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Image deformation as a cue to 
material category judgment
Takahiro Kawabe1,* & Rok Kogovšek1,2,*

Human observers easily recognize complex natural phenomena, such as flowing water, which often 
generate highly chaotic dynamic arrays of light on the retina. It has not been clarified how the visual 
system discerns the source of a fluid flow. Here we show that the magnitude of image deformation 
caused by light refraction is a critical factor for the visual system to determine the perceptual category 
of fluid flows. Employing a physics engine, we created computer-rendered scenes of water and hot 
air flows. For each flow, we manipulated the rendering parameters (distortion factors and the index 
of refraction) that strongly influence the magnitude of image deformation. The observers rated how 
strongly they felt impressions of water and hot air in the video clips of the flows. The ratings showed 
that the water and hot air impressions were positively and negatively related to the magnitude of 
image deformation. Based on the results, we discuss how the visual system heuristically utilizes image 
deformation to discern non-rigid materials such as water and hot air flows.

Vision scientists have recently attempted to unveil the perceptual and cognitive mechanisms underlying the rec-
ognition of materials1. Most of them have focused on the perception of material surface properties. In particular, 
previous studies have shown that human observers can decode surface reflectance properties such as specular-
ity2–6 and subsurface scattering7,8 from complex retinal images.

In addition to surface reflectance, surface refraction is an important phenomenon determining perceptual 
appearance of materials. When light penetrates a transparent material with an index of refraction (IOR) of more 
(or less) than 1, the path of the light is bent at the material’s surface, where the direction of the bending depends 
on the IOR. The bent light path often causes image deformation of the scene behind a curved material, wherein 
the larger (smaller) IOR of the material creates a larger (smaller) magnitude of image deformation on the retina.

It has been reported that image deformation due to refraction is a vital cue for the visual system to judge 
several aspects of material properties. For example, the magnitude of image deformation serves as a cue to judge 
the thickness of rigid materials such as glass [ref. 9, but also see ref. 10]. Moreover, the human visual system can 
utilize the dynamic pattern of image deformation due to refraction as a cue to a material’s elasticity11.

Importantly, dynamic image deformation gives observers the impression of a transparent water-like layer. 
A previous study12 reported that human observers can recognize a transparent water flow from dynamic image 
deformation alone; no other cues, such as specular reflection or luminance reduction due to absorption, were 
necessary for the transparent water recognition. It also showed that the critical component in dynamic image 
deformation is the spatiotemporal frequency of deformation and suggested that the specific band of the spatio-
temporal deformation frequency is critical for perceiving the deformation as arising from the intervention of a 
transparent water layer.

Besides a water flow, a hot air flow also optically deforms the image behind it. A temperature change physically 
causes the spatiotemporal variation of the density of air, which eventually alters the IOR. Because the density 
change spatiotemporally occurs on the basis of the Rayleigh–Taylor instability13, the image deformation caused 
by refraction can be dynamic. In our everyday experience, we easily notice the existence of hot air just by seeing 
the dynamic image deformation. On the other hand, how the visual system recognizes hot air and how the system 
differentiates between hot air and water flows on the basis of dynamic image deformation are still open questions. 
Clarifying how the visual system categorizes transparent non-rigid material will be an important step to under-
standing how the mind generates rich and detailed visual representations of the very complex real world from a 
handful of visual inputs.
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In this work, we examined what the critical image information is for human observers to discern the source of 
a transparent material flow. We used computer graphics with a physics engine to create video clips of simulated 
hot air flows and water flows. We noticed that the former generated a smaller magnitude of image deformation 
than the latter. Thus, we parametrically manipulated the magnitude of image deformation by changing rendering 
parameters. We then found that the hot air and water impressions were negatively and positively related to the 
magnitude of image deformation under the condition where other aspects of the flows, such as flow direction and 
turbulence, were intact. On the basis of the results, we propose a visual mechanism underlying the recognition of 
fluid materials from image deformation.

