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Genetically-directed Sparse 
Neuronal Labeling in BAC 
Transgenic Mice through 
Mononucleotide Repeat Frameshift
Xiao-Hong Lu1,2,† & X. William Yang1,2

Mosaicism with Repeat Frameshift (MORF) allows a single Bacterial Artificial Chromosome (BAC) 
transgene to direct sparse labeling of genetically-defined neuronal populations in mice. The BAC 
transgene drives cell-type-specific transcription of an out-of-frame mononucleotide repeat that is 
placed between a translational start codon and a membrane-bound fluorescent protein lacking its start 
codon. The stochastic frameshift of the unstable repeat DNA in a subset of BAC-expressing neurons 
results in the in-frame translation of the reporter protein hence the sparse neuronal labeling. As a proof-
of-concept, we generated D1-dopamine receptor (D1) BAC MORF mice that label about 1% striatal 
D1-expressing medium spiny neurons and allow visualization of their dendrites. These mice enable the 
study of D1-MSN dendrite development in wildtype mice, and its degeneration in a mouse model of 
Huntington’s disease.

One major challenge to study the mammalian brain is to visualize and perturb genetically-defined neurons at 
single-cell resolution. Several genetic methods have been developed to achieve sparse labeling of single neurons, 
enabling the study of the relationship between neuronal morphology and neuronal function or dysfunction1,2. 
These current methods, however, have certain limitations2. For example, transgene promoter silencing due to 
random chromosomal insertions (e.g. Thy1 promoter transgene) is not readily applicable to other promoters to 
label diverse cell types. Also, low-efficiency and inducible site-specific recombination based methods may require 
the generation and crossing of multiple transgenic mouse lines with labeling frequency that may be variable and 
difficult to control.

Recent advances in transgenic or genome targeting technologies provide reliable genetic methods to express 
reporter genes (e.g. fluorescent proteins) in endogenous-like patterns in specific neuronal cell types in mice1,3. 
However, such genetic labeling in a densely packed neuronal cell population often precludes the visualization 
of their detailed morphology (i.e. dendrites and axons). Thus, a simple method is still lacking to readily gen-
erate transgenic mice, based on genetic constructs with proven neuronal cell-type specificity, but substantially 
reduced labeling frequency to confer sparse and stochastic (random) labeling of defined neurons for morpholog-
ical analyses.

Microsatellite repeats (e.g. mono-, di- or tri-nucleotides) are ubiquitous but non-randomly distributed across 
all genomes and are prone to frameshift mutations4,5. The frequency of such frameshifts may be dependent on 
repeat type, length, and other cell-type-specific factors (e.g. mismatch repair efficacy)6. In rare cases, microsatel-
lite repeats exist in the coding regions of genes and may cause neurological disorders and cancer when frameshift 
occurs5,7. To date, there are a few mouse genetic studies that take advantage of mononucleotide repeat frameshift 
to study frameshift mutation rates in vivo8–10, or inducing mosaic Cre expression in intestinal cells11,12. These 
studies did not reveal the potential of this approach for genetically directed sparse neuronal labeling, because the 
frameshift rate for G11 repeat in the brain is about 10−4–10−5 (Refs 8–10), which is much lower than the desirable 
sparse labeling frequency of about 1% neurons as in the classical Golgi method2.
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Results
In this study, we reasoned that a long mononucleotide repeat (i.e. G22) might be combined with a proven neuronal 
cell-type-specific genetic construct such as a BAC transgene to achieve the sparse neuronal labeling at a desirable 
frequency to allow single neuron morphological studies. As a proof-of-concept for the MORF strategy, we used 
the murine dopamine receptor D1 (Drd1a) BAC that drives transgene expression in the direct-pathway medium 
spiny neurons (i.e. D1-MSNs)3. This is one of two major striatal projection neuron cell types that mediate basal 
ganglia function in motor control and learning13. Dysfunction or degeneration of such neuronal pathways have 
been implicated in major neurological and psychiatric disorders including Huntington’s disease (HD)13.

