p p†

Demographic

 Age (yr) 54.76 ±  9.04 49.96 ±  8.86 < 0.001**

 Gender (F/M) 52/123 111/115 < 0.001**

Body Composition

 BMI (kg/m2) 26.94 ±  3.53 22.88 ±  2.9 < 0.001** < 0.001**

 WC (cm) 93.93 ±  8.11 82.9 ±  8.41 < 0.001** < 0.001**

 Body fat (%) 29.51 ±  5.09 25.51 ±  5.44 < 0.001** < 0.001**

Exam Parameters

 SBP (mmHg) 129.78 ±  15.36 113.37 ±  12.35 < 0.001** < 0.001**

 DBP (mmHg) 78.07 ±  10.22 68.08 ±  8.95 < 0.001** < 0.001**

 T-CHO (mg/dL) 196.34 ±  36.71 197.65 ±  34.26 0.713 0.634

 TG(mg/dL) 189.1 ±  112.08 97.63 ±  38.94 < 0.001** < 0.001**

 HDL (mg/dL) 40.51 ±  8.01 54.35 ±  13.34 < 0.001** < 0.001**

 LDL (mg/dL) 123.93 ±  30.58 123.88 ±  29.84 0.988 0.643

 TP (g/L) 7.31 ±  0.37 7.32 ±  0.41 0.728 0.936

 FBG (mg/dL) 105.86 ±  20.71 90.33 ±  7.83 < 0.001** < 0.001**

 GLU 2-hr PC(mg/dL) 139.99 ±  51.74 109.5 ±  30.86 < 0.001** < 0.001**

 HbA1c (%) 6.01 ±  0.84 5.5 ±  0.3 < 0.001** < 0.001**

 hs-CRP (mg/L) 0.22 ±  0.32 0.15 ±  0.29 0.036* 0.031*

 Hb (g/dL) 14.91 ±  1.46 14.3 ±  1.47 < 0.001** 0.039*

 UA (mg/dL) 6.34 ±  1.52 5.48 ±  1.32 < 0.001** < 0.001**

Drinking 0.890 0.683

 No drinking 61 (35.9%) 76 (35.3%)

 Occasional drinking 86 (50.6%) 113 (52.6%)

 Alcohol intake 23 (13.5%) 26 (12.1%)

Smoking < 0.001** < 0.001**

 Never smokers 107 (61.1%) 183 (81.0%)

 Former Smokers 40 (22.9%) 26 (11.5%)

 Current smokers 28 (16.0%) 17 (7.5%)

Current Medications

 anti-hypertensive agents 72 (41.1%) 0 < 0.001** 0.996

 hypoglycemic agents 30 (17.1%) 0 < 0.001** 0.998

 anxiolytics/hypnotics 12 (6.9%) 18 (8.0%) 0.707 0.365

Mental State Evaluation

 BSRS-5 score 2.52 ±  3.10 2.95 ±  3.38 0.190 0.968

Sleep Apnea 27 (15.4%) 9 (4.0%) < 0.001** 0.005**

Table 1.  Comparison of basic demographics between healthy subjects and subjects with metabolic 
syndrome. BMI, body mass index; WC, waist circumference; SBP, systolic blood pressure; DBP, diastolic 
blood pressure; T-CHO, total cholesterol; TG, triglycerides; HDL, high density lipoprotein; LDL, low density 
lipoprotein; TP, total protein; FBG, Fasting blood glucose; GLU 2-hr PC, 2-hr Postprandial glucose; HbA1c, 
Hemoglobin A1c; hs-CRP, high-sensitivity C-reactive protein; Hb, hemoglobin; UA, Uric acid; BSRS-5, five-
item Brief Symptom Rating Scale. Alcohol intake was defined as drinking at least once a week. Occasional 
drinking was defined as drinking less than once a week. Values reported are either number (percentages) or 
mean ±  standard deviation. *p <  0.05; **p <  0.01. p† indicates p value adjusted for age and gender.
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No significant difference was found in terms of mental status for the two groups. In terms of biometric parame-
ters, significant difference presented on triglycerides, high density lipoprotein, both fasting and 2-hr postprandial 
blood glucose, hemoglobin A1c, high-sensitivity C-reactive protein and hemoglobin, while total cholesterol, low 
density lipoprotein and total protein showed no significant difference between groups.