Results and Discussion
In Experiment 1, we first tried to determine whether our simulation of hot air (Fig. 1a–f) could produce a rea-
sonable level of the desired impression. The observers were asked to rate their hot air impression after they had 
watched the video clips of simulated and real hot air flows. As shown in Fig. 1g, the range of motion vectors was 
similar between the simulated hot air and real hot air. Two styles of video clip presentation were tested. One was a 
dynamic style in which dynamic sequences of video frames were presented. The other was a static style in which a 
single static video frame was randomly extracted from a sequence of video frames and presented to the observer. 
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Figure 1.  Simulation geometry, rendered scene, motion vector analysis, and experimental results.  
(a) The geometry of water simulation seen from an oblique angle. (b) A rendered scene of (a), which was viewed 
from an oblique angle. (c) A rendered scene of water flow. (d) The geometry of hot air simulation seen from an 
oblique angle. (e) A rendered scene of (d), which was viewed from an oblique angle. (f) A rendered scene of hot 
air. (g) Motion vector comparison between clips of simulated and real hot air for horizontal (upper row) and 
vertical (lower row) vectors, which were calculated between two video frames. (h) Experiment 1 results.  
(i) Experiment 2 results.
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The results (shown in Fig. 1h) showed that the hot air impression in the simulation could produce a comparable 
level of impression to the clips of real hot air. A two-way repeated measures ANOVA with clip types and pres-
entation style as within-subject factors showed that there were no significant differences in rating scores between 
the simulation clips and real hot air ones [F(1, 11) =​ 0.000, p >​ 0.05, partial η2 =​ 0.000] (their average scores were 
just identical to each other by accident). The rating scores were strongly affected by the presentation style [F(1, 
11) =​ 13.885, p <​ 0.005, partial η2 =​ 0.558], and this suggests that, consistent with the previous study12, dynamic 
image deformation is necessary for human observers to have the impression of transparent materials. Interaction 
between the type of video clips and the presentation style was not significant [F(1, 11) =​ 3.868, p >​ 0.05, partial 
η2 =​ 0.260]. The results indicate that our hot air simulation clips could give the observers the intended impression, 
whose strength was comparable to their impression of the clips of real hot air.

In Experiment 2, we wanted to check whether the observers could discern hot air from water in our sim-
ulation. To see the pure effect of image deformation on our task, our water flow simulation omitted specular 
reflection and caustics. In each trial, the observers were asked to view the clips of simulated water or hot air flows 
(Video 1) and successively rate their impressions of water and hot air. The results (Fig. 1i) showed that the water 
impression was stronger for water simulation clips [t(11) =​ 2.49, p <​ 0.04, Cohen’s d =​ 1.12] and that the hot air 
impression was stronger for hot air simulation clips [t(11) =​ 6.39, p <​ 0.0001, Cohen’s d =​ 1.63]. The results indi-
cate that our simulation video clips can evoke the desired material impressions in an observer.

Then the question is: what is the critical image information that the visual system uses to perceptually differen-
tiate between water and hot air? At a glance, the magnitude of image deformation appears quite larger in the water 
simulation than in the hot air one (please compare the magnitude of image deformation between Fig. 1c and f). 
This is because the IOR for water is larger than for hot air. It therefore seemed promising to focus on the magni-
tude of image deformation as a cue the visual system uses to discern the source of a transparent material’s flow.

To this end, we calculated the optical flow fields using the pyramidal iterative Lucas-Kanade method14. We 
spatially trimmed the central 512 ×​ 512 pixel region in the simulation video clips and temporally extracted 30 
sequential frames. We then calculated the optical flow fields with the sequence of images having the structure 
of 512 (pixels) ×​ 512 (pixels) ×​ 30 (frames). Here we focused on the standard deviation of motion vectors as an 
index of the magnitude of image deformation. Basically, local motion vectors of image deformation due to refrac-
tion are in oscillation. Therefore, the standard deviation of motion vectors was a better index for the magnitude 
of motion vectors in the optical flow fields than the mean value of motion vectors, which would likely result in 
approximately 0.

The mean standard deviation of motion vectors in the calculated optical flow fields (Fig. 2) indicate that the 
video clips of simulated water produced a larger magnitude of image deformation than the video clips of simu-
lated hot air. Thus, it is likely that the magnitude of image deformation is one of the critical factors determining 
the source of transparent flows, at least from an image processing perspective. On the other hand, it is unclear 
whether human observers could also utilize the magnitude of image deformation as a cue to differentiate between 
water and hot air.