The original Drd1a-BAC-EGFP mice label the entire D1-MSN population precluding visualiza-
tion of individual neuronal morphology3. To test the MORF strategy, we engineered the Drd1a BAC  
to insert a repeat of 22 deoxyguanines (G22) between the ATG initiation codon and a membrane-tethered 
farnesylated GFP (fGFP) lacking its own translation initiation codon (Fig. 1a). Due to the instability of the repeat 
sequence during neurogenesis or in postmitotic neurons (e.g. DNA repair, Fig. 1b), we expect that in a sub-
set of BAC expressing neurons the repeat sequence will undergo a frameshift mutation in the G22 repeat from 
out-of-frame to in-frame, hence the cargo protein (fGFP) will be translated with a small N-terminal polyglycine 
tag resulting in genetic labeling of only a subset of the D1-MSNs.

We performed pronuclear injections to create two Drd1a-bacMORF-fGFP (or Drd1a-bacMORF) founder 
mice, which we subsequently backcrossed and maintained as two lines (A and B line) on a C57BL/6J background. 
The transgenic mice were born at a Mendelian ratio and lack apparent behavioral phenotypes or pathology (data 
not shown). We quantified the transgene copy number and found A line has 3 copies and B line has one copy 
of the BAC transgene (Supplementary Fig. S1). We next performed GFP immunofluorescent staining of adult 
Drd1a-bacMORF striatum and found that sparse labeling of a subset of striatal neurons with characteristic MSN 
morphology in both lines (Fig. 2a and c, Supplementary Fig. S2), a pattern that is distinct from the GENSAT 
Drd1a-EGFP mice (Fig. 2b). The sparsely labeled neurons, which consisted of single neurons or small cluster 
of neurons (likely clones), are located in both dorsal and ventral striatum, and their dendritic structures can 
be clearly visualized (Fig. 2). The distribution of the labeled single or small cluster of neurons appears random 
throughout the striatum, consistent with stochastic labeling of the MORF method. Since the fluorescent signal 
for the labeled neurons is not bright enough for direct imaging, immunostaining was necessary for optimal vis-
ualization (see Methods). To confirm that the labeled MSNs are indeed D1-MSNs, we crossed Drd1a-bacMORF 
mice with Drd1a-BAC-tdTomato mice14, which selectively express tdTomato in D1-MSNs. The double trans-
genic mice showed that all of the sparsely labeled neurons in Drd1a-bacMORF mice are also positive for tdTo-
mato (Fig. 2d,e), demonstrating the sparse labeling of D1-MSNs in the Drd1a-bacMORF mice. Importantly, 

Figure 1. Illustration of the Mosaicism with Repeat Frameshift (MORF) Strategy for Genetically Directed 
Sparse and Stochastic Labeling of Single Neurons in the Mouse Brain. (a) A mononucleotide G22 repeat was 
inserted between translational initiation codon and farnesylated GFP (fGFP), with this cassette inserted into 
murine Drd1a BAC (Drd1a-bacMORF-fGFP). In D1-MSNs without G22 frameshift to G3n frame, fGFP is not 
expressed. Only neurons with frameshift of G22 to G3n (e.g. 21, 18) will express fGFP with a small N-terminal 
polyglycine tag (translated from G3n). PA: Polyadenylation signal. (b) Schematics to illustrate that mitotic 
instability of the mononucleotide repeat during neurogenesis (mitosis) could render the out-of-frame (OF) 
G22 to undergo a frameshift mutation to allow the fluorescent marker protein to be reverted into in-frame (IF), 
and therefore the expression of the marker to label a small clonal lineage of cells. In some circumstances (e.g. 
damaged DNA undergoing mismatch repair), such IF reversion could happen in post-mitotic single neurons.
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quantification of the double transgenic mice showed the D1-MSN-specific labeling efficiency of about 0.978 +/−   
0.586% in these mice.