Time and frequency domain heart rate variability analyses. In time domain analysis of HRV 
(Table 2), subjects with MetS have faster heart rates and shorter heart beat intervals, after controlling for age and 
gender. Significant differences were also seen in SDNN and pNN20 before or after adjustment. No difference 
was seen in rMSSD and pNN50 even after adjustment. In frequency domain analysis (Table 2), decreased HRV 
was seen in MetS subjects, with significantly lower power in VLF, LF and HF bands. Poincaré analysis showed a 
significant difference in SD2 with or without adjustments. Further regression analysis adjusting for various con-
founding variables, including medication, mental status and sleep apnea, still confirmed the impact of MetS on 
various HRV parameters (Table 2).

Multiscale entropy for complexity analysis. Complexity index (CI1–20) in MetS subjects was signifi-
cantly lower than those in healthy subjects (1.69 ±  0.18 vs 1.77 ±  0.12, p <  0.001), and the difference remained 
significant even after adjustment for age and gender (Table 2). When investigated in different scales, MetS subjects 
had significantly lower entropies than healthy subjects in all scales (Fig. 1).

MetS severity and heart rate dynamics. Following the definition of metabolic syndrome, all subjects 
were classified according to the numbers of metabolic derangement, as having 0, 1–2, 3–4, and 5 MetS com-
ponents, which can be considered as a spectrum from healthy to severe MetS. As shown in Fig. 2, for daytime 
heart rate dynamics in time and frequency domain, mean NN, nLF, nHF and LF/HF did not show any difference 
with the severity of MetS, but SDNN and pNN20 showed significant difference in subjects with 3 or more MetS 
components. For SD1 in Poincaré analysis, only subjects with 5 MetS components showed significant difference, 
but not between other subgroups. SD2 is comparatively more sensitive than SD1. For complexity, subjects with 3 
or more MetS components had significantly lower complexity index (CI1–20) than subjects with no or 1–2 MetS 
components.