Experiments 3 and 4 tested whether the magnitude of image deformation could influence the water and hot 
air impressions. In Experiment 3, we systematically manipulated the IOR in the water simulation and found that 
IOR strongly affected the water and hot air impressions (Fig. 3(a), Video 2). In particular, a lower IOR increased 
the hot air impression and decreased the water impression. For the hot air impression, a one-way repeated meas-
ures ANOVA with IOR (and control condition) as a within-subject factor revealed a significant main effect  
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Figure 2.  Standard deviation of motion vectors in the optical flow fields of simulated water and hot air. The 
simulation video clips with the background of a ‘Rocks’ scene (see Method section for details) were used for the 
calculation of optical flow fields. The standard deviation is separately shown for horizontal and vertical motion 
vectors. Error bars denote the standard deviation across 29 optical flow field patterns (which were obtained 
from each successive pair in 30 video frames).
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[F(9, 81) =​ 4.768, p <​ 0.0001, partial η2 =​ 0.346]. A multiple comparison test (Ryan’s method) showed that the 
rating values for IORs of 1.005 and 1.01 were significantly different from the rating values for IORs of 1.03, 1.04, 
1.05, 1.1, 1.2, and 1.333 and the control condition (p <​ 0.05). For the water impression, the same ANOVA analysis 
as for hot air impression revealed a significant main effect [F(9, 81) =​ 6.894, p <​ 0.0001, partial η2 =​ 0.43]. The 
multiple comparison test showed that the rating values for IORs of 1.005 and 1.01 were significantly different 
from the rating values for IORs of 1.04, 1.05, 1.1, 1.2, and 1.333 (p <​ 0.05). Moreover, the rating values for IORs of 
1.02 were significantly different from the rating values for IORs of 1.1, 1.2, and 1.333 (p <​ 0.05).

In Experiment 4, we systematically manipulated distortion factors in the hot air simulation (Fig. 3(b), Video 3) 
and found that the higher distortion factors attenuated the impression of hot air, while they boosted the impres-
sion of water. For the hot air impression, a one-way repeated measures ANOVA with distortion factors (and the 
control condition) as a within-subject factor showed a significant main effect [F(20, 200) =​ 14.437, p <​ 0.0001, 
partial η​2 =​ 0.590]. The multiple comparison test showed that the rating values for distortion factors of 10, 20, and 
30 were significantly different from the rating values for distortion factors of more than 30, 50, and 80, respec-
tively (p <​ 0.05). The rating values for distortion factors of 40 were significantly different from the rating values for 
distortion factors of 110 and more than 130 (p <​ 0.05). The rating values for distortion factors of 50 were signifi-
cantly different from the rating values for distortion factors of 200 (p <​ 0.05). For the water impression, the same 
one-way repeated measures ANOVA revealed a significant main effect [F(20, 200) =​ 4.206, p <​ 0.0001, partial  
η​2 =​ 0.30]. The multiple comparison test showed that the rating values for distortion factors of 20 were signif-
icantly different from the rating values for distortion factors of more than 40 (p <​ 0.05). Moreover, the rating 
values for distortion factors of 30 were significantly different from the rating values for distortion factors of more 
than 70 (p <​ 0.05), but not for distortion factors of 180 and 190 (p >​ 0.05).

To directly assess relationships between the magnitude of image deformation and rating scores for the water/
hot air impressions, we plotted the rating scores obtained in Experiments 3 and 4 as a function of the magni-
tude of image deformation (Fig. 4). The data clearly show that the rating scores were influenced by the standard 
deviation of the motion vectors as an index of the magnitude of image deformation. In particular, the larger and 
smaller image deformation magnitudes respectively contributed to the water and hot air impressions, indicating 
that the visual system utilizes the magnitude of image deformation as a cue for discerning the source of flows of 
transparent materials.

On the other hand, the relationship between the impression of a material and image deformation magnitude 
is not always linear. As the data show, the rating score did not change when the standard deviation of the motion 
vector exceeded the range of 5 to 8. The results indicate that certain levels of image deformation magnitudes are 
sufficient to trigger the impression of water.