The incorporation of the membrane-tethered fGFP in the MORF method should facilitate the visualization 
and reconstruction of fine anatomical structures such as the dendrites for 3-dimensional (3D) reconstruction. 
Indeed, immunofluorescent staining in Drd1a-bacMORF mice revealed the details of dendritic architecture 
that can be readily reconstructed in 3D using Neurolucida (MicroBrightField; Fig. 3a,b), which in turn allows 
quantitative morphological analyses. Moreover, the MORF method also allows visualization of at least a 

Figure 2. Sparse and Stochastic Labeling of Striatal Direct-pathway Medium Spiny Neurons Expressing 
Dopamine Receptor D1 (D1-MSNs). (a and c) Representative images of different magnifications to illustrate 
sparse and stochastic labeling of D1-MSNs in the striatum of Drd1a-bacMORF-fGFP mice (scale bar =  40 μ m).  
(b)The expression pattern is distinct from that of GENSAT Drd1a-BAC-GFP mice that label all D1-MSNs but 
cannot reveal their dendritic morphological details (scale bar =  10 μ m). In the Drd1a-bacMORF-fGFP and 
Drd1a-BAC-tdTomato double transgenic mice, Drd1a-bacMORF selectively and sparsely labels only D1-MSNs 
as indicated by the co-localization of fGFP (green) with tdTomato (red) labeling (scale bar in d =  20 μ m; scale 
bar in e =  10 μ m).



www.nature.com/scientificreports/

4ScienTific REPORTS | 7:43915 | DOI: 10.1038/srep43915

Figure 3. Imaging and 3D Reconstruction of Detailed Dendritic and Spine Structures in Single Labeled 
D1-MSNs in Drd1a-bacMORF-fGFP Mice. The MORF method can be used to visualize the dendritic 
structures of D1-MSNs. (a) A projection of stacked confocal images of a single striatal D1-MSN labeled by 
the MORF method (scale bar =  10 μ m). (b) A 3D reconstruction of the dendrite and spine structures using 
Neurolucida. (c) A projection of stacked confocal images of the dendritic spines from the D1-MSN depicted 
in 3A. Structures of spines can be visualized from the images (scale bar =  1 μ m). (d–f) A comparison of the 
immunohistochemical staining of striatal D1-MSNs labeled by MORF ((d,e) scale bar =  10 μ m) and MSNs 
labeled by the Golgi method ((f) scale bar =  10 μ m). Striatal MSNs stained by the Golgi method (f) often are 
clustered with overlapping dendritic structures from multiple MSNs. Immunostaining for GFP in Drd1a-
bacMORF-fGFP mice (d and e) show the labeling of small clusters (d) or single (e) D1-MSNs with a detailed 
dendritic structure for individual labeled neurons. (g,h) Quantitative comparison of the immunohistochemical 
staining of striatal D1-MSNs labeled by MORF and by biocytin microinjection into D1-MSNs in GENSAT 
Drd1a-BAC-GFP mice. Neurolucida and NeuroExplorer Suites (MicroBrightField) were used for 3D 
reconstruction of the dendritic structures of D1-MSNs labeled by the two methods, and for quantitation using 
Sholl analysis for intersections (branching) and dendritic length. Two-way ANOVA factored with labeling 
methods and distance to cell body could not detect significant difference between two methods (n =  5 for each 
genotype; Length: F =  0.992, P =  0.352; Length: Intersection: F =  2.047, P =  0.196).
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subset of dendritic spines on the labeled D1-MSNs (Fig. 3a,c). Importantly, immunohistochemical detection 
of MORF-labeled neurons (Fig. 3d,e) appears to show better resolution of single labeled MSNs compared to the 
traditional Golgi staining, which shows more clustered MSNs in the striatum (Fig. 3f). We next examined axonal 
labeling in Drd1a-bacMORF striatum, and found only the proximal axonal segments of D1-MSNs can be visual-
ized upon immunofluorescent staining (Supplementary Fig. S3).

Finally, to quantitatively assess whether MORF-labeled D1-MSNs reveal comparable dendritic architecture 
compared to those labeled using a traditional method, we performed 3D reconstruction and Sholl analyses of 
the dendritic trees of D1-MSNs labeled by Drd1a-bacMORF mice and those with biocytin microinjection in 
Drd1a-BAC-GFP mice (Fig. 3g,h). The comparison did not reveal any significant differences in dendritic branch-
ing patterns and length between D1-MSNs labeled by the two methods. This result showed not only that the 
MORF method can reveal detailed dendritic structures of D1-MSNs, but also that membrane-tethered GFP with 
its N-terminal polyglycine tag (encoded by G3n repeat) does not appear to be toxic to or alter the dendritic mor-
phology of labeled neurons.