MetS (N = 175) Healthy (N = 226) p p† p#

Time Domain

 Mean HR 83.41 ±  12.05 82.38 ±  11.42 0.383 0.013* 0.010*

 Mean NN (ms) 741.03 ±  105.68 750.71 ±  105.53 0.363 0.014* 0.016*

 SDNN 70.82 ±  19.90 76.93 ±  17.59 0.001** 0.001** 0.008*

 rMSSD (ms) 20.55 ±  14.30 21.79 ±  10.23 0.314 0.497 0.967

 pNN20 (%) 17.09 ±  14.41 21.44 ±  12.94 0.002** 0.026* 0.273

 pNN50 (%) 3.85 ±  8.40 3.94 ±  6.27 0.895 0.801 0.431

Frequency Domain

 LnTP 14.97 ±  0.54 15.01 ±  0.41 0.407 0.066 0.038

 LnVLF 9.40 ±  0.70 9.62 ±  0.60 0.001** 0.004** 0.057

 LnLF 8.09 ±  0.81 8.50 ±  0.73 < 0.001** < 0.001** 0.014*

 LnHF 6.81 ±  0.91 7.18 ±  0.84 < 0.001** 0.001** 0.046*

 nLF (%) 76.66 ±  12.00 77.28 ±  10.82 0.587 0.674 0.853

 nHF (%) 23.34 ±  12.00 22.72 ±  10.82 0.587 0.674 0.853

 LF/HF (nu) 4.31 ±  2.43 4.35 ±  2.37 0.871 0.787 0.945

Poincaré plot

 SD1 (ms) 14.54 ±  10.12 15.41 ±  7.24 0.315 0.496 0.968

 SD2 (ms) 98.57 ±  28.18 107.44 ±  24.94 0.001** 0.001** 0.006**

 SD1/SD2 0.16 ±  0.12 0.15 ±  0.08 0.477 0.406 0.187

Multiscale Entropy

 Complexity index (CI1–20) 1.69 ±  0.18 1.77 ±  0.12 < 0.001** < 0.001*** 0.005**

Table 2.  Comparison of daytime characteristics of various ECG-based parameters between healthy 
subjects and subjects with metabolic syndrome. NN, time interval between each normal heart beat; SDNN, 
the standard deviation of NN; rMSSD, square root of the mean of the squares of successive NN interval 
differences; pNN20, percentage of heart period differences > 20 ms; pNN50, percentage of heart period 
differences > 50 ms; LnTP, log form of total power; LnVLF, log form of very low frequency power; LnLF, 
log form of low frequency power; LnHF, log form of high frequency power. SD1, normalized deviation of 
instantaneous beat-to-beat N-N interval variability in the short diameter; SD2, normalized deviation of 
instantaneous beat-to-beat NN interval variability in the long diameter; LF/HF, ratio of low frequency over 
high frequency. Values reported are mean ±  standard deviation. *p <  0.05; **p <  0.01. p† indicates p value 
adjusted for age and gender; p# indicates p value adjusted for all confounding variables, including age, gender, 
medications, and diagnosis of sleep apnea.
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MetS severity and Complexity. As shown in Fig. 3, complexity index (CI1–20) was negatively correlated to 
MetS Score (Pearson’s correlation, r =  − 0.27, p <  0.001), suggesting that as the severity of metabolic derangement 
went up, the health level, as indicated by the complexity index, decreased.

Discussion
This prospective study included healthy individuals and subjects with MetS from periodic health examinations 
and obtained comprehensive biometric measurements and metabolic profiles for advanced analysis. From day-
time ECG characteristics, subjects with Mets had significantly reduced SDNN and pNN20 for HRV time domain, 
VLF, LF and HF in frequency domain, as well as SD2 in Poincaré analysis. Complexity index (CI1–20) in subjects 
with MetS was significantly lower than healthy subjects. These findings indicate reduced heart rate variability 
and lower complexity in MetS group than healthy group. Additional analysis also showed that when subjects had 
more MetS components, ECG-based heart rate dynamic characters changed significantly in Poincaré SD2 and 
nonlinear analysis by MSE complexity index, in addition to conventional linear parameters.

Heart rate is intricately regulated by complex interactions of multiple mechanisms, including sympathetic and 
parasympathetic nervous system, as well as hormonal homeostasis. Cardiac autonomic function is commonly 
measured non-invasively with HRV, and altered sympathovagal balance can be inferred by both short-term and 
long-term HRV29,30. Given the potential mechanism underlying the development of MetS and its major cardi-
ovascular complications, HRV is well recognized for its predictive power. Several HRV parameters have been 
developed, among them, time and frequency domain measures of HRV were the most commonly used31. In a 
systemic review of 14 studies examining the associations between HRV parameters and MetS, SDNN was the only 
conventional HRV parameter that was consistently reduced in all 14 studies when one or more risk factors were 
present compared to zero MetS components31. However, in the present study, several conventional parameters 
(pNN20, LnLF, LnHF) were able to distinguish these populations. Such discrepancy may be due to the heteroge-
neity in ECG recording duration, study population, accountable variables, body position during ECG recording, 
and HRV analysis methods among different studies. Methods from nonlinear dynamics have shed new insights 
into HRV changes under various physiological and pathological conditions, providing additional prognostic 
information and complementing conventional time and frequency domain analyses. Reduced entropy values 
have been observed in diabetic patients in comparison with control group32,33. Khandoker et al. further demon-
strated that, as compared to conventional HRV indices and Poincaré plot parameters, entropy measure was able to 
better distinguish diabetic patients with cardiac autonomic neuropathy from the diabetic patient without cardiac 
autonomic neuropathy34. Our present study confirmed the altered cardiac autonomic function in the MetS group 
with conventional HRV time and frequency domain measures. Complexity index, derived from the MSE analysis, 
and pNN20 provided the best discrimination between the groups, followed by SDNN, LnLF, LnHF and SD2.

The clustering of various cardiovascular risks referred to as the metabolic syndrome have led to the fact that 
patients with cardiovascular diseases often have one or more MetS components or undetected diabetes mellitus9. 
Cardiac dynamic alterations are associated with increase cardiovascular risk profile such as insulin-resistance, 
endothelial dysfunction, arterial stiffening, cardiac hypertrophy, and sympathetic activation35. Results from pre-
vious studies have shown that metabolic syndrome factors by themselves, or in any combination, portend cardio-
vascular disease and many other adverse outcomes36. The underlying mechanism of MetS and associated cardiac 
alternation remains unclear. Our previous studies have identified overactivated sympathetic nervous system,  

Figure 1. Comparison of MSE (CI1–20) between subjects with metabolic syndrome and healthy subjects. 
X axis: scale 1–20 of MSE. Y axis: the values of entropy. Data of the healthy and MetS groups are presented as 
mean ±  standard error.
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as assessed by HRV analysis, in patients with nonalcoholic fatty liver disease (NAFLD), which was also commonly 
observed in patients with MetS37. This association was independent of leptin or subclinical inflammation.