In Experiment 3, as shown by the error bars, individual differences in the water impression increased when 
the IOR exceeded 1.1. Although the reason for the individual differences is not clear, we speculate that it might 
involve differences in the perceptual clarity of a transparent layer among the observers. Specifically, as the IOR 
increased, the spatial structure of background pattern is destroyed. Therefore, it might have been difficult for 
some observers to clearly separate a front liquid layer from a rear background pattern, which would explain the 
individual differences in the impression of transparent liquid.

We should mention that the level of rating scores was slightly different between Experiments 3 and 4. 
Specifically, in Fig. 4a and b, the rating scores for the water impression were slightly higher in Experiment 3, 
while in Fig. 4c and d, those for the hot air impression were slightly higher in Experiment 4. There are two pos-
sible explanations for the difference in the rating scores between the experiments. First, since different observers 
participated in the experiments, the criterion for rating might have also been different between the two groups 
of the observers. Second, in Experiment 3, the majority of the stimulus video clips were water simulation, while 
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Figure 3.  (a) Experiment 3 results. The left panel shows the relationship between the distortion factors and hot 
air/water impressions. The right panel shows the rating score in the control condition with the simulated hot air 
video clips. (b) Experiment 4 results. The left panel shows the relationship between the distortion factors and 
hot air/water impressions. The right panel shows the rating score in the control condition with the simulated 
water video clips.
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in Experiment 4, they were hot air simulation, and this might affect the criterion for the rating. If this is the 
case, there is a possibility that the observers can access image information other than the magnitude of image 
deformation to differentiate water and hot air flows. Water and hot air have different viscosities and so likely 
produce diverse image motion vector patterns in, for example, turbulence. Although the impression of the source 
of transparent flows is largely determined by the magnitude of image deformation, it is possible that other visual 
information also contributes to the recognition of transparent flows.

General Discussion
In everyday life, we can tell water from hot air without an effort, but it has been unclear how the visual system 
accomplishes this trivial task. By combining graphical simulations of the transparent flow, image motion analyses, 
and psychological measurements, we found that the magnitude of image deformation is the strong determinant 
of the source of transparent flows in perception.

It is logically plausible to assume that in order to differentiate the source of a transparent flow on the basis of 
the magnitude of image deformation, the visual system needs to first recognize that an image deformation arises 
from an optical deformation due to light refraction at the surface of transparent materials, not from the physical 
deformation of scenes/objects themselves. We are likely to encounter the physical deformation of objects, such as 
a fabric waving in the wind, which often produces a large magnitude of image deformation Therefore, the visual 
system would not rely solely on the magnitude of image deformation to judge whether the image deformation 
arises from a water or a hot air flow. It is known that the visual system uses the spatial (and spatiotemporal) fre-
quency of image deformation as a cue to interpret whether the image deformation comes from optical or physical 
deformation12,15. Specifically, human observers tend to report the existence of a transparent layer when an image 
deforms with relatively higher spatial frequency15. It is possible that our simulations of water and hot air flows 
satisfied the spatiotemporal frequency condition for the observers to see a transparent layer, and, in doing so, the 
observers might have been able to evaluate the magnitude of image deformation and differentiate the source of 
transparent flows.

As described in the introduction, a previous study has shown that the magnitude of image deformation con-
tributes to the judgment of the thickness of a transparent rigid material9. Specifically, a transparent material 
causing larger image deformation is seen to be thicker than one causing smaller image deformation. Consistent 
with this suggestion, in our stimuli, the simulation of hot air flow, which involves a small image deformation, 
apparently produces a shallower depth impression than the simulation of water flow, which involves a large image 
deformation. Previous studies9,10 assessed the role of image deformation in the perception of the thickness of 
transparent materials has been assessed, but they did not ask observers to report what material they had per-
ceived. In our study, the observers reported their impressions of material categories, but they were not asked to 
judge the thickness of each material. Thus, it is still unclear how the thickness of each material class is perceptually 
changed with the magnitude of image deformation.

There is a room to discuss whether we should have asked the observers to rate their impression of gas and liq-
uid instead of hot air and water. Before the experiments, we discussed what we should ask the observers to do as a 
task. Consequently, we decided to ask for their water and hot air impressions because water and hot air are ubiq-
uitous transparent materials in the environment. Thus, they are likely familiar to an observer (it seems it would 
be rather confusing for the observer to judge the impression of gas from image deformation because the most 
plentiful gas in our environment is air, which reflects light only slightly). On the other hand, it would possibly be a 
bit problematic if the observers perceived liquid and gas materials other than water and hot air, respectively. This 
is an open question for future studies to try to answer.