The endogenous Drd1a receptor is expressed in other neuronal populations, such as hippocampal pyramidal 
neurons and dentate gyrus granule cells, therefore we examined these cells. Indeed, we found individually labeled 
hippocampal pyramidal neurons and dentate gyrus granule neurons (Supplementary Fig. S4) in Drd1a-bacMORF 
mice. Thus, our study demonstrates that the MORF method can confer genetically directed sparse neuron labe-
ling in multiple neuronal cell types in the brain.

To demonstrate the utility of the MORF method to study neurodevelopment, we next examined postnatal 
changes in dendritic structures of the sparsely labeled D1-MSNs. Although prior studies using Golgi or dye injec-
tion methods have shown that striatal MSNs undergo extensive postnatal dendritic growth15–17, no prior study 
has examined postnatal dendritic development of identified D1-MSNs. We imaged and reconstructed detailed 
dendritic structures of labeled D1-MSNs in the MORF mice at postnatal days 0, 14, 30 and 90 (Fig. 4). We per-
formed dendrogram (Fig. 4b,e,h,k) and Sholl analyses (Fig. 4c,f,i,l) of the dendritic branching patterns of multiple 
reconstructed D1-MSNs at each age (N >  5 per age). Our study reveals that the dendritic arbors of D1-MSNs 
undergo robust growth in terms of branching points, length, and diameter from birth to P30, with relatively mod-
est dendritic growth being seen between P30 and P90. Our study demonstrates the utility of the MORF method 
to study dendritic development in a genetically-defined neuronal cell type in vivo.

A potentially powerful application for genetically directed sparse neuronal labeling is to study neuropathol-
ogy, such as neurodegeneration, at single cell resolution. Mouse models of neurodegenerative disorders often 
exhibit partial disease phenotypes (e.g. neuronal atrophy) but often lack frank neuronal loss18–20. In Huntington’s 
disease (HD), the striatal MSNs in both the direct and indirect pathways undergo massive cell loss21. In mouse 
models of HD, such as the heterozygous zQ175 knockin mice expressing full-length endogenous murine mutant 
Huntingtin (mHtt), recapitulate the progressive striatal MSN dysfunction measured by electrophysiology22,23 and 
transcriptome profiling24. However, the zQ175 mice do not show significant striatal MSN loss by 12 months of 
age24,25. Although neurodegeneration in such models can manifest partially as degeneration of neuronal pro-
cesses, the use of traditional methods, such as Golgi staining or biocytin microinjection into MSNs, did not reveal 
any significant MSN dendritic pathology at 7 and 12 months of age in zQ175 mice23,26. However these methods 
could not distinguish MSN subtypes (D1- vs D2-MSNs), hence it is unclear if examining MSN subtypes could 
reveal evidence of dendritic pathology in this HD mouse model.

We reason that the use of Drd1a-bacMORF mice to selectively visualize D1-MSN dendrites may provide a 
simple and potentially sensitive method to detect early, MSN-subtype specific dendritic pathology in an HD 
mouse model. We crossed Drd1a-bacMORF mice to zQ175 heterozygous mice (in C57BL/6 background), and 
then analyzed double transgenic mice carrying Drd1a-bacMORF and zQ175 heterozygous alleles as well as 
Drd1a-bacMORF controls at presymptomatic age (1–2 m) or a symptomatic age (6–7 m) with motor deficits but 
no prior known neuropathology22,25. We imaged and reconstructed MORF-labeled D1-MSNs in the striata of 
these mice and quantified the dendritic parameters using Sholl analyses (Fig. 5). At the pre-symptomatic age, we 
found that dendritic branches, length and diameters of the labeled D1-MSNs were comparable between zQ175 
and control mice (Fig. 5c–e, N =  12 per genotype from three littermates at the same age, for genotype differ-
ence, intersections: F =  0.288, P =  0.597; Length: F =  0.288, P =  0.597; Dendritic diameter: F =  0.002, P =  0.967). 
Interestingly, at an symptomatic age of 6-7 months, we found a statistically significant reduction of dendritic 
branching, length and diameter in the MORF labeled D1-MSNs in zQ175 striata compared to those from wildtype 
controls (Fig. 5f–h, N =  15 per genotype from three littermates at the same age, for genotype difference, intersec-
tions: F =  20.549, P <  0.05; Length: F =  26.828, P <  0.01; Dendritic diameter: F =  21.247, P <  0.05). To our knowl-
edge, this is the first report of MSN subtype-specific dendritic pathology at such an early age in a full-length mHtt 
expressing mouse model. Moreover, unlike some traditional single-cell labeling methods that are incompatible 
with double immunofluorescent staining (e.g. Golgi), we showed MORF method can be readily combined with 
a second antibody to detect additional HD-like pathology such as mHtt aggregation (Supplementary Fig. S5). 
Future studies would be interesting to examine the relationship of such molecular pathology to dendritic pheno-
types in D1-MSNs of HD mice.