Evidence suggests that both lifestyle and pharmacological interventions can reverse MetS38. Metabolic syn-
drome is conventionally managed by both pharmacological and non-pharmacological approaches39, targeting 
specific core disorders such as obesity, hypertension40–42 and hyperlipidaemia. Therefore, since the prevalence of 
MetS has increased remarkably worldwide, early detection of minute cardiac alternations and early intervention 
may help to prevent or alleviate the late and more severe cardiovascular complications as a result of MetS in gen-
eral population. Ambulatory ECG monitoring is easy, accessible, non-invasive, and heart rate based methods are 
relatively mature techniques for this purpose. In addition, such approach is ideal for the dynamic monitoring of 
intervention response at multiple times. Conventional or nonlinear methods for heart rate dynamics are feasible 
as cost-effective approaches for metabolic syndrome. Further interventional studies with exercise or weight loss 
to modify the severity of metabolic syndrome and/or cardiac autonomic dysfunction may help to elucidate the 
temporal relationship between the metabolic syndrome and cardiovascular complications.

Limitations
There are limitations in this study. First, this study was cross-sectional in design, the actual causality between 
MetS and cardiac autonomic dysfunction could be questioned. In addition, since this study was not specifically 

Figure 2. Heart rate dynamics and complexity for different MetS severity. AVNN, average of NN intervals; 
SDNN, the standard deviation of NN; pNN20, percentage of heart period differences > 20 ms; LnTP, log form 
of total power; LnLF, log form of low frequency power; LnHF, log form of high frequency power; LF/HF, ratio 
of low frequency over high frequency; nLF, normalized low frequency power; nHF, normalized high frequency 
power; SD1, normalized deviation of instantaneous beat-to-beat N-N interval variability in the short diameter; 
SD2, normalized deviation of instantaneous beat-to-beat NN interval variability in the long diameter.
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designed to investigate cardiovascular damage or cardiac dysfunctions in people with metabolic syndrome, we 
do not have long-term follow up data yet available. Further longitudinal study is warranted to investigate the 
impact of heart rate dynamic alterations and long-term health outcomes. Second, we collected at least 4-h ECG 
recordings during daytime for the present HRV analysis. However, differences in data collection, including the 
body position, leisure activity, and length of ECG recordings, could affect the HRV analysis and interpretation31. 
Further studies to compare measures during day time wakefulness with the same parameters acquired during 
sleep, when external influences are minimized, may help to address this important issue. Third, since insulin 
resistance has been regarded as the underlying pathophysiology of metabolic syndrome, some factors includ-
ing plasma norepinephrine levels, various adipocytokine levels, fasting insulin, homeostatic model assessment 
– insulin resistance (HOMA-IR), and unreported medication use were not measured in this study. The possible 
confounding effects of these factors cannot be totally excluded.

Conclusion
MetS is significantly associated with alterations in heart rate dynamics. Compared with conventional time and 
frequency domain HRV measures, Poincaré SD2 analysis and complexity index (derived from MSE) are more 
sensitive in distinguishing the alterations caused by MetS. Since ambulatory ECG monitoring is readily available 
and feasible in our clinical practice, large-scale screening to detect early stage cardiac dysfunction may help to 
prevent or alleviate various late cardiovascular complications.

Methods
Materials and Study Design. This prospective study recruited subjects aged equal to or greater than 20 
years from a routine health check-ups program in the Health Management Center of National Taiwan University 
Hospital, starting from January 2012. Attendees of the health check-up in our institute were recruited through 
advertising messages for health-promotion purposes from the general population and therefore the participants 
did not belong to any particular socio-economic class or share a unifying form of employment. Subjects with 
atrial fibrillation, use of ventricular pacing, severe comorbidities, such as congestive heart failure, symptomatic 
coronary heart disease, uncontrolled pulmonary disease, chronic renal failure, or pregnancy were excluded 
from the study. Data of medical history, including sleep apnea, was recorded Mental status was evaluated with 
a validated questionnaire, the five-item Brief Symptom Rating Scale (BSRS-5)43 and interviewed by clinicians to 
approve the eligibility. Information of current use of important medications, including anti-hypertensive agents, 
hypoglycemic agents and anxiolytics/hypnotics was also comprehensively collected. This study was approved by 
the ethical committee of National Taiwan University Hospital (No. 201006037R), and we confirm that all experi-
ments were performed in accordance with relevant guidelines and regulations. All subjects have provided written 
informed consent prior to participating in the study.