If observers could discriminate the materials by directly utilizing the IOR value, which is unique to each 
material, it would perhaps be pointless to ask observers to rate their impression of specific materials with varying 
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Figure 4.  Plots of correlation between the standard deviation of motion vectors and rating scores: Rating 
scores for water impression as a function of the standard deviation of (a) horizontal and (b) vertical motion 
vectors. Rating scores for hot air impression as a function of the standard deviation of (c) horizontal and (d) 
vertical motion vectors. Each data point was obtained from each experimental condition tested in Experiments 
3 and 4. Vertical error bars denote the standard error of mean across observers. Horizontal error bars denote 
the standard deviation of motion vectors across 29 patterns. The simulation video clips with the ‘Rocks’ scene 
background were used to calculate optical flow fields.
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IOR values. On the other hand, we do not always assume that a physical IOR value itself plays a strong role in the 
judgment of material categories; rather, we implicitly support the idea that human observers do not accurately 
infer the IOR of the materials from image deformation. Specifically, irrespective of the IOR, the observers might 
directly utilize image deformation magnitudes as the cue to material categorization. As described above, the 
change in the thickness of materials and/or in spatial frequency components of the background would easily alter 
the magnitude of image deformation and thus possibly alter the critical IOR values. This would in turn alter the 
impression from hot air to water, provided that the magnitude of the image deformation is a vital cue to material 
categorization by humans. Thus, we suggest that rather than the IOR, image deformation magnitudes are key 
factors to determining the material categorization. Based on that idea, we believe that our asking the observers to 
rate the impression of hot air and water is not problematic because we suppose that the observers would rely on 
the magnitude of image deformation in making their responses, not on the IOR value.

In our graphical simulation, we eliminated specular reflection and caustics from the water simulation in order 
to examine the pure role of image deformation in the differentiation between water and hot air. To differentiate 
them, it is highly likely that the visual system utilizes specular reflection and caustics, which do not occur in hot 
air. Here, it is an open question as to how the visual system integrates image deformation with specular reflection 
and caustics to see a coherent water flow. A previous study16 pointed out that the visual system is not sensitive to 
the spatiotemporal inconsistency between dynamic image deformation and specular flow. But it is still unclear 
how the inconsistency between them affects the categorization of the type of flow of transparent materials. In 
addition, in real-world scenarios, richer cues such as specular reflection are available to the visual system for cate-
gorizing a material. It would therefore be interesting to investigate how the visual system categorizes a transparent 
flow materials when it integrates several consistent (inconsistent) cues to its existence.

In addition to the magnitude of image deformation, other spatiotemporal image properties that covaried with 
image deformation might potentially determine the categorization between hot air and water. When comparing 
the appearance of static-style clips of stimuli between hot air and water, as used in Experiment 2, one might easily 
notice that the spatial structure of the background is distorted more strongly in the water clips than in the hot air 
ones. The difference in the magnitude of the spatial distortion might serve as critical information for discerning 
material categories on the basis of image deformation. It was also likely that the change in the image deformation 
magnitudes produced the change in local spatial frequency and orientation of the background image. Moreover, 
the variation in image deformation magnitudes caused the variation in image motion vectors which can be pro-
cessed independently of shape information in the visual system. Thus, the effect of other image properties cova-
rying with image deformation on the material categorization is another important issue to investigate in future 
studies.

That the liquid impression did not increase beyond the IOR of 1.1 in Experiment 3 might indicate that the 
spatial distortion itself could enhance the impression of liquid. In Experiment 3, we did not add a strong image 
blur to stimuli because we wanted to assess the effect of image deformation magnitudes on the impression of 
materials. On the other hand, the image deformation with large magnitude involves the spatial distortion of image 
information as described above. Thus, our observers might not have accepted our stimuli with weak blurriness 
but strong image deformation in static information as transparent hot air flows. In this respect, it is possible that 
such spatial (static) distortion cue plays a critical role in the categorization of materials from image deformation.