Discussion
In summary, we describe here a conceptually novel method (MORF), based on the mononucleotide repeat 
frameshift mechanism, to enable the use of a single BAC transgene, with proven neuronal cell-type promoter 
activity in vivo, to sparsely and stochastically label genetically-defined neurons for detailed morphological 
studies. As a proof-of-concept study, we showed the MORF method allows a Drd1 BAC transgene to express a 
membrane-bound fluorescent maker protein in about 1% of D1-MSNs, which allows visualization of their den-
dritic architecture, development, degenerative pathology in an HD mouse model. Importantly, the latter study, to 
our knowledge, is the first report of MSN subtype-specific dendritic pathology in a full-length mHtt expressing 
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Figure 4. Using Drd1a-bacMORF Mice to Image Postnatal Dendritic Development in Striatal D1-MSNs. 
The MORF method reveals the postnatal growth of dendritic arbors in single D1-MSNs at postnatal day 0 (a–c), 
15 (d–f), 30 (g–i) and 90 (j–l). Individual labeled neurons were 3D reconstructed using Neurolucida (a,b,c,d), 
which were then used for Dendrogram (e,f,g,h) and Sholl Analyses (i,j,k,l) to obtain quantitative morphological 
data for the D1-MSNs at these different ages.
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HD mouse model. At least in this case, MORF is proven to be more sensitive to detect such pathology than the 
traditional Golgi staining or biocytin microinjection approaches in the same HD mouse model23,26.

In principle, the MORF reporter can be used in conjunction with other defined genetic promoters (e.g. BAC 
transgenes or knock-in to endogenous loci) to achieve sparse labeling of genetically-defined cell types, but future 
studies are needed to thoroughly evaluate the broad utility of such an approach. Since the frequency of mono-
nucleotide repeat frameshift depend on repeat types (e.g. Gn and Cn repeats have higher frequencies than An or 
Tn repeats) and length4,6,27, the test of additional repeat types and lengths may also expand the applications of 
MORF technology to achieve different labeling efficiencies for optimal studies of different neuronal populations. 
Finally, strategies to enhance the MORF reporter signals, such as the use of stronger promoters, transcriptional 
amplification mechanisms28, and reporters with enhanced detection signals29, may improve the use of MORF 
to visualize more complete morphology of labeled single neurons. Ideally, it would include synaptic structures, 
dendritic trees, and brain-wide axonal projections. In conclusion, our study provides important proof-of-concept 
for a novel genetic approach to label and study the morphological details of genetically-defined single neurons, 

Figure 5. Using Drd1a-bacMORF Mice to Visualize Dendritic Pathology in an Huntington’s Disease 
Knock-in Mouse Model. Drd1a-bacMORF mice were crossed with an HD knock-in mouse model expressing 
full-length mHtt with 175Q from its endogenous locus. Single labeled D1-MSNs in both wildtype and zQ175 
heterozygous mice were examined at 1–2 months and 6–7 months of age, reconstructed using Neurolucida, and 
subsequently quantified using Sholl analysis. (a) D1-MSNsin wildtype mice at 6–7 m of age. (b) An example of 
MORF-labeled D1-MSN with aberrant dendritic pathology in zQ175 mouse striatum at 6–7 m of age.  
(c–e) Scholl analyses of reconstructed D1-MSNs at 1–2 m of age do not show significant difference in dendritic 
branching pattern (i.e. intersection), length or diameter between wildtype and zQ175 heterozygous mice (two-
way ANOVA, p >  0.05, (c,d,e)). (f–g) There is a statistically significant reduction of dendritic branching, length 
and dendrite diameter in MORF-labeled D1-MSNs in zQ175 heterozygous mice at 6–7 months of age compared 
to wildtype mice at the same age (two-way ANOVA, p <  0.05).
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which should facilitate the study of how neuronal morphology may be causally linked to normal function, or 
dysfunction and degeneration in the mammalian brain.