The standard protocol of our health check-up program consisted of a self-administered questionnaire, 
face-to-face interview by an internal medicine physician, physical examination, blood biochemical analysis, and 
various radiology and gastrointestinal endoscopy exams44,45. Therefore, analytical data were obtained from this 
health examination database, with recordings of demography/anthropometry, medical history, medication use, 
dieting, smoking, alcohol, and level of physical activities. BMI was calculated as weight (kg) divided by height 
squared (m2). Waist circumference was measured at the level of the umbilicus at minimal respiration. Blood 
pressures were measured at 8 am before taking any medication, and subjects were in the sitting position after sat 
quietly for 10 min. Systolic and diastolic blood pressures (SBP and DBP) were measured at bilateral upper arms 
and bilateral thighs, and the reported SBP and DBP in this article were both from upper right arm. Subjects were 
instructed to fast for at least 10 hours and avoid smoking, alcohol, coffee, and tea on the day of examinations. 
Comprehensive biometric tests included 110 biomarkers or parameters (i.e., white blood cell count, hemoglo-
bin concentration, fasting blood glucose, high-density lipoprotein cholesterol, triglycerides, uric acid, creatinine, 

Figure 3. Correlation of metabolic syndrome severity, in terms of MetS Score, and complexity index  
(CI1–20). MetS Score =  − 11.8769 +  (1.5432298 * Log Glucose) +  (0.7872732 * Log Triglyceride) −  (1.588791 * Log 
HDL) +  (0.0277125 * WC) +  (0.0232299 * SBP) +  (0.0420722 * DBP) −  (0.016408 * Age) −  (0.73821 * Gender) 
Male =  1, Female =  0. p <  0.001.
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aspartate aminotransferase, and alanine aminotransferase, etc.). The laboratory tests have both internal and exter-
nal quality control procedures accredited by the Taiwan Society of Laboratory Medicine twice a year.

ECG recordings were collected by an FDA approved ambulatory electrocardiogram monitor (DynaDx 
Corporation, Taipei, Taiwan) with a computer-based data-acquisition system. The ECG recording equipment 
was an one-lead Holter device that could record ECG for over 24 hours. All subjects were monitored at home one 
week after they finished their routine health check-ups to avoid interference. Two long-term ECG recordings were 
collected during daytime and sleep respectively. All sleep related analysis will be elaborated in another paper46. 
During daytime, all subjects were instructed to wear the device for at least 4 hours and to avoid exercise and naps 
during recordings. Sampling rate of ECG monitoring was 200 Hz. All ECG recordings were carefully checked with 
noise level, artifacts, R peak detection and ectopic beats. Data was discarded if less than 4 hours or low quality, or 
cut if longer than 4 hours.

Definition of metabolic syndrome. Subjects with MetS were defined by the criteria defined in the Adult 
Treatment Panel III, with a modification of waist circumference as appropriate for Asians47, and was also pro-
posed by the Taiwan National Health Bureau. The five metabolic syndrome characteristic components are: 1) 
abdominal obesity, defined as WC ≥  90 cm (in male) or ≥ 80 cm (in female); 2) elevated blood pressure, measured 
as SBP ≥  130 mmHg and/or DBP ≥  85 mmHg or taking blood pressure-lowering medications; 3) hyperglycemia, 
fasting blood glucose ≥ 100 mg/dL (5.6 mmol/L) or taking hypoglycemic medications; 4) hypertriglyceridemia: 
fasting Triglycerides (TG) ≥ 150 mg/dL (1.69 mmol/L); and 5) high density lipoprotein (HDL) <  40 mg/dl (in 
male) or < 50 mg/dl (in female). Individuals who were using antidiabetic or antihypertensive therapy were treated 
as those who met the criteria for high fasting glucose level or high blood pressure. When three of the five listed 
characteristics were present, a diagnosis of metabolic syndrome was made. Healthy subjects were screened by all 
past history and were determined as absence of any abnormality of biometric markers, or if they have less than 
three metabolic syndrome components.