We also used only an upward flow of transparent materials. In general, image deformation in heated air goes 
upward because of the change in air density due to temperature increments. Considering the physical properties 
of image deformation due to hot air movement, we used only an upward flow of hot air to imitate the natural 
appearance of a hot air flow. For an experimental control reason, we also used an upward flow of water in order to 
match the flow direction between water and hot air. On the other hand, we preliminary observed that a downward 
hot air flow was sometimes seen as a shallow water flow, and this indicates that the flow direction of transparent 
materials is also likely a strong cue to the judgment of the category of transparent materials. Further examinations 
are warranted in future studies to explore how visual information other than image deformation serves the differ-
entiation of transparent materials and how they interact with each other.

Methods
General method.  Observers.  All observers in this study were unaware of the specific purpose of the exper-
iments. They reported having normal or corrected-to-normal visual acuity. Participants were recruited from 
outside of the laboratory and paid for their participation. Ethical approval for this study was obtained from the 
ethical committee at Nippon Telegraph and Telephone Corporation (NTT Communication Science Laboratories 
Ethical Committee). The experiments were conducted according to the principles laid down in the Helsinki 
Declaration. Written informed consent was obtained from all participants.

Apparatus.  Stimuli were presented on a 21-inch CRT monitor (GDM-F500R, Sony) with a resolution of 
1024 ×​ 768 pixels and a refresh rate of 60 Hz. We linearized the luminance emitted from the monitor in a range 
from 0 to 132 cd/m2 using a photometer (OP200-E, Cambridge Research Systems). A computer (Dell Precision 
T1650 with Windows 7 32-bit OS) controlled stimulus presentation and data collection with Psychopy v1.8317,18.

Stimuli.  We used Blender (https://www.blender.org/), a professional open-source 3D computer graphics soft-
ware, as our physically based computer graphics engine. Blender simulations were built with a similar simulation 
system for hot air and water flows. The simulation geometry had a plane holding the chosen background image, 
hemisphere lightning, a camera directly facing the background plane, and a simulation source between the back-
ground and the camera (Fig. 1). The size of the simulation source was set to 5.5 ×​ 2 m with heights different 
between simulations of materials due to different simulation systems. The distance between the background and 

https://www.blender.org/
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source was 3 m, while the distance between the source and camera was 5 m. Together with the source depth of 
2 m, the distance between the camera and background was 8 m.

Water simulation.  Water simulation was based on Blender’s fluid simulation engine with the combination of 
transparent materials (Fig. 1a and b), with the contribution of specular and diffuse reflection components min-
imized as the previous study12 did. Therefore, we used zero specular and diffuse reflection components, and we 
also set shadow values to zero. The only material setting, the IOR, was set to 1.333, which is identical to the real 
physical property of water. A raytracing method was used to calculate light refraction at the surface of transparent 
water. To allow the simulation source to simulate a liquid without its being pressed against the domain wall, which 
would create an impression of water flowing over a solid transparent material such as glass, we created a domain 
of bigger dimensions than the source. The domain size was set to 6 ×​ 6 ×​ 6 m. The settings of the fluid domain and 
inflows and outflows were as follows. Inflow (water simulation source) and outflow elements, which initialized 
and removed fluid particles, were boxes with the height 0.5 m. The inflow was upward and its speed was 15 m/s. 
The speed value was chosen so as to visually match the speed of fluid flows between water and hot air. The fluid 
physics engine was set to a resolution of 150 with a 7-s simulation duration. Gravity was set to 9.81 m/s2 with 
0.005 gravity compressibility on automatic grid levels. The kinematic viscosity was set at 1 ×​ 10−6 m2/s. For the 
slip style, a partial slip at 20% was chosen with smoothing at one and two subdivisions. The fluid particles were set 
to 0. The spatial size of the whole simulation clip was 1280 ×​ 800 pixels.