Methods
Generation of Drd1a-bacMORF-fGFP BAC Transgenic Mice. A 200 kb murine Dopamine Receptor 
1 (Drd1a) BAC (RP23-47M2) used in GENSAT3 was obtained from the BACPAC resource center (Oakland 
Children’s Hospital, Oakland). The transgene that contains the mononucleotide tract (G22), followed by a 
farnesylated-GFP coding and polyA region was inserted into exon 1 of Drd1a preceding the endogenous trans-
lation initiation codon (Fig. 1a). Two oligonucleotides were synthesized and annealed to generate G22 mono-
nucleotide tract (Oligo1: 5′ -CTCGAGGCCACCATGGGGGGGGGG GGGGGGGGGGGGGAAGCTT-3′ ;  
Oligo 2: 5′ : AAGCTTCCCCCCCCCCCCCCCCCCCCCCCATGGTGGCCTCGAG -3′ ) flanked by two restric-
tion enzyme (XhoI and HindIII) sites to create a frame shift mutation for farnesylated GFP. Maxiprep DNA was 
prepared from the modified Drd1a BAC and purified through cesium prep. The integrity of the BAC DNA was 
examined on a pulsed-field gel according to an established protocol30. The intact BAC DNA (1 ng/ul) was micro-
injected into fertilized F1 mouse (C57BL6/CBA) zygotes to generate BAC transgenic mice. Two of the D1-MORF 
BAC transgenic lines, designated lines A and B, were subsequently germline transmitted and expanded by cross-
ing with wildtype C57BL/6 mice. The heterozygous transgenic mice and their wildtype littermates were used for 
the subsequent studies. Mouse care in the current study was in accordance with the United States Public Health 
Service Guide for the care and Use of Laboratory Animals. The procedures were approved by Chancellor’s Animal 
Research Committee (ARC) at UCLA. Veterinarian care was provided by the UCLA Division of Laboratory 
Animal Medicine. Animals were housed in a specific-pathogen-free barrier facility at UCLA, with up to four mice 
per cage with food and water available ad libitum. They were housed in a temperature-controlled environment 
with 12 hour light/dark cycle.

Transgene copy number determination by quantitative PCR. Tail genomic DNA was extracted 
using phenol-chloroform (Sigma-Aldrich) with ethanol precipitation. Quantitative PCR was performed using 
the KAPA SYBR Fast qPCR mix with primer sets targeting the 3′ UTR in Exon of Drd1a (For: AAA GTT CCT 
TTA AGA TGT CCT; Rev: TGG TGG CTG GAA AAC ATC AGA) and the housekeeping gene HPRT (Forward: 
GCT CGA GAT GTC ATG AAG GAG A; Reverse: TCA GTG CTT TAA TGT AAT CCA GC) as reference for 
normalization. PCR reactions were carried out on a Roche LightCycler 480 with the following cycling conditions 
for all primer sets: 95 °C for 3 min and then 40 cycles of 95 °C for 15 sec, 56 °C for 25 sec, and 72 °C for 1 sec, fol-
lowed by a melting curve analysis and 40 °C for 10 sec. All samples were run in three replicates for each primer 
set. Using the 2−ΔΔCt relative expression method31, the average CT values for the three replicates of each gene was 
normalized to the average CT values for the housekeeping gene (HPRT) to calculate the expression level of Drd1 
in the transgenic mice relative to WT mice.