Heart rate variability (HRV). Based on non-invasive ECG recordings, heart rate variability (HRV) is a 
widely used method for assessing activity of the cardiac autonomic nervous system. R-peaks were detected from 
ECG, and the RR intervals (RRI) were defined as the time intervals between consecutive R peaks. Normal heart 
beat from the ECG recordings were automatically detected by commercial software (DynaDx Corporation, 
Taipei, Taiwan) and verified by visual inspections. Ectopic beats were identified and excluded from calculations. 
Recordings with artifacts or arrhythmias comprising more than 5% of the total epoch were discarded. Thus, 
normal-to-normal (NN) intervals were extracted for complete HRV analysis by time domain, frequency domain 
and non-linear analysis. In time domain, mean heart rate (HR), mean of NN intervals (mean NN), standard 
deviation of NN (SDNN), square root of the mean of the squares of successive N-N interval differences (rMSSD), 
percentage of heart period differences > 20 ms (pNN20) and > 50 ms (pNN50) were included. All time domain 
HRV measurements were analyzed based on the 4-hours ECG recordings. In frequency domain, NN inter-
vals were interpolated and resampled to 4 Hz for HRV frequency domain analysis. The Welch protocol (with 
a Hamming window applied to each 5 minute segment) was used for spectral analysis. HRV power spectrum 
measurements were log-transformed to normalize their distribution for analysis. Normalized percentage of LF 
and HF was defined as nLF =  LF/(LF +  HF) and nHF =  HF/(LF +  HF) respectively. Ratio of low frequency over 
high frequency (LF/HF) was selected to indicate autonomic balance. For non-linear dynamics, Poincaré plot as 
the two-dimensional reconstructed RR interval phase-spaces was chosen to describe the dynamics of the cardiac 
system, and multiscale entropy (MSE) was used to analyze the heart rate dynamic complexity.

Multiscale Entropy (MSE). MSE analysis was first proposed to evaluate the complexity of physiologic time 
series, and was well-recognized as a way to assess human health conditions in many studies26,27,48–51. In human 
health, decrease of complexity is a common sign of pathological conditions or aging23. The MSE applies SampEn 
(sample entropy) analysis to measure the degree of irregularity of the time series, and SampEn requires the time 
series being studied to be stationary. Therefore, the retrieved NN intervals were first detrended by Ensemble 
Empirical Mode Decomposition (EEMD)52–54, and the long-term overall trend was removed to improve the sta-
tionarity of the time series, and thus the accuracy of entropy calculation. In this study, MSE analysis included 20 
scales, and the mean of entropies on all 20 scales was calculated as a complexity index (CI1–20).

MetS Score. Since MetS is characterized by concomitant derangements in multiple factors, MetS Score 
was proposed by a multiethnic cohort study (6780 subjects)55. MetS Score =  − 11.8769 +  (1.5432298 * Log 
Glucose) +  (0.7872732 * Log Triglyceride) −  (1.588791 * Log HDL) +  (0.0277125 * WC) +  (0.0232299 * SBP) +   
(0.0420722 * DBP) −  (0.016408 * Age) −  (0.73821 * Gender). For gender in the formula, male =  1 and female =  0. 
MetS Score is a continuous measure of MetS severity and is proposed as a better predictor of cardiovascular events 
overall and in individual ethnicities55.

Softwares and Statistical Analyses. MATLAB R2012a (The MathWorks, Inc.) was used for data pro-
cessing and analysis programming. SPSS 19.0 (IBM SPSS Statistics) was used for statistical analyses. Descriptive 
statistics were reported as mean ±  standard deviation for continuous data, and number (percentage) for cate-
gorical data. Comparisons of categorical variables were made using the chi-squared or Fisher’s exact test, where 
appropriate. Comparisons of continues variables were assessed by t-test or non-parametric test (Mann-Whitney 
U), where appropriate. Linear and logistic regression models were constructed in sequential models, adjusted for 
age and gender. A p value <  0.05 was considered statistically significant.
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