Hot air simulation.  While Blender already incorporates water simulation as a feature with parameter settings, it 
does not have such a direct feature for hot air. To justify the apparent quality of simulated hot air, we modulated 
the appearance of our hot air simulation system until the appearance of the simulation video clips was similar to 
real hot air in video clips available on the internet. We used a simple particle system as the source, and we used 
post-rendering shader and randomization processes (in Blender’s Cycles engine), which caused realistic distor-
tion of the image of the background plane. The base of the system source was a plane incorporating a particle 
system that set the gravity weight to zero and therefore emitted particles upward (Fig. 1d). The particle system 
used an initial Blender ICO sphere as a particle base but randomly resized it to a maximum of 30% with a 0.5 
random parameter. Further size adjustment was done with a gradient that set the particles to grow to the set max-
imum size through their lifetime. The system was set to create 10,000 particles to fill the whole spatial area of the 
simulation video clip. The lifetime of the particles was set to 100 frames but was randomized with a 0.75 random 
setting. The emission locations were automatically jittered with a factor of 1. Since the shader generated a repet-
itive result across particles, we also set the random angular velocity of particles to 1. Considering the number of 
random factors, we used the same cached calculations across simulations in the same experiment or even across 
multiple experiments. Turbulence was added to the particle movement with strength set to 10 with size 0.5, Flow 
and Noise 0, and seed set to 49. For better movement control, a wind force field was incorporated. It had the shape 
of a plane with strength 10, flow 3, noise 0, and speed 66. Figure 1e shows the particle system combined with the 
shader process, which distorts a background image. Specifically, the intensity of red and green RGB channels of 
the particles determined the distortion of the pixels that were behind the particle, which is displayed as yellow 
contour disks in Fig. 1d. Connecting the effect of the coloring with the lifetime of the particle gave us a flow of 
randomly colored particles that start as a variation of green and red and their combination (yellow), while they 
slowly turn into a gray color that defined the area with no distortion. The intensity of red and green channels 
defined the size of the displacement on the horizontal and vertical axes, respectively. At this stage, a Gaussian blur 
was also applied to the distorted areas since genuine hot air tends to include some blurriness besides distortions. 
The strength of both the distortion and blurriness could be controlled by size parameters, which simply multiply 
the size of a given factor for the desired effect. Through comparison with the reference video clips of real hot air, 
we arrived at the conclusion that our system worked most naturally at around a distortion factor of 10 and blur 
factor of 0.5. The blurriness was more or less fixed around this factor, while the distortion factor heavily depended 
on the appearance of the clips of actual hot air. For the experiments, however, we fixed the values to 10 for dis-
tortion and 0.5 for blur. Although we introduced image blur to the hot air simulation to imitate physical hot air, 
the effect of the image blur on the hot-air impression is not so critical, as shown in Video 4. The spatial size of the 
whole simulation clip was 1280 ×​ 800 pixels.

Background.  Natural scene images were added as background to the simulated scenes. We chose ten images 
out of the rich collection in the McGill Calibrated Color Image Database19. The selected images can be seen in 
Supplementary Figure 1. Depending on experiments, we used all or part of the chosen ten images. In Experiment 
1, we used a single static video frame of the video clips of actual hot air as background.

Experiment 1. Comparison between clips of real and simulated hot air flows
Observers.  Twelve observers participated in this experiment.

Stimuli.  We used two types of stimulus video clips: Clips of real hot air and clips of simulated hot air. For the 
former, we downloaded a clip from the internet (https://www.youtube.com/watch?v=​xcLtgde23Ec, all rights of 
this clip are reserved by FreeStockHD VideoClips), which respectively consisted of 661 video frames sampled 
at 30 frames per second (or fps). In an experimental session, the program temporally trimmed the clips into 30 
frames (i.e., 1-s length). The program also spatially trimmed the clip into 600 ×​ 600 pixels. The start position of 
the trimming was randomly determined for each trial. In the video clips of simulated hot air, a simulated hot air 
was included in the scene. We wanted to match the background image behind the real hot air with that in the sim-
ulated hot air. Hence, we extracted the first frame from the clip of real hot air and used it as the background in the 
clip of simulated hot air. Using the video frame as background was not so problematic because the deformation 

https://www.youtube.com/watch?v=xcLtgde23Ec
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was not perceptually evident in a still image. The parameters in the simulation were adjusted so as to match the 
appearance between the two types of clips: blur factor was set to 0.5 and the distortion factor was set to 12.5. The 
total length of the video clips was 90 frames, and the experimental program trimmed the clip into 30 frames (i.e., 
1-s length). The original spatial size of the simulation video clips was 1280 ×​ 720 pixels. The program spatially 
trimmed the clip into 600 ×​ 600 pixels. The start position of the trimming was again randomly determined on 
each trial. The trimming also served to eliminate black blobs that appeared along the edge of a rendered image 
from stimuli used in this and following experiments.