Immunofluorescence and Imaging. Drd1a-bacMORF transgenic mice were perfused transcardially 
with 4% paraformaldehyde in 0.1 M phosphate buffered saline (PBS). Tissues were isolated and fixed in 4% 
PFA in 0.1 M PBS at 4 °C overnight and cryoprotected for > 24 hours in 30% sucrose in PBS, then embedded in 
Tissue-Tek OCT (VWR, Cat. No 25608-930) prior to cryostat sectioning. Tissues were sectioned at 20 μ m on a 
Leica 1800 Cryostat (Deerfield, IL) and cryoprotected for further usage. Floating sections were immunostained 
in 24-well plates using the procedures below and subsequently mounted on slides. For immunofluorescence, cry-
osections were washed three times for 10 min in PBS, blocked with 10% normal goat serum (GS) in PBS +  0.3% 
Triton X-100 (PBT) for 1 hour at room temperature, and stained at 4 °C overnight with primary GFP antibodies 
in 5% GS in PBT (1:500 dilution). Following four washes for 10 min in PBT, sections were stained for 1 hour with 
secondary antibodies. The sections were washed four times for 10 minutes with PBT, treated with DAPI (Sigma, 
Cat. No. D8417), rinsed for 10 minutes in PBS, and mounted in Fluoro-Gold mounting medium. Some synapse 
images were taken with immunofluorescence staining with the standard Tyramide Signal Amplification (TSA, 
Perkin Elmer) protocol.

For imaging D1-MORF labeled axons, 60 μ m thick sagittal brain sections were cut and washed in 0.01 M PBS 
three times, each for 10 min. The sections were blocked with 10% GS in PBS with 0.3% Triton X-100 (PBT) for 
1 hour, then incubated in PBT with rabbit anti GFP antibody (1:5000, Life Tech) for 48 hours at 4 °C. Following 
four washes for 10 min each in PBT, sections were stained for 2 hours with goat anti-rabbit antibody (1:1000, 
Vector Laboratories) at room temperature or overnight at 4 °C with shake. The sections were then washed four 
times with PBT for 10 minutes each, processed with TSA amplification, and subsequently incubated in Alexa 
Fluor®  594-streptavidin (1:500, Vector Laboratories). Images were taken using an LSM510 confocal system (Carl 
Zeiss Inc., Oberkochen, Germany) or a Zeiss fluorescence microscope with a CCD camera and processed using 
LSM software (Zeiss) and ImageJ.

3D Neuronal Reconstruction and Quantification of Dendritic Morphology. To visualize the 
refined structures of D1-MSNs, Neurolucida (MicroBrightField, Williston, Vermont) was used to trace dendritic 
arbors of MSNs three-dimensionally and to mark spines. A cell was rejected if the soma was not intact or if it 
displayed discontinuity of processes, suggesting compromised integrity. Serial optical sections (Z-stacks) were 
acquired on a laser-scanning confocal microscope (LSM 510; Zeiss) with a 40× /1 NA objective (Zeiss). Images 
were stored at 8-bit image depth at a resolution of 512 ×  512 pixels (0.22 ×  0.22 ×  1 μ m). Z-series of the same cell 
were stitched together and subsequently reconstructed and analyzed using the MicroBrightField Neurolucida/
Neuroexplorer suite.

Statistical analysis. All statistical analyses were performed using the SPSS statistics (Version 22.0, IBM). 
For each of the basic morphometric parameters (intersections, length, and dendritic diameter), we tested for 
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significant differences between genotype (H0: a given parameter does not significantly differ across distance from 
the soma). Each measurement was first tested for goodness of fit to a normal distribution within each age group 
using the Lilliefors test (α  =  0.05). Where normality could be assumed, a student’s t-test or one-way analysis 
of variance (ANOVA) was used to test for differences across different groups, followed by a Least Significant 
Difference (LSD) post-hoc multiple-comparison test to test for specific differences between groups (α  =  0.05). 
Where normality could not be assumed, a Mann-Whitney U test or Kruskal–Wallis non-parametric ANOVA 
was used to test for differences across groups followed by post-hoc multiple comparisons t-tests (LSD-adjusted, 
α  =  0.05). Outliers were detected using the Explore function in SPSS and excluded form analysis. For Sholl anal-
yses in zQ175 mice, either total dendrite length or total number of intersections within each shell was compared 
using a two-way ANOVA, with genotype and distance from the soma as factors (H0: a given parameter does not 
significantly differ across distance from the soma).
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