Procedure.  Each observer was tested individually in a lit room. They sat approximately 70 cm from the CRT 
display. A session started when the observer clicked a button in the GUI. In one second, the program started to 
present either a real or simulated hot air video clip. In the dynamic condition, a 1-s video clip was played. In the 
static condition, a single video frame extracted from the video clip was presented for 1 s. After the clip/image dis-
appeared, a uniform black field was displayed for 0.25 s, followed by instructions for the rating task. The instruc-
tions used Japanese words describing hot air materials. The rating was done on a scale from 1 to 5, where 5 was 
a strong impression of hot air and 1 was no impression of hot air. Each observer performed 32 trials consisting 
of two types of video clips (real or simulated hot air), two types of presentation (dynamic or static), two types of 
background, and four repetitions. We collapsed the data across presentation, background, and repetitions in the 
analysis because these three factors were not critical for our purpose.

Experiment 2. Quality validation of our simulation video clips
Observers.  Eleven observers participated in this experiment. Ten of them had participated in Experiment 1, 
but they were still naive as to the purpose of the experiment.

Stimuli.  We used video clips of simulated water and hot air as stimuli. As described in General Methods, both 
the water and hot air were given upward flows and rendered with one of ten natural images as background.

Procedure.  The procedure was identical to that in Experiment 1 except for the following. After the disappear-
ance of stimuli, the word indicating water was presented, and the observers were asked to rate their impression 
of water. Each rating was done on a scale from 1 to 5, where 5 meant the impression exactly corresponded to the 
material indicated by the displayed word, 3 was an inexact impression, and 1 meant that the impression did not 
correspond at all to the material described by the word. After they had reported the water impression, the word 
indicating hot air was presented, and the observers rated their impression of hot air. Each observer received 80 
trials consisting of two types of video clips, ten types of background, and four repetitions. We collapsed the data 
across backgrounds and repetitions in the analysis because these two factors were not critical for our purpose.

Experiment 3. IOR manipulation in water simulation
Observers.  Ten observers participated in this experiment. None had participated in the previous experiments.

Stimuli.  We used the video clips of simulated water flow as stimuli. Here, we manipulated the index of refrac-
tion (IOR) in nine levels (1.005, 1.01, 1.02, 1.03, 1.04, 1.05, 1.1, 1.2, and 1.333). The IOR manipulation drastically 
affected the magnitude of image deformation due to refraction; the larger the IOR was, larger the image defor-
mation became. As stimuli in a control condition, we also used the video clips of hot air flow. We used a ‘Rocks’ 
image (the leftmost image in the upper row in Supplementary Figure 1 as background in both the water and hot 
air simulations.

Procedure.  As in Experiment 2, we asked the observers to sequentially rate their impressions of both the 
water and hot air. Each observer received 40 trials consisting of 9 levels of IOR ×​ 4 repetitions and an additional 
four repetitions of simulated hot air. We collapsed the data across repetitions in the analysis.

Experiment 4. Distortion factor manipulation in hot air simulation
Observers.  Eleven observers participated in this experiment. All of them had participated in Experiment 2, 
but they were still naive as to the purpose of the experiment.

Stimuli.  We used the video clips of simulated hot air flow as stimuli. Here, we manipulated distortion factors 
in 20 levels (from 10 to 200 in steps of 10). The distortion factor manipulation drastically affected the magnitude 
of image deformation; the larger distortion factor was, the larger the deformation became. As stimuli in the 
control condition, we also used the video clips of water flow. In addition to the ‘Rocks’ described above, we used 
‘Grass’ images (the rightmost image in Supplementary Figure 1) as background in both the water and hot air 
simulations.

Procedure.  As in Experiments 2 and 3, we asked the observers to sequentially rate their impressions of both 
the water and hot air. Each observer received 168 trials consisting of 2 backgrounds ×​ 20 levels of distortion fac-
tors ×​ 4 repetitions of simulated hot air, and an additional 2 backgrounds ×​ 4 repetitions of simulated water. We 
collapsed the data across background and repetitions in the analysis.